〔检验检疫管理〕

Excel 软件在实验室质量控制中的应用

方 松 张宝萍 郭素珍 洛阳出人境检验检疫局(洛阳 471003)

摘要 质量控制是全面质量管理体系中的重要组成部分,在质控中常使用一些统计学方法对实验数据进行归纳和分析,也常用一些图表对质控情况进行形象的显示。电子表格软件 Excel 具有强大的计算功能和图表功能,将 其用于质控参数的统计分析可以大大提高工作效率。为此对 Excel 软件中用于质控参数计算的函数 AVERAGE 和 STDEVP 的概念和用法进行了介绍,并以 ELISA 法 HIV 抗体检测的质量控制为例,详细说明了 Excel 软件在实验室 质量控制的参数统计和图表制作中的应用方法。

关键词 Excel;实验室;质量控制

〔中图分类号〕RTP31 〔文献标识码〕C

1 Excel 中有关统计函数的介绍

Excel 是 Microsoft 公司出品的电子表格软件,具 有友好的界面和强大的数据计算功能,可进行数据 分析并将数据用各种统计图的形式表示出来。

公式和函数计算是 Excel 功能的重要组成部 分.Excel 的公式是在工作表中对数据进行分析的 等式,可以利用公式对工作数据进行一系列的运算, Excel 中的公式可以按需要自己创建。Excel 的函数 是 Excel 软件预定的内置公式,它使用被称为参数 的特定数值,按照自己的特定顺序(专业术语称为语 法)进行计算。 栏中的粘贴函数[fx]按钮,先在函数分类中选定[统 计],再从函数名中选定[AVERAGE];

(3)这时计算机会出一个方框让你确定要进行 AVERACE运算的各参数的位置(给定样本的范围), 将各参数的位置输入 Number 1 后的格中按[确定] 键,计算机即可将 AVERACE 的计算结果显示在你 选定的要显示算术平均数的单元格中。

1.2 STDEVP 函数

1.2.1 概念 STDEVP 函数用于对指定的参数进行 标准差(standard deviation)计算。其计算公式为:

$$\sqrt{n\sum_{\mathbf{x}}^2 - (\sum_{\mathbf{x}})^2}$$

Excel 提供了大量的函数,这里只介绍实验室质 控参数统计中常用的 AVERAGE 函数和 STDEVP 函数。

1.1 AVERAGE 函数

1.1.1 概念 AVERAGE 函数用于对指定的参数进行算术平均数(arithmetical average)的计算。其计算 公式为:

AVERAGE =
$$\frac{\sum x}{n}$$

其中:x:代表各个指定的参数

上x:代表所有指定参数的总和

n:代表指定参数的个数

1.1.2 用法:

(1)打开 Excel 软件, 依次在各单元格中输入各 个要进行算术平均数计算的指定参数(如果是对表 中已有的数据进行计算,则可省去此步骤);

(2) 选定要显示算术平均数的单元格, 点击工具

STDEVP = $\sqrt{\frac{n \cdot (x - x)}{n^2}}$

其中:n:代表指定参数的个数

x:代表各个指定参数

上x:代表所有指定参数的总和

'Lx':代表所有指定参数平方的总和

1.2.2 用法

(1)打开 Excel 软件,依次在各单元格中输入各参数(如果是对表中已有的数据进行计算,则可省去此步骤);

(2)选定要显示标准差的单元格,点击粘贴函数
 [fχ],先在函数分类中选[统计],再从函数名中选
 [STDEVP];

(3)这时计算机会出一个方框让你确定要进行 STDEVP运算的各参数的位置(给定样本的范围), 将各参数的位置输入 Number 1 后的格中按[确定] 键,计算机即可将 STDEVP 的计算结果显示在你选 定的显示标准差的单元格中。

1.2.3 说明

统计学教科书中标准差的计算公式为:

标准差 =
$$\sqrt{\frac{\sum(x-\bar{x})^2}{n}}$$

利用 $\bar{x} = \frac{\sum_{n}}{n} \pi (a - b)^2 = a^2 - 2ab + b^2$ 这 2 个数 学公式对教科书中标准差计算公式进行数学推导,

可以得出如下结论:

标准差 =
$$\sqrt{\frac{\sum(x-\overline{x})^2}{n}} = \sqrt{\frac{n\sum x^2 - (\sum x)^2}{n^2}} =$$

STDEVP

2 用 ELISA 法检测 HIV 抗体的质量控制简介

ELISA 法是常用的检测 HIV 抗体的方法,其检测结果用光密度值(OD 值)表示。实验要求每次实验时要用 $1 \land \hat{P} - \hat{x} \in \mathcal{Y} \times \mathcal{P}($ 弱阳性,OD 值为临界值的 $2 \sim 3$ 倍)的质控血清对实验结果进行监控。实验将临界值(Cut - off 值,CO)定为阴性对照的 OD 值 + 0.1。为有效消除每次实验的 OD 值浮动,实验将质控血清 OD 值与临界值之比(S/CO)定为质控对照值,用 S/CO 值计算质控参数,确定实验的可信限。质控 X 照值(S/CO)用算术平均数(x)、标准差(s)和变异系数(CV)来确定实验的可信限:质控对照值的 95% 可信限为 x ± 2s,CV 值的可信限为 20%。

质控图的制作,要求在常规条件下对阴性血清和质控血清连续测定 20 次或 20 次以上,计算 S/CO 的算术平均数(x)、标准差(s)和变异系数(CV)求出 (x ± 2s)的数值,以实验次数为横座标、以 S/CO 值为 纵座标的形式建立质控座标,在以后的实验中将每 次实验的 S/CO 值依次点入该座标图中。 相应数值,(即 S/CO 值);

③选定 D23 单元格,点击粘贴函数[fc],选定函数[AVERACE]在计算机给出的对话框(Number I 右侧)中输入"E2:E21"后按[Enter]健回车,此时 D23 单元格中显示的数值就是 S/CO 算术平均数的数值(x);

表1 表格样式及实验结果

	A	В	С	D	E
1	次数	阴性 OD 值	质控 OD 值	Cut-off 值	S/C0 值
2	L	0.053	0.410		
3	2	0.047	0.362		
4	3	0.046	0.349		
5	4	0.052	0.347		
6	5	0.044	0.378		
7	6	0.045	0.375		
8	7	0.054	0.363		
9	8	0.052	0.380		
10	9	0.061	0.361		
11	10	0.049	0.354		
12	11	0.051	0.344		
13	12	0.052	0.336		
14	13	0.054	0.334		
15	14	0.049	0.406		
16	15	0.048	0.376		
17	16	0.064	0.389		
18	17	0.051	0.385		
19	18	0.047	0.378		
20	19	0.046	0.388		
21	20	0.053	0.396		
7 1					

3 用 Excel 进行质控参数的统计

(1)把实验测得的阴性血清和质控血清的 OD 值按"表1"格式输入 Excel 工作表:

(2)依次输入以下统计函数:

①在 D2 单元格输入"= B2 + 0.1"后按[Enter] 键回车,用鼠标左键点住 D2 单元格的右下角下拉 至 D22 单元格,此时 D2 – 21 单元格的相应数值分别 等于 B2 – 21 单元格相应的数值加 0.1(即 Cut – off 值);

②在 E2 单元格输入" = C2/D2"后按[Enter]键
回车,用鼠标左键点住 E2 单元格的右下角下拉至
E21 单元格,此时 E2 - 21 单元格的相应数值分别等
于 C2 - 21 单元格的相应数值除以 D2 - 21 单元格的

23	S/CO 均值(x);	
24	S/CO 标准差(s):	
25	S/CO 变异系数(CV):	
26	x + 2s:	
27	x + 1s:	
28	x - 1s:	
29	x - 2s:	

④选定 D24 单元格,点击粘贴函数[fx],选定函数[STDEVP],在计算机给出的对话框(Number 1 右侧)中输入"E2:E21"后按[Enter]健回车,此时 D24 单元格中显示的数值就是 S/CO 标准差数的数值(s);

⑤在 D25 单元格输入"= D24/D23"后按[Enter] 健回车,此时 D25 单元格中显示的数值就是 S/CO 变 异系数的数值(CV);如果要用百分比表示变异系 数,在选定 D25 单元格后点击工具栏中的百分比样 式[%]按钮即可;

⑥在 D26 单元格输入"= D23 + 2 * D24"后按 [Enter]健回车,此时 D26 单元格中显示的数值就是 (x+2s)数值; ⑦在 D27 单元格输入"= D23 + D24"后按[Enter]健回车,此时 D28 单元格中显示的数值就是(x+ 1s)数值;

⑧在 D28 单元格中输入"= D23 - D24"后按 [Enter]健回车,此时 D29 单元格中显示的数值就是 (x-1s)数值:

③在 D30 单元格输入" = D23 - 2 * C24"后按 [Enter]健回车,此时 D30 单元格中显示的数值就是 (x - 2s)数值;

至此,所有质控统计参数全部计算完毕,计算结 果可见表 2。用表 2 中的相应数值即可制出质控 图,

表 2 质控参数统计结果

	4	В	С	Ð	———— E
			 质控 OD 值	 Cut-off 值	 S/CO 值
2	1	0.053	0.410	0.153	2.680
3	2	0.047	0.362	0.147	2.463
4	3	0.046	0.349	0.146	2.390
5	4	0.052	0.347	0.152	2.283
6	5	0.044	0.378	0.144	2.625
7	6	0.045	0.375	0.145	2.586
8	7	0.054	0.363	0.154	2.357
9	8	0.052	0.380	0.152	2.500
10	9	0.061	0.361	0.161	2.242
11	10	0.049	0.354	0.149	2.376
12	11	0.051	0.344	0.151	2.278
13	12	0.052	0.336	0.152	2.211
14	13	0.054	0.334	0.154	2.169
15	14	0.049	0.406	0.149	2.725
16	15	0.048	0.376	0.148	2.541
17	16	0.064	0.389	0.164	2.372
18	17	0.051	0.385	0.151	2.550
19	18	0.047	0.378	0.147	2.571
20	19	0.046	0.388	0.146	2.658
21	20	0.053	0.396	0.153	2.588
22					
23		S/C	〇均值(x);	2.458	
24		S/CO 标准差(s):		0.164	
25		S/CO 变异	系数(CV);	6.651%	
26			x + 2s:	2.785	
27			x + 1s;	2.622	
28			x - 1s:	2.295	
29			x - 2s;	2.131	

实验次数的设定最好以1个月的实验次数为准,这 样就可以把1个月的质控情况反映在1张表中,便 于统计分析;

表 3 HIV 实验质控登记表

	A	₿	С))	E	ł
1	日期	次数	阴性 OD 值	质控 OD 值	Cut-off 俏	S/C0 值
2	1.2	1	0.049	0.389	0.149	2.611
3	1.3	2	0.053	0.421	0 153	2.752
4	1.4	3	0.045	0.356	0.145	2.455
5	1.5	4	0.061	0.426	0.161	2.646
6	1.8	5	0.047	0.395	0.147	2.687
7	1.9	6	0.046	0.411	0.146	2,815
8	1,10	7	0.055	0.379	0.155	2,445
9	1.11	8	0.053	0.363	0.153	2.373
10	1.12	9	0.044	0.369	0.144	2.563
11	1.15	10	0.063	0.437	0.163	2,681
12	1.16	11	0.051	0.422	0.151	2,795
13	1.17	12	0.060	0,463	0.160	2.894
{4	1.18	13	0.058	0.421	0.158	2,665
15	1.19	14	0.051	0.375	0.151	2,483
16	1.22	15	0.047	0.386	0.147	2,626
17	1.23	16	0.043	0.345	0.143	2,413
18	1.31	17	0.048	0.375	0.148	2,534
19		18			0.100	0.000
20		19			0.100	0.000
21		20			0.100	0.000
22		21			0.100	0.000
23		22			0.100	0.000
24		23			0.100	0.000
25		24			0.100	0.000
26		25			0.100	0.000
~~						

此工作表可多次使用,以后再进行新的质控参数统计时,只要将新的实验数据输入相应的单元格中,新的统计结果就可立即显示在表中。

4 用 Excel 制作质控图

4.1 建立实验质控登记表

(1) 按表 3 格式和内容输入 Excel 工作表, 其中

27

28 注: 质控参数: X = 2.458; X + 2S = 2.785; X - 2S = 2.131

(2)设 Cut - off 值计算公式:在 E2 单元格输入
"=C2+0.1"后按[Enter]键回车,用鼠标左键点住
F2 单元格的右下角下拉至 E27 单元格,此时 F2-27
单元格的相应数值分别等于 C2-27 单元格相应的
数值加 0.1(即 Cut - off 值);

(3)设 S/CO 值计算方式:在 F2 单元格输入"= D2/E2"后按[Enter]键回车,用鼠标左键点住 F2 单元格的右下角下拉至 E27 单元格,此时 F2 - 27 单元格的相应数值分别等于 D2 - 27 单元格的相应数值除以 E2 - 27 单元格的相应数值(即 S/CO 值);

(4)输入实验数据:依次将实验日期及实验中阴 性血清和质控血清的 OD 值输入表 3 中的相应单元 格中,相应的 Cut – off 值的 S/CO 值都会立即在表 3 中显示出来;

4.2 制作质控图

(1)点击工具栏中的[图表向导]按钮,出现"图表向导-4步骤之1-图表类型"对话框,在图表类

型中选择[XY 散点图]后,按[下一步]按钮;

(2) 在出现的"图表向导 - 4 步骤之 2 - 图表源数据"对话框中,用鼠标选定 F3 - 27 单元格作为数据区域,按[下一步]按钮;

(3)在出现的"图表向导 - 4 步骤之 3 - 图表标题"对话框中,在标题项的[图表标题]中输入"** **年**月 HIV 质控图",在[数值 X 轴]中输入 "实验次数";在[数值 Y 轴]中输入"S/CO 值",按[下 一步]按钮;

(4)在出现的"图表向导-4步骤之4-图表位 置"对话框中,选择[将图表作为新工作表插入],(插 入位置可自定,如"sheet4"),按[完成]按钮,(sheet4) 表中即可出现"HIV 质控图";也可选择[将图表作为 其中的对象表插入],插入位置即本工作表,按[完 成[按钮,本工作表中即可出现"HIV 质控图";"HIV 质控图"的样式可参见表 4;

(5)设计 X 轴数值:双击"HIV 质控图"中 X 轴数 值处,出现"坐标轴格式"对话框,在[刻度 |项下除去 "最小值、最大值、主要刻度值"的 | 自动设置]功能, 将[最小值]设为"0";将[最大值]设为"27";将[主要 刻度值]设为"1";按确定按钮;

(6)设计Y轴数值:双击"HIV 质控图"中Y轴数 值处,出现"坐标轴格式"对话框,在[刻度]项下除去 "最小值、最大值、主要刻度值"的[自动设置]功能, 将[最小值]设为"2";将[最大值]设为"3";将[主要 刻度值]设为"0.1";按[确定]按钮,此时的"HIV 质 控图"的样式见图1,质控图的制作全部完成,打印 存档即可。

2.000 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

实验数(次)

图 1 2001 年 1 月 HIV 质控图

5 讨 论

质量控制(Quality Control,QC)是全面质量管理 体系中的重要环节,在质量控制中常使用算术平均 数、标准差、变异系数等统计指标对有关数据进行归 纳和分析。由于这些统计指标的计算步骤复杂、计 算数据位数众多,笔算或用计算器计算的工作量都 很巨大,过程繁锁且极易出现误差,严重影响工作效 率.将现代技术应用于检验检疫工作,不仅仅是体 现在仪器设备的更新和单纯的检验技术的提高上, 统计技术和方法也应跟上现代技术的潮流。本文研 究的内容是将 Excel 软件的函数计算功能和图表功 能应用于实验室质控参数的统计分析,笔者认为这 种方法具有方便、快捷、准确的特性,无计算笔误,可 大大提高工作效率,可供大多数实验室应用。欢迎 广大同仁将应用中出现的问题进行交流,共同商讨 有关工作技巧,共同提高对质控数据的统计处理能 力,提高统计数据的可靠性,不断提高质量监督检验 检疫工作办公自动化的程度。

参考文献

- 1 桂红义, x x x, x x x, 等 .Excel 97 中文版入门与提高,北京: 清华大学出版社,1997
- 2 中华人民共和国卫生部、艾滋病检测质量工作指南,北京;卫生部,1999
- 3 朱玉兰等, HIV 抗体初筛实验室内质量控制,中国国境卫生检 疫杂志 2000, 23 卷(3):160 - 161

〔收稿日期:2001-02-07〕

Application of Excel software on laboratory Quality control

Fang Song, Zhang Baoping, Guo Suzhen Luoyang Entry – Exit Inspection and Quarantine Bureau

Abstract

Quality control is an important part in the systems of the comprehensive quality management on laboratoy. Sevatiatic measures are fretly adopted to induce and analyse the laboratory data on quality control; in addition, diagrams are also used to cisualize the situation of the quality control. The electronic form software Excel has a powerful function of calculation and diagram. It can improve the efficiency greatly to use Excel on the statistics and analysis of the parameter of the quality control. This textintroduces the concept and usage of AVERAGE and STDEVP, the function of Excel being used on the parameter calculation of ality control. Taking the lity control of ELISA for HIV antibody inspection as an example, the text explicates the applications of Excel on the statistic parameter calculation and diagram creation of the labory quality control.

Keywrd: Excel statistic diagram laboratory quality control

Analysis of Diversities Among the Different Strains Anopheles anthropophagus Genomic DNA

Tian Zhengan, Lu Zhongshan, Xu Qinghua Shanghai Exit – Entry Inspection and Quarantine Bureau

Abstract

Aim: In order to provide the scientific basis for determinating furtherly whether there are different sub – species in Anopheles anthropophagus in China. Method: DNA fingerprint maps of Anopheles anthropophagus from Sichuan, Yunnan and Jiangsu provinces were drawn by using random amplified polymorphic DNA (RAPD) technique. Diversities among he different strains Anopheles anthropophagus were analyzed at genomic DNA level by identifying their DNA polymorphism. Results: In spite of the overwhelming likeness among DNA fragments of the three strains, there still existed some discrepancies. The common fragments indicated some degree homogeneity of the three strains' genomes, their distinctive fragments and intensity suggested the diversity among the strains. Conclusion: At DNA level, althouth they were mostly alike, diversities among the different strains of Anopheles anthropophagus still existed, which can provide the scientific basis of molecule classification for identification of Anopheles anthropophagus geographical sub – species that can not be discriminated by morphology.

Key Words: Anopheles anthropophagus Genomic DNA