DOI: 10.3724/SP. J. 1096.2010.00413

直馏柴油中硫化物甲基锍盐合成及电喷雾-高分辨质谱分析

潘娜 史权" 徐春明 刘鹏 张亚和 何俊辉 赵锁奇

(中国石油大学重质油国家重点实验室,北京102200)

摘 要 在四氟硼酸银的催化作用下,以碘甲烷对直馏柴油进行甲基衍生化反应,使其中的有机硫化物转变 成极性较强的锍盐,再用电喷雾-傅立叶变换离子回旋共振质谱仪进行检测。结合气相色谱-脉冲火焰光度检 测器(GC-PFPD)分析,研究不同类型的硫化物甲基衍生化反应的选择性和转化率。结果表明:柴油中硫化物 在室温条件下容易与碘甲烷发生甲基化反应,大部分硫化物转化为锍盐,总转化率超过80%,苯并噻吩类比 二苯并噻吩类更易发生甲基衍生化反应,转化率也相应较高。烷基二苯并噻吩不同取代位异构体间反应选择 性存在较大差异,高分辨质谱分析结果表明,直馏柴油中存在环状硫醚类化合物。

关键词 柴油;硫化物;甲基衍生化;电喷雾;离子回旋共振;质谱

1 引 言

近年来,傅立叶变换离子回旋共振质谱仪(FT-ICR MS)技术的发展为石油组学提供了一种更有效的分析手段。由于 FT-ICR MS 具有超高的分辨率和高质量准确度,电喷雾电离源(ESI)与 FT-ICR MS 相结合的方法,已经应用于石油中的含氮、含氧化合物^[1~3]的分析。ESI 是一种选择性的电离源,不能 直接电离石油中极性较弱的硫化物。碘甲烷可以将硫化物甲基衍生为甲基锍盐,进而能够以电喷雾-傅立 叶变换离子回旋共振质谱仪(ESI FT-ICR MS)检测^[4,5]。模型化合物进行锍盐合成时,不同类型的硫化物 的转化率不同^[6]。对于石油中的各类复杂的含硫化合物,甲基衍生化反应的选择性及转化率缺乏研究报 道。本研究采用直馏柴油为研究对象,通过 GC-PFPD,对其中硫化物的甲基化反应的选择性和转化率 进行了考察。使用 ESI FT-ICR MS 分析锍盐分子组成,进而研究柴油中含硫化合物的组成与分布。

2 实验部分

2.1 仪器与试剂

SP 3420 毛细管气相色谱仪 配置 5380 型脉冲火焰光度检测器(美国 O. I. 公司);7000 型硫氮仪 (美国 Antke 公司); Apex-Ultra 9.4T 型 FT-ICR MS(美国 Bruker 公司)。1 2-二氯乙烷、二氯甲烷、碘甲 烷、四氟硼酸银、正己烷、甲苯和甲醇均为分析纯。

2.2 甲基衍生化反应及样品制备

取 3 份直馏柴油样品(独山子常二线 204 ~ 363 ℃,总硫 2310 mg/L) 各 100 mg,分别进行 1,2 和 3 次 甲基衍生化反应。单次反应:以 2 mL 二氯乙烷稀释直馏柴油样品 加入 50 μL 碘甲烷,2 mL 0.5 mol/L 四 氟硼酸银的二氯乙烷溶液 超声震荡混合均匀;避光条件下,室温静置 24 h。反应方程式如下^[4]:

离心反应后的溶液,去除碘化银沉淀,再以正己烷萃取出反应后柴油,分别标记为 0-1, 0-2 和 0-3 (对应不同的反应次数);同时得到的锍盐固体相应标记为 S-1, S-2 和 S-3。

2.3 仪器工作条件

HP-5 柱(30 m×0.25 mm,0.25 μm),升温程序:初始温度 50 ℃,保持 3 min;以 5 ℃/min 升至

2009-05-15 收稿; 2009-07-17 接受

本文系"973"基金(No. 2004CB217801) 资助项目

* E-mail: sq@ cup. edu. cn

300 ℃,保持10 min。分流进样,分流比50:1;进样口温度280 ℃; N2 为载气,进样口压力100 kPa。

用正己烷将反应前后的柴油稀释至同一体积浓度,进行总硫和色谱分析,总硫浓度换算为柴油中实际体积浓度;总硫浓度通过色谱峰面积归一化处理得单体硫化物浓度。

进样流速 180 μL/h; 极化电压 -4000 V ,毛细管入口和出口电压分别为 -4500 和 320 V; 离子源六 极杆直流电压 2.4 V 射频 300 V_{PP}; 四极杆 Q1 = 100 Da 射频 140 V_{PP}; 碰撞池氩气流量 0.3 L/s ,碰撞能 -1.5 eV 贮集时间 4 s ,离子导入分析池 0.8 ms; 质量范围 115 ~ 400 Da ,采样点数 512 k ,激发衰减 18 db。锍盐和柴油样品溶于少量二氯甲烷中 ,再由甲苯-甲醇(1:1 , *V/V*) 混合溶液分别稀释至 0.02 和 0.5 g/L 轻轻振荡使其混合均匀 ,然后进行 ESI FT-ICR MS 分析。数据处理方法见文献 [7]。

3 结果与讨论

3.1 反应前后柴油中硫化物组成变化

柴油及3个不同反应次数剩余油(0-1,0-2和0-3)的总硫浓度(对应原始柴油体积)分别为2310, 560,410和300mg/L4个油样的PFPD色谱图见图1。参考文献[8]对图1中的主要化合物进行鉴定, 结果见表1。4个油样的谱图基线都有不同程度的隆起,表明油样中含硫化合物组成十分复杂,毛细管 气相色谱仍然无法使所有化合物实现分离。根据积分结果,隆起部分的质量分数都大于50%。碳数为 0~3的烷基取代DBT化合物单体的数量非常有限,而且易识别。这部分化合物虽然在色谱图中表现 出较高的单体丰度,并且为基峰,但这些单体化合物占全部含硫化合物的总量并不高。根据烷基苯并噻 吩类色谱峰的分布特征,可以推测 t>30 min 隆起部分肯定含有较多烷基苯并噻吩,但是无法确定是否 存在长侧链大分子烷基噻吩或其它类型含硫化合物。

结合图 1 色谱峰形特征及表 1 的转化率 ,可以看到 ,甲基衍生化反应 1 次后 ,大部分含硫化合物都 发生了反应。随反应深度的加深 ,同一化合物的转化率逐渐降低 ,这可以解释为反应物浓度降低影响了 反应转化率。经过甲基衍生化反应 3 次后 ,大部分 4 5 7 硫化物的转化率均大于 80% 。

在单次反应过程中,各化合物的转化率存在较 大差距。相对于 C_2 -BT 的转化率(86.4%), A-甲基 二苯并噻吩和 4,6-二甲基二苯并噻吩的转化率较 低,仅为 52.0% 和 42.5%; 而 BTs 的转化率高于 DBTs 的转化率,表明在此反应体系中,苯并噻吩类 比二苯并噻吩类有更高的反应选择性。

以二甲基二苯并噻吩类化合物为例进行同分异 构体之间的对比,在可鉴定的6个二甲基二苯并噻 吩的单体化合物中 A 6-二甲基二苯并噻吩的单次及 总转化率均低于其它化合物,说明对于相同的分子

图 1 甲基化反应前后柴油的 GC-PFPD 色谱图 Fig. 1 GC-pulse flame photometric detection (PFPD) chromatogram of straight run diesel before and after methylation

类型 结构差异对于此反应的影响显著。此现象与加氢脱硫反应过程中二苯并噻吩类化合物的反应特 征很相似 ,可以解释为4~6-位甲基对硫原子产生屏蔽效应 ,使其活性降低 ,难以进行加成反应。

3.2 锍盐 ESI FT-ICR MS 分析

柴油及其衍生物组成十分复杂,但组成这些化合物的元素并不多(如C,H,N,O,S)。FT-ICR MS 的分辨率在柴油组分的质量范围内非常容易达到20万以上的宽谱质量分辨率,对化合物分子式确定十 分准确。定义等效双键(DBE)为双键与环烷数之和^[9]。

柴油及锍盐样品的 ESI FT-ICR MS 谱图如图 2 所示。经鉴定,衍生化处理前柴油在 ESI 条件下电 离的化合物主要为含氮化合物,未鉴定出含硫化合物,而在反应产物质谱图中丰度较高的质谱峰,均对 应化合物含有 1 个硫原子,根据前期研究结果^[3 4]可以确定这些化合物即为锍盐。质谱图中特殊的丰 度优势说明,锍盐类化合物在正离子 ESI 条件下非常容易电离。

反应前后质谱中对应化合物种类完全不同,但质量分布范围相似(m/z 140 ~ 340)。m/z 213 的丰

度最高 经鉴定 其对应的含硫化合物为 C₁-DBT 与色谱分析结果相符。

表1 直馏柴油中硫化物的转化率

Table 1 Conversion ratio of sulfur compounds to methylsulfonium in diesel

	化合物 Compounds	转化率 Conversion (%)				
峰号 Peak number		1次 The 1st time	2次 The 2nd time		3次 The 3rd time	
			总 Accumulated	分步 Single step	总 Accumulated	分步 Single step
1	C ₂ -苯并噻吩 Ethyl/Dimethyl benzothiophene (BT)	86.4	91.6	38.4	94.0	28.1
2	C ₃ -苯并噻吩 Trimethyl – BT	79.1	88.9	46.9	91.6	23.9
3	>C ₃ -苯并噻吩(>C ₃ -BT)	68.5	83.5	47.8	86.8	20.0
	BTs	71.9	85.2	47.3	88.3	21.0
4	二苯并噻吩 DBT	67.5	80.8	40.8	85.5	24.8
5	4-甲基二苯并噻吩 4-Methyl DBT	52.0	74.6	47.1	82.7	32.2
6	2 3-甲基二苯并噻吩 2 3-Methyl-DBT	72.5	83.6	40.6	88.2	28.2
7	1-甲基二苯并噻吩 1-Methyl-DBT	63.5	77.5	38.4	85.9	37.4
8	4-乙基二苯并噻吩 4-Ethyl-DBT	52.9	74.1	45.5	84.2	39.1
9	4 β-二甲基二苯并噻吩 thyl - DBT	42.5	72.2	51.7	80.6	30.3
10	2 4-二甲基二苯并噻吩 2 4-Dimethyl DBT	75.0	80.9	23.7	89.9	47.4
11	2 β-二甲基二苯并噻吩 2 β-Dimethyl DBT	72.4	85.3	46.7	86.1	5.7
12	3 β-二甲基二苯并噻吩 3 β-Dimethyl DBT	65.8	79.0	38.5	87.1	39.0
13	3 .7 -二甲基二苯并噻吩 3 .7 -Dimethyl DBT	63.8	71.6	21.5	81.3	34.2
14	1 4-二甲基二苯并噻吩 1 4-Dimethyl DBT	64.8	79.6	42.5	87.0	36.3
15	C ₃ -二苯并噻吩 C ₃ -DBT	55.8	77.7	49.6	82.7	22.5
16	> C ₃ - <u>二</u> 苯并噻吩 (>C ₃ -DBT)	31.0	52.4	31.0	73.6	44.7
	DBTs	57.9	75.2	41.2	83.5	33.5

峰号同图 1(The Peak numbers are the same as in Fig. 1)。

图 2 柴油与甲基锍盐的 FT-ICR MS 质谱图及局部放大图

Fig. 2 Broadband and mass scale expanded positive-ion ESI FT-ion cyclotron resonance mass spectra of methylsulfonium salts

锍盐类化合物在质谱图中质谱峰数量很多,且表现出明显的规律性,同类化合物同系物的质谱峰连续分布(相邻质谱峰质量数相差 14.0156 Da),且呈正态分布特征,相邻的较强质谱峰间相差 2.0156 Da,对应 DBE 相差 1,即分子中相差一个双键或一个饱和环烷环。根据这些特征确定质谱图中一个或几个质谱峰对应的分子式后,可以快速实现对其它质谱峰的鉴定。鉴定出的化合物以 DBE 进行统计 相对丰度见图 3。图 3 中散点的大小代表相对丰度的强弱。

化合物根据 DBE 值的大小划为不同组 ,如 BT 的分子式为 $C_8H_6S($ 对应甲基锍盐为 $C_9H_8SBF_4$) ,即 DBE =6 ,BT 及其同系物的 DBE 值为 6 ,而噻吩和二苯并噻类化合物的 DBE 值分别为 3 和 9。图 3 中 DBE =6 和 DBE =9 类化合物与相邻缩合度化合物相比均表现出较强的相对丰度。

DBE 值在 1 ~ 12 间连续分布说明,存在大量其它缩合度(类型)的化合物,不存在 DBE =0 的链状 硫醚;由于直馏柴油中不存在烯烃,DBE =1 只能对应含1 个 环的环状硫醚;1 ~ 4 环的硫醚理论上对应 DBE =1 ~4,但噻吩类化合物的 DBE =3 因此可以肯定存在1 环和2 环硫醚; DBE >3 的化合物可能存

在多种来源。DBE = 7 对应的硫化物的结构比 BT 多一个 环或者是多一个双键,如四氢萘并噻吩,这类化合物在色谱 分析中未被鉴定,但质谱图中较高的相对丰度说明其在柴 油存在且含量较高。在 DBE = 9 中存在碳数为 10 与 11 的 化合物,DBE = 10 中存在碳数为 11 的化合物,经过对重复 实验数据的分析,初步排除杂质影响的可能。对于这几种 化合物的类型及其结构特征目前无法给出合理解释,有待 深入研究。本实验从柴油馏分中鉴定出的化合物类型主要 有噻吩、苯并噻吩(BT)、二苯并噻吩(DBT)、二氢苯并噻吩 以及单环的环状硫醚类化合物。

图 3 直馏柴油中硫化物 DBE 及碳数分布图

Fig. 3 Isoabundance pattern for DBE versus the carbon number of the monosulfur species for the straight run diesel

References

- 1 Marshall A G , Rodgers R P. Accounts of Chemical Research , 2004 , 37(1): 53 ~ 59
- 2 Rodgers R P , Schaub T M , Marshall A G. Anal. Chem. , 2005 , 77(1): 20A ~ 27A
- 3 Marshall A G , Rodgers R P. PNAS , 2008 , 105(47) : 18090 ~ 18095
- 4 Muller H , Andersson J T. Anal. Chem. , 2005 , 77(8) : 2536 ~ 2543
- 5 Panda S K , Schrader W , Andersson J T. Energy Fuels , 2007 , 21(2): 1071 ~ 1077
- 6 WANG Lei(王磊). Chinese Journal of Synthetic Chemistry(合成化学),1997,5(4): 362~367
- 7 LU Xiao-Quan(陆小泉), SHI Quan(史权), ZHAO Suo-Qi(赵锁奇), GAO Jin-Sen(高金森), ZHANG Ya-He(张亚和), HE Jun-Hui(何俊辉). Chinese J. Anal. Chem. (分析化学), 2008, 36(5): 614~618
- 8 YANG Yong-Tan(杨永坛), WANG Zheng(王征), YANG Hai-Ying(杨海鹰), LU Wan-Zhen(陆婉珍). Chinese J. Anal. Chem. (分析化学), 2005, 33(11): 1517~1521
- 9 Pellegrin V. Chemical Education , 1983 , 60(8): 626 ~ 633

Synthesis and Characterization of Methylsulfonium Salt in Diesel Fraction Using Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

PAN Na, SHI Quan^{*}, XU Chun-Ming, LIU Peng, ZHANG Ya-He, HE Jun-Hui, ZHAO Suo-Qi (State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102200)

Abstract Sulfur compounds in the diesel were selectively derived into methylsulfonium salts by reacting with iodomethane in the presence of silver tetrafluoroborate , and characterized by positive-ion electrospray ionization (ESI) fourier transform ion cyclotron resonance (FT-ICR MS). The conversion ratios and react selectivities of the methylation for various sulfur compounds were investigated by gas chromatograph coupled with pulse flame photometric detector (GC-PFPD). Result shows that the sulfur compounds in the diesel can react with iodomethane easily at room temperature , the most of sulfur compound derived into methylsulfonium salts; the homologue of benzothiophene get the higher conversion ratio and react selectivity than the homologue of dibenzothiophene (DBT). It is found that primarily sterically hindered alkylated DBT , for example , 4- or 4-, 6- DBT , is recalcitrant to be methylated. Other than benzothiophenes and dibenzothiophenes , one- and two-ring sulfides , as well as other sulfur compounds with a double bond equivalent (DBE) value ranged from 1 to 12 are identified in the diesel.

Keywords Diesel; Sulfur compounds; Methylsulfonium; Electrospray ionization; Fourier transform-ion cyclotron resonance; Mass spectrometry

(Received 15 May 2009; accepted 17 July 2009)