## 栽培与野生藏药铁棒锤中活性成分 乌头碱的 HPLC分析

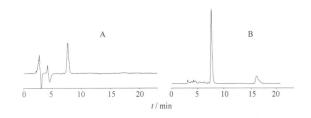
林丽, 高素芳, 晋玲\*, 杨扶德, 魏学明, 侯嘉 (甘肃中医学院, 甘肃 兰州 730000)

[摘要] 目的: 对 3个不同产地栽培与野生铁棒锤中乌头碱活性成分进行分析, 对其做出客观评价。方法: 采用高效液相色谱法 (H PLC), 使用 ZORBAX E clipse XDB-C<sub>18</sub>柱 (4.6 mm × 250 mm,  $5 \, \mu$ m); 流动相乙腈 -0.2% 二乙胺水溶液 (35:65); 柱温 30 °C; 流速 0.8 mL• m in -1; 检测波长 240 nm。结果: 乌头碱在 0.39~1.95  $\mu$ g与峰面积有良好的线性关系, 平均回收率为98.35%, RSD 1.5% (n=6); 甘肃产铁棒锤药材中乌头碱的质量分数为 0.324 4%; 宁夏产铁棒锤药材中乌头碱为 0.214 4%; 青海产铁棒锤药材中乌头碱为 0.139 7%。结论: 3个不同产地铁棒锤中乌头碱含量差异较大, 甘肃栽培铁棒锤中乌头碱含量最高. 宁夏野生铁棒锤次之, 青海野生铁棒锤含量较低。

[关键词] HPLC: 不同产地: 栽培、野生藏药铁棒锤: 乌头碱

铁棒锤为毛茛科乌头属植物铁棒锤 A conitum pendu lum Busch 和伏毛铁棒锤 A. flavum H and -M azz 的块根,《中华人民共和国卫生部药品标准 (藏药)》「第 1 册以"铁棒锤"一名收录,为甘、青、宁、藏等地应用较广的一种民间草药,具有活血祛瘀,祛风湿,止痛,治疗跌打损伤,风湿性关节炎,毒蛇咬伤等作用<sup>[2]</sup>。近代药理学研究表明该药制成注射液有很强的镇痛、局麻、抑制呼吸、抗炎、解热、致心率失常等作用。根据文献记载,铁棒锤的化学成分为: 雪乌碱(penduline)、乌头碱(aconitine)、3-乙酰乌头碱(3-aconitine)、次乌头碱(hypaconitine)等<sup>[3]</sup>,乌头碱类生物碱既是其毒性成分,又是其药用成分。

甘肃野生铁棒锤主要分布在武威、甘南及平凉等地,由于连年采挖,环境植被破坏严重,使野生资源枯竭,资源无法可持续利用。目前尚未有人对占据药材市场主流品种甘肃栽培铁棒锤进行研究。本实验以不同产地野生与栽培铁棒锤为研究对象,运用 HPLC 法对铁棒锤中活性成分乌头碱进行分析研究,为客观评价不同产地栽培与野生铁棒锤质量提供参考,同时


也为更好的有效利用甘肃铁棒锤资源提供依据。

- 1 材料
- 1.1 药材来源 甘肃栽培铁棒锤采集于甘肃省永登县;宁夏野生铁棒锤购于固原医药公司;青海野生铁棒锤购于青海三江宝药业有限公司,经甘肃中医学院药学系晋玲副教授鉴定,均为毛茛科乌头属植物铁棒锤 A. pendulum 的干燥块根,标本保存在甘肃中医学院生药标本室。
- 1.2 试剂 乌头碱对照品 (纯度大于 98%, 批号 110720-200410)购自中国生物制品检验所; 甲醇 (天津市凯信化学工业有限公司)、乙腈 (产品批准号Q /12NK-4021-2003, 天津市光复精细化工研究所)均为色谱纯; 其他均为分析纯。
- 1.3 仪器 高效液相 Agilent 1200(安捷伦公司), 检测器 G 131513二极管阵列检测器(美国); BS 224 S型电子天平(北京赛多利斯仪器系统有限公司)
- 2 方法及结果
- 2.1 色谱条件<sup>[4]</sup> 色谱柱为 ZORBAX Eclipse XDB-C<sub>18</sub>柱, (4.6 mm × 250 mm, 5 μm); 流动相为乙腈-0.2% 二乙胺水溶液 (35:65); 流速为 0.8 mL·m in <sup>-1</sup>; 检测波长为 240 mm, 柱温为 30 ℃; 进样量为 5 μL; 理论塔板数不低于 4 000, 乌头碱与相邻峰分离度均 > 1.5 分离良好。色谱图见图 1。
- 2.2 对照品溶液制备<sup>[5]</sup> 精密称取乌头碱对照品 2.6 mg置于 10 mL量瓶中溶解, 定容, 精密吸取 5 mL, 移至 10 mL量瓶中, 定容至刻度, 摇匀, 其乌头

<sup>[</sup>稿件编号] 20101115008

<sup>[</sup>基金项目] 甘肃教育厅科研项目 (0906B-07); 甘肃中医学院中青年科研基金项目 (09ZQ-17)

<sup>[</sup>通信作者] \* 晋玲, 副教授, 研究方向为药用植物及中药资源与保护研究, Tel/Fax (0931)8765495, E-m ail zyxyj@ 163. com



A. 乌头碱对照品; B. 样品。

图 1 高效液相色谱图

碱质量浓度为 0.13 g• L<sup>-1</sup>。

- 2. 3 供试品溶液制备 取不同产地铁棒锤块根粉末,过 60目筛,各取 5 g 精密称定,置 150 mL 具塞锥形瓶中,加 35 mL乙醚-氯仿 (3:1)混合溶剂及 3 mL氨试液,摇匀,浸泡过夜,过滤,收集滤液,残渣加相应溶剂滤提取,浸泡 12 h,过滤,合并滤液,残渣再提取 1次,洗涤 3次,合并 6次滤液,回收溶剂,低温水浴挥干(低于 40  $^{\circ}$ C),残渣加 5 mL甲醇溶解,转移至 50 mL 量瓶中定容至刻度,摇匀,临用前用 0. 45  $^{\circ}$ m微孔滤膜滤过,作为供试品溶液。
- 2. 4 线性关系考察 精密吸取上述对照品溶液 3 6 9 12 15  $\mu$ L, 按上述色谱条件测定。以进样量  $(X, \mu_g)$ 为横坐标, 峰面积积分值 (Y) 为纵坐标绘制标准曲线, 得回归方程为 Y=913.94X+22.165(r=0.9992)。结果表明, 乌头碱进样量在 0.39~1.95  $\mu_g$ 与峰面积积分值呈良好的线性。
- 2.5 精密度试验 精密吸取 2.2项下对照品溶液 5 以,按 2.1项下色谱条件连续进样 5次,计算。结果乌头碱峰面积的比值 RSD 为 0.31%,表明仪器精密度良好。
- 2.6 稳定性试验 取同一批 (甘肃)样品约 5 g 精密称定,照 2.3项下方法制备供试品溶液,分别与制备后的 0,4 6 10,14 h按 2.1项下色谱条件各进样 5 LL测定。结果,乌头碱平均峰面积为 1 600.38, RSD 2.0%,表明供试品溶液 14 h内基本稳定。
- 2.7 重复性试验 取同一批 (甘肃)样品约 5 g 共 6 %, 精密称定, 照 2.3 项下方法制备供试品溶液, 按 2.1 项下色谱条件进样分析, 测定。结果 6 % 品中乌头碱平均为 0.33%, RSD 2%, 表明方法重复性良好。
- 2.8 加样回收率试验 取已知含量的同一批样品 (甘肃)共6份,精密称定,分别加入乌头碱对照品,照2.3项下方法制备供试品溶液,按2.1项下色谱条件

## 进样分析, 计算加样回收率, 结果见表 1。

表 1 加样回收率试验 (n=6)

| 样品量<br>/g | 乌头碱<br>量 /m g | 加入量<br>/m g | 测得量<br>/m g | 回收率    | 平均回<br>收率 <i>1</i> % | R SD<br>/% |
|-----------|---------------|-------------|-------------|--------|----------------------|------------|
| 0. 501    | 1. 624        | 1. 300      | 2. 894      | 97. 69 |                      |            |
| 0. 500    | 1. 623        | 1. 300      | 2. 920      | 99. 76 |                      |            |
| 0. 501    | 1. 624        | 1. 300      | 2. 931      | 100.54 | 98 35                | 1. 5       |
| 0. 501    | 1. 625        | 1. 300      | 2. 896      | 97.77  |                      |            |
| 0. 500    | 1. 622        | 1. 300      | 2. 891      | 97.77  |                      |            |
| 0. 500    | 1. 623        | 1. 300      | 2. 880      | 96.69  |                      |            |

2.9 样品含量测定 取每个不同产地的同一批次药材各 3份,按 2.3项下方法制备供试品溶液,按 2.1项下色谱条件分别进样测定。从实验结果来看,乌头碱含量由高到低依次为:甘肃栽培 0.324 4%,宁夏野生 0.214 4%,青海野生 0.139 7%,RSD小于 3%。

## 3 结论与讨论

由于生长地域的迁移, 驯化成栽培品后, 生长条件的改善、疏松的土质和肥料等多方面因素的影响, 有利于铁棒锤根向地下生长和养分的吸收利用, 使得其化学成分发生变化, 导致甘肃栽培铁棒锤乌头碱含量相对较高。甘肃省永登县地处兰州西北部, 野生铁棒锤资源丰富, 又有铁棒锤野生家养驯化的栽培历史, 药材性状好, 活性成分乌头碱含量高, 质优价廉, 为今后资源的开发与利用奠定了很好的基础。

产地不同造成代表药材质量的活性成分乌头碱的含量有所差异,影响了药材质量。据笔者观察,野生种主要生长在海拔 2 400 m 以上的高山草甸、烁石或荆棘丛中,为典型的旱生环境气候,其生长环境恶劣,土壤条件贫瘠,这可能是导致乌头碱含量相对较低的主要原因。铁棒锤所含生物碱类成分复杂,应从各项指标综合研究,有关有效成分与疗效关系有待进一步深入研究。

## [参考文献]

- [1] 胡君茹,姜华.藏药铁棒锤的化学成分及药理作用研究进展 [J].甘肃中医,2006,19(11):18.
- [2] 陕西省卫生局.陕西中草药[M]. 北京:科学出版社, 1971: 505
- [3] 张帆, 王兴明, 彭树林, 等. 伏毛铁棒锤根部二萜生物碱的研究 [J]. 中国药学杂志, 2006, 41(24): 1852
- [4] 付雪艳, 董琳, 张义伟, 等. HPLC法测定铁棒锤中乌头碱的含量[J]. 科技评价, 2007. 8: 456
- [5] 丘振文, 罗丹冬, 王沛坚. HPLC 法测定舒痹宁颗粒中次乌头碱、新乌头碱的含量[J]. 中药新药与临床药理, 2008, 19(4): 304. [责任编辑 吕冬梅]