滦河流域不同时空水环境重金属污染健康风险评价

李永丽,刘静玲

(水环境模拟国家重点实验室,北京师范大学环境学院,北京 100875)

关键词 重金属 健康风险 滦河 水环境

中图分类号 :X820.4 文献标志码 :A 文章编号 :1672-2043(2009)06-1177-08

Health Risk Assessment on Heavy Metal Pollution in the Water Environment of Luan River

LI Yong-li, LIU Jing-ling

(State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China)

Abstract Concentrations of the As, Cd, Pb, Hg and Cu in water samples from 23 sampling points in the water environment of Luan River and its main tributaries were studied. Health risk assessment associated with these five metals were conducted using health risk assessment model from US EPA. Results showed that the concentrations of As, Cd, Pb, Hg, and Cu in Luan River were 0.340~2.753 μg·L¹, 1.120~4.474 μg·L¹, 11.610~19.088 μg·L¹, 0.036~0.239 μg·L¹ and 1.058~5.807 μg·L¹, respectively. Among the health risks caused by the carcinogens in water, the highest risk associated with As located at Sandaohezi(1.85×10⁻⁵·a⁻¹) and that with Cd located at Jianggezhuang(1.22×10⁻⁵·a⁻¹), while both were lower than the maximum allowance levels recommended by ICRP (5×10⁻⁵·a⁻¹). The health risk to the individual person per year in terms of carcinogens through drinking cause by As is higher than Cd. Among the non–carcinogenic risks, the highest risk was the risk associated with Pb, followed by Hg, and then Cu. The non–carcinogenic risks ranged from 10⁻⁰ to 10⁻¹⁰, much lower than the maximum allowance levels recommended by ICRP. The health risk of carcinogens was much higher than that of non–carcinogens. The results of different risk analysis over years indicated that in the sites which were higher than the standard value recommended by ICRP had decreased from 1985 to 1990, except for the Wulongji and Panjiakou–Daheiting reservoir system which presented abnormal growth. In 2008, health risks at all sites decreased lower than the ICRP standard.

Keywords :heavy metals; health risk assessment; Luan River; water environment

健康风险评价是 20 世纪 80 年代以后发展起来的 ,它把环境污染与人体健康联系起来 ,定量描述环境污染对人群健康的危害 ,估算有害因子对人体危害发生的概率[1]。健康风险评价为有效控制有害因子的

收稿日期 2008-10-11

基金项目 国家重点基础研究发展计划(973)(2006CB403403)

作者简介: 李永丽(1979—), 女 河南周口人, 博士研究生, 主要从事水环境与水资源研究。 E-mail ly1723@126.com

通讯作者 刘静玲 E-mail jingling@bnu.edu.cn

风险提供技术依据,同时也为确定有害因子主次、暴露途径主次及治理优先顺序提供了科学依据,因此定量描述有害因子对人体健康的危害具有十分重要的现实意义。国际上普遍采用 1983 年美国科学院首次确立的风险评价基本方法,主要包括危害鉴定、剂量反应评估、暴露评价、风险表征(US NAS;1983)[2-3]。目前,许多研究都集中在对污染场地或河段的健康风险评价[4-5],但尚无对整个流域水环境进行研究的报道。流域在一国的可持续发展中占有越来越重要的地位,

如何实现流域的可持续发展是关键问题[©],急需进行流域范围的健康风险评价,正确评价化学污染物对人类健康的影响,区别问题的轻重缓急,把决策过程建立在可靠的科学基础上,为流域管理部门科学管理提供依据。

许多重金属作为环境污染物和潜在的有毒有害污染物已经引起国内外的广泛关注。含有重金属的水体会对人体健康造成严重危害,对人体来讲,饮用水中含有 As、Cd、Pb、Hg 和 Cu 被认为是很重要的途径,会严重损害人体肝、肾、消化系统⑤和神经系统鬥等,同时 As 和 Cd 还有致癌性Թ-IO。我国目前利用风险概念和分析方法对健康风险评价已经开展了相应的研究,对一些地区和河段水体中的有毒有害物质与人体健康之间的关系进行了评价[11-14]。在评价人体健康的时候,通常没有考虑生态风险。其实,人类以外的其他生物更易于遭受危害,更易受到影响。已有研究提出整合人体健康风险和生态风险评价的观点,但如何进行还有待进一步研究[15-16]。

本研究从流域角度出发 对滦河水系由上而下及 其主要支流中的 As、Cd、Pb、Hg 和 Cu 的浓度进行了 调查研究 ,并应用健康风险评价模型 ,对滦河干流和 主要支流重金属污染健康风险进行评价 ,从时间和空 间角度定量化滦河重金属污染与人体健康的关系 ,从 而为环境管理提供依据。

1 研究区概况

滦河流域是海河四大子流域之一 发源于河北省丰宁县巴颜图古尔山麓,经承德到潘家口入冀东平原,于乐亭县流入渤海,全长 888 km,流域面积 44 750 km²,其中山区面积 43 940 km²,平原面积 810 km²(图1)。滦河流域受人类活动干扰相对较小,是京津乃至整个华北的生态屏障,同时也是直辖市天津和工业城市唐山的主要水源地。

20世纪60年代以来,沿岸各种工业发展迅速,居民人数急剧增长,大量的工、农业和城市生活污水,未经处理或处理未达标就直接排入水体中,滦河干流中下游地区污染问题已经十分严重,阻碍了流域内各地区的发展,也对人群健康带来了严重威胁。根据1994年的统计,潘家口水库上游地区拥有乡以上的工业企业1300家,包括黑色及有色金属采矿、化工、食品加工和造纸等行业,整个上游地区的污废水绝大部分未经处理就排入滦河。"九五"期间滦河流域的水污染治理工作被作为海河流域的重点来抓,自引滦枢

纽工程正式运行后 国家和地方对滦河流域的污染治理投入了大量的资金 对许多重污染企业进行了限期治理 ,滦河流域水污染状况得到了缓解。2006 年 ,滦河流域废污水排放量 4.10×10^8 t ,其中城镇居民生活 0.83×10^8 t ,工业和建筑业 3.07×10^8 t ,第三产业 0.20×10^8 t 。入河废水量 0.25×10^8 t ,比 2005 年减少 0.21×10^8 t ^[21]。

2 研究方法

2.1 材料与测试方法

样品中 As 和 Hg 浓度用原子荧光分光光度计 (AF-610A ,Rayleigh Analytical Instrument)进行测定,Pb、Cd 和 Cu 浓度用等离子体光谱(ICP-MS ,VG-Q3 ,英国)进行测定。为了保证数据的有效性和验证分析方法的准确性和精度,采样国家标准中心提供的标准物质(As :GBW(E)080390 ;Hg :GBW(E)080392 ;Pb:GBW(E)080399 ;Cd :GBW(E)080401 ;Cu :GBW(E)080396)进行上机测定 将测定值和标准值进行比较,结果表明所有待测元素的 RSD(相对标准偏差)均低于 10% 数据的精度和准确度均符合要求。

2.2 水环境健康评价模型

水环境健康风险评价主要是针对水环境中对人体有害的物质,这种物质一般可分为两类:基因毒物质和躯体毒物质,前者包括放射性污染物和化学致癌物,后者则指非致癌物质。这些物质对人体健康产生危害主要有3种暴露途径:直接接触、摄入水体中的食物和饮用,其中饮用被认为是一个很重要的暴露途径[17-20]。本研究主要考虑通过饮用途径对人体所造成的健康危害影响。

2.2.1 基因毒物质所致健康危害的风险

$$R^{c} = \sum_{i=1}^{k} R_{i}^{c} \tag{1}$$

$$R_{i}^{c} = [1 - \exp(D_{i}q_{i})](70a)$$
 (2)

式中 R_i^c 为基因物质 i 通过食入途径对平均个人致癌年风险 ρ^{-1} D_i 为基因物质 i 通过食入途径的单位体重日均暴露剂量 $\operatorname{mg} \cdot (\operatorname{kg} \cdot \operatorname{d})^{-1}$ q_i 为基因毒物质通过食入途径致癌系数 $\operatorname{mg} \cdot (\operatorname{kg} \cdot \operatorname{d})^{-1}$ 70 a 为人类平均寿命。

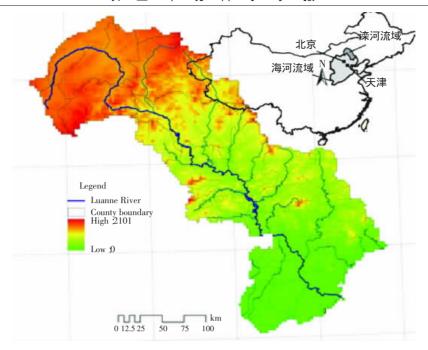


图 1 滦河流域位置图

Figure 1 Location of Luanhe River Basin

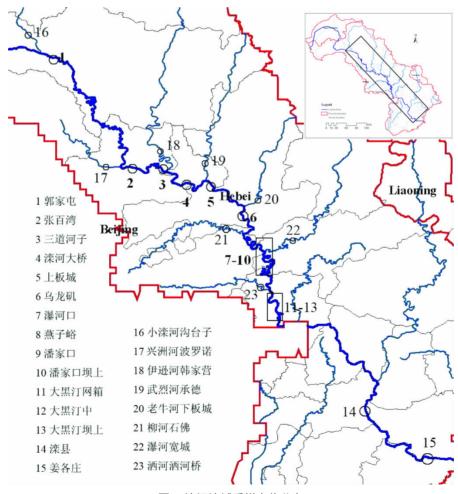


图 2 滦河流域采样点位分布

Figure 2 Location of sampling sites within the Luanhe River Basin

饮用水途径的单位体重日均暴露剂量 D_i mg · $(kg \cdot d)^{-1}$ 可按下式计算:

$$D_i = 2.2 \text{ Lx} C_i \cdot (70 \text{ kg})^{-1}$$
 (3)

式中 2.2 L 为成人每日平均饮水量 C_i 为基因毒物质 i 的浓度 $mg \cdot L^{-1}$ 70 kg 为人均体重。

2.2.2 躯体毒物质所致健康危害的风险

$$R_i^* = (D_i/D_{ikf}) \times 10^{-6} \cdot (70a)^{-1}$$
 (4)
式中 R_i^* 为躯体毒物质通过食入途径对平均个人产生的健康危害年风险 μ^{-1} D_i 为躯体毒物质 i 通过食入途径的单位体重日均暴露剂量 $mg \cdot (kg \cdot d)^{-1}$ D_{ikf} 为躯体毒物质 i 通过食入途径参考剂量 $mg \cdot (kg \cdot d)^{-1}$; $70a$ 为人类平均寿命。

式(1)~(3)为水环境健康风险评价的基本模式。 对于不同地区的不同对象,可以根据污染物浓度、成 人每日饮用水量、人均体重以及人均寿命等因素变化 来改进评价模型。

假设各有毒有害物质对人体健康的毒性作用呈相加关系,而不是协同或者拮抗关系,则水环境总的健康风险危害为:

$$R_s = R_i^c + R_i^n \tag{5}$$

2.2.3 评价参数的确定

根据国际癌症研究机构(IARC)和世界卫生组织 (WHO)编制的分类系统 基因毒物质致癌强度系数 见表 1。

表 1 基因毒物质致癌强度系数

Table 1 Value of D_i of model parameters

 化学致癌物质	$D_i/\mathrm{mg}\cdot\mathrm{kg}^{-1}\cdot\mathrm{d}^{-1}$	
Cd	6.1	
As	15	

对于非致癌物质所致健康风险评价,参考剂量 (饮用水途径)参数如下(表 2)。

表 2 非致癌物质饮水途径致癌系数

Table 2 Reference doses for non-carcinogens by drinking water approach

非致癌物质	$D_{iR}/\mathrm{mg}\cdot\mathrm{kg}^{-1}\cdot\mathrm{d}^{-1}$
Pb	0.014
$_{ m Hg}$	0.000 1
Cu	0.005

3 结果与讨论

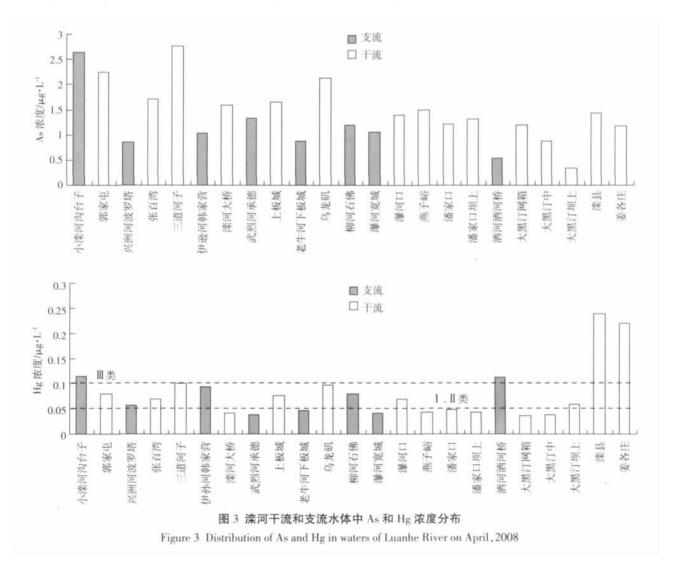
3.1 滦河流域水环境不同空间重金属浓度分布 滦河水系干流和支流水样中 As、Cd、Pb、Hg 和 Cu 5 种重金属浓度及其分布结果见表 3。

从表 3 可以看出 5 种重金属的浓度范围分别是 As $0.340 \sim 2.753~\mu g \cdot L^{-1}~Cd$: $1.120 \sim 4.474~\mu g \cdot L^{-1}~Pb$: $11.610 \sim 19.088~\mu g \cdot L^{-1}~Hg~0.036 \sim 0.239~\mu g \cdot L^{-1}~和~Cu$: $1.058 \sim 5.807~\mu g \cdot L^{-1}~$ 。根据地表水环境质量标准(GB $3838 \sim 2002$) ,As、Cu 和 Cd 均达到 类或 类水质标准 符合滦河流域水功能区划目标水质要求 ;Hg 在三道河子、滦县、姜各庄、小滦河沟台子和洒河洒河桥达到 类水质标准($0.000~1~m g \cdot L^{-1} \ll Hg \ll 0.001~m g \cdot L^{-1}$) ,在郭家屯、张百湾、上板城、乌龙矶、瀑河口、大黑汀坝上、兴州河波罗诺、伊逊河韩家营、柳河石佛符合 类水质标准($0.000~05~m g \cdot L^{-1} \ll Hg \ll 0.000~1~m g \cdot L^{-1}$) ,Hg 在潘家口水库的瀑河口和大黑汀水库的坝上均超过了应执行的 类水质标准 ;Pb 在乌龙矶、潘家口、潘

表 3 滦河干流和各支流水体中 $As \ Cd \ Pb \ Hg$ 和 Cu 的平均浓度($\mu g \cdot L^{-1}$)

Table 3 As, Cd, Pb, Hg and Cu concentrations of water in Luan River($\mu g \cdot L^{-1}$)

 采样点	As	Cd	Hg	Cu	Pb
干流					·
郭家屯	2.249	ND	0.080	ND	ND
张百湾	1.704	ND	0.069	ND	ND
三道河子	2.753	ND	0.101	ND	ND
滦河大桥	1.591	ND	0.041	3.383	ND
上板城	1.652	ND	0.076	1.924	ND
乌龙矶	2.118	ND	0.097	2.404	19.088
瀑河口	1.385	1.592	0.070	2.804	ND
燕子峪	1.481	ND	0.043	1.637	ND
潘家口	1.220	1.289	0.049	1.756	15.852
潘家口坝上	1.306	ND	0.043	ND	17.606
大黑汀网箱	1.186	1.193	0.036	1.716	ND
大黑汀中	0.878	ND	0.039	ND	ND
大黑汀坝上	0.340	ND	0.059	ND	ND
滦县	1.429	ND	0.239	ND	ND
姜各庄	1.173	4.474	0.220	5.807	17.955
支流					
小滦河沟台子	2.633	1.215	0.115	2.389	11.610
兴洲河波罗诺	0.855	ND	0.058	ND	ND
伊逊河韩家营	1.029	ND	0.093	2.265	ND
武烈河承德	1.328	1.120	0.039	1.058	18.754
老牛河下板城	0.875	ND	0.047	ND	13.691
柳河石佛	1.193	ND	0.079	ND	17.510
瀑河宽城	1.061	ND	0.041	1.217	ND
洒河洒河桥	0.527	ND	0.113	ND	ND


注:"ND"表示未检出。

家口坝上、姜各庄、小滦河沟台子、武烈河承德、柳河石佛、老牛河下板城符合 类水质标准 ,其他达到 类水质标准。结果表明 ,Hg 是滦河水系主要污染物质 ,Pb 是潘家口水库库区的主要污染物质 ,应作为优先控制目标。

滦河干流上 , 乌龙矶以上各采样断面 As 浓度较高 最高在三道河子为 $2.753~\mu g \cdot L^{-1}$,其次是郭家屯和乌龙矶 ,分别为 $2.249~\pi~2.118~\mu g \cdot L^{-1}$,但都在国家饮用水规定的范围之内($5~\mu g \cdot L^{-1}$) ;潘家口和大黑汀水库库区 As 浓度降低 ,平均浓度分别为 $1.348~\pi~0.801~\mu g \cdot L^{-1}$,库区以下至河口浓度又有所升高 , 滦县为 $1.429~\mu g \cdot L^{-1}$,姜各庄为 $1.173~\mu g \cdot L^{-1}$,略低于潘家口库区平均浓度(图 3)。Cu 在姜各庄浓度最高为 $5.807~\mu g \cdot L^{-1}$,其次是滦河大桥和瀑河口 ,分别为 $3.383~\pi~2.804~\mu g \cdot L^{-1}$ 。Cd 在姜各庄浓度最大为 $4.474~\mu g \cdot L^{-1}$,潘家口水库的瀑河口和坝上 Cd 浓度分别为 $1.592~\pi~1.289~\mu g \cdot L^{-1}$ 。Hg 在滦县浓度最高为 $0.239~\mu g \cdot L^{-1}$,其

次是姜各庄和洒河桥,分别为 0.220 和 0.113 µg·L¹, 均超过 类水质标准(图 3)。Pb 浓度在乌龙矶最高为 19.088 µg·L¹, 其次是姜各庄和潘家口坝上,分别为 17.955 和 17.606 µg·L¹。结果表明,由于乌龙矶以上城市化发展迅速,根据海河流域水资源公报,2002 年承德市排放 0.53×10^8 t 的生活污水和 0.37×10^8 t 的工业废水,其中包括造纸、化学肥料、冶金、选矿和印染废水。^[21] 潘家口和大黑汀水库是天津和唐山的重要水源地,多年平均蓄水量 18.9×10^8 m³,库区各种金属含量较低,但 18 在瀑河口,Pb 在潘家口和潘家口坝上均超过了应执行的 类水质标准;水库以下,除 18 外,18 企业、18 公司、18 公司、

8 条主要支流中,小滦河沟台子 As 浓度最高为 2.633 μg·L⁻¹ 其次是柳河石佛和武烈河承德,分别为

1.328 和 1.119 $\mu g \cdot L^{-1}$ 。 $Cd \setminus Hg$ 和 Cu 也在小滦河沟台 子最高,分别为 $1.215 \setminus 0.115$ 和 2.389 $\mu g \cdot L^{-1}$,其中 Hg 超过 类水质标准。 Pb 在武烈河承德最高为 18.754 $\mu g \cdot L^{-1}$,其次是柳河石佛 17.510 $\mu g \cdot L^{-1}$ 。小滦河滦平县和伊逊河沿岸重点污染企业主要是矿山和冶炼厂,大量的选矿废水直接排入;武烈河流经承德市,承载着大量的工业废水和生活污水,这可能是造成它们重金属浓度较高的原因。从图 3 可以看出,全流域库区水体中重金属含量最低,支流除小滦河沟台子外,一般低于干流,每条支流的汇入都会引起干流浓度的升高。

3.2 滦河流域水环境不同空间重金属健康风险评价 应用表 3 的数据结果 根据健康风险评价模型和模型参数 可以计算出滦河水系干流和各支流水体中

表 4 化学致癌物(As 和 Cd)和化学非致癌物(Hg、Cu 和 Pb) 健康危害的个人年均风险

Table 4 Health risk caused by the chemical carcinogens (As ,Cd), the chemical noncarcinogens (Hg ,Cu ,Pb) for one person annually

	,	, , , , ,	. ,		•
采样点	As	Cd	Hg	Cu	Pb
干流					
郭家屯	1.51E-05	NC	3.59E-10	NC	NC
张百湾	1.15E-05	NC	3.10E-10	NC	NC
三道河子	1.85E-05	NC	4.53E-10	NC	NC
滦河大桥	1.07E-05	NC	1.84E-10	3.04E-10	NC
上板城	1.11E-05	NC	3.41E-10	1.73E-10	NC
乌龙矶	1.43E-05	NC	4.36E-10	2.16E-10	6.12E-09
瀑河口	9.32E-06	4.36E-06	3.14E-10	2.52E-10	NC
燕子峪	9.97E-06	NC	1.93E-10	1.47E-10	NC
潘家口(网箱)	8.21E-06	3.53E-06	2.20E-10	1.58E-10	5.08E-09
潘家口坝上	8.79E-06	NC	1.93E-10	NC	5.65E-09
大黑汀网箱	7.99E-06	NC	1.62E-10	1.54E-10	NC
大黑汀中	5.91E-06	NC	1.75E-10	NC	NC
大黑汀坝上	2.29E-06	NC	2.65E-10	NC	NC
滦县	9.62E-06	NC	1.07E-09	NC	NC
姜各庄	7.9E-06	1.22E-05	9.88E-10	5.21E-10	5.76E-09
支流					
小滦河沟台子	1.77E-05	3.33E-06	5.16E-10	2.14E-10	3.72E-09
兴洲河波罗诺	5.76E-06	NC	2.60E-10	NC	NC
伊逊河韩家营	6.93E-06	NC	4.18E-10	2.03E-10	NC
武烈河承德	8.94E-06	3.07E-06	1.75E-10	9.5E-11	6.01E-09
老牛河下板城	5.89E-06	NC	2.11E-10	NC	4.39E-09
柳河石佛	8.03E-06	NC	3.55E-10	NC	5.62E-09
瀑河宽城	7.14E-06	NC	1.84E-10	1.09E-10	NC
洒河洒河桥	3.55E-06	NC	5.07E-10	NC	NC

注:"NC"表示未计算。

重金属通过饮水途径所引起的个人年均风险 ,计算结果见表 4。

从表 4 可以看出,由致癌物(As 和 Cd)通过饮水途径所引起的健康危害的个人年均风险以 As 最大, Cd 次之,二者的致癌风险水平主要集中在 10⁻⁶。As 在干流三道河子处所引起的健康风险最大,为 1.85×10⁻⁵·a⁻¹,该值低于国际辐射防护委员会(ICRP)推荐的最大可接受风险水平 5.0×10⁻⁵·a⁻¹,但超过了瑞典环保局和荷兰建设和环境部推荐的最大可接受水平 1.0×10⁻⁵·a⁻¹。Cd 最大个人年均风险为4.36×10⁻⁶·a⁻¹,远远低于ICRP 推荐标准。应当指出,本文所研究的重金属中, As 是滦河水系产生健康风险的主要污染物,应作为风险决策管理的重点对象。

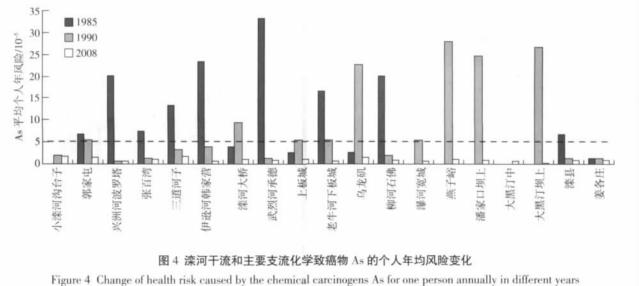
根据表 4 , 非致癌有毒化学物质 Pb、Hg 和 Cu 所引起的健康危害的个人年均风险以 Pb 最大 ,Hg 次之 ,Cu 最小。它们对人体健康危害的个人年均风险水平集中在 10⁻⁹·a⁻¹ 和 10⁻¹⁰·a⁻¹ ,也就是说 ,每千万人口中因引用水水质的非致癌污染物而受到健康危害(或死亡)的人数不到 1 人 ,这表明 ,非致癌化学物质所引起的健康风险甚微 不会对暴露人群构成明显的危害。

从表 4 可以看出 ,所研究的重金属污染中 ,致癌物对人体健康危害的个人年均风险远远超过非致癌物的年风险 ,其风险水平差 3~4 个数量级。化学致癌物 As 所引起的健康风险最大 ,为主要污染物 ,这与前人的研究结果一致。

3.3 滦河流域水环境不同年代重金属 As 健康风险变化 根据海河流域委员会的统计数据,分析了1985 和 1990 年的化学致癌物 As 和 Cd 个人年风险。如表 5 所示 As 和 Cd 的个人年均风险呈显著降低趋势。 这与近些年滦河流域采取的环境治理措施有关 要求 对污水进行治理以达标排放 并关停了多家重污染的 工业企业。从图 4 可以看出 ,1985 年 ,滦河干流上只 有郭家屯、张百湾、三道河子和滦县高于 ICRP 标准 , 最大在三道河子 达到 13.4×10⁻⁵ 其余均低于此标准 , 库区最低 ;支流上 除小滦河沟台子和瀑河宽城外 其 余各支流断面均远远超过 ICRP 标准 ,武烈河承德最 大达到 33.3×10⁻⁵ 并且支流大于干流。1990 年 在乌 龙矶和潘家口库区、大黑汀坝上出现了急剧升高 最 高在燕子峪达到 28.0×10-5 ,潘家口水库和大黑汀水库 是天津和唐山的引用水源 高剂量的重金属浓度会对 人体造成严重危害。支流上 小滦河沟台子和瀑河宽 城出现了升高,其余均出现了显著的下降,只有老牛 河下板城和瀑河宽城略高于 ICRP 标准 ,并且干流大

表 5 不同年代滦河干流化学致癌物 As 健康危害的 个人年均风险

Table 5 Health risk caused by the chemical carcinogens As for one person annually in different years


采样点 -	As				
本作品	1985	1990	2008		
干流					
郭家屯	6.72E-05	5.38E-05	1.51E-05		
张百湾	7.39E-05	1.35E-05	1.15E-05		
三道河子	1.34E-04	3.36E-05	1.85E-05		
滦河大桥	4.04 E-05	9.4E-05	1.07E-05		
上板城	2.69E-05	5.38E-05	1.11E-05		
乌龙矶	2.69 E-05	2.27 E-04	1.43E-05		
燕子峪	0	2.80E-04	9.97E-06		
潘家口坝上	0	2.47 E-04	8.79E-06		
大黑汀中	0	0	5.91E-06		
大黑汀坝上	0	2.67E-04	2.29E-06		
滦县	6.72E-05	1.35E-05	9.62E-06		
姜各庄	1.35E-05	1.35E-05	7.90E-06		
支流					
小滦河沟台子	0	2.02E-05	1.77E-05		
兴洲河波罗诺	2.01E-04	6.73E-06	5.76E-06		
伊逊河韩家营	2.34E-04	4.04E-05	6.93E-06		
武烈河承德	3.33E-04	1.35E-05	8.94E-06		
老牛河下板城	1.67E-04	5.38E-05	5.89E-06		
柳河石佛	2.01E-04	2.02E-05	8.03E-06		
瀑河宽城	0	5.38E-05	7.14E-06		

于支流。2008 年的调查监测数据表明 重金属浓度已得到较好的控制 As 的个人年均风险已低于 ICRP 标准 分布规律与 As 浓度分布一致。

4 结论

(1)滦河干流和各主要支流采样断面的重金属监测数据中 As、Cd 和 Cu 均未超过应执行的水质标准,但 Pb 在潘家口和潘家口坝上分别为 15.852 和17.606 μg·L⁻¹ ,略高于水库库区应执行的 类水质标准(10 μg·L⁻¹) ,Hg 在 5 个断面超过 类水质标准(0.1 μg·L⁻¹) ,其中滦县>姜各庄>小滦河沟台子>洒河桥>三道河子 ,在库区的瀑河口为 0.0070 μg·L⁻¹ ,超过了类水质标准(0.05 μg·L⁻¹)。除库区外 ,一般干流重金属浓度高于支流 ,并且均会在流经城市密集区后出现升高 ,说明重金属的来源还主要是工矿业和城市交通。为满足水质达标的要求 ,应将 Hg 和 Pb 作为优先控制的污染物。

- (2)滦河干流和各主要支流监测断面的 As、Cd、Pb、Hg 和 Cu 所引起的个人年均风险均小于 ICRP 推荐的标准(5×10⁻⁵·a⁻¹)。 致癌物质 As 和 Cd 所引起的个人年均风险远远高于非致癌物质 Pb、Hg 和 Cu ,其中 对人体健康危害最大的是化学致癌物质 As ,其个人年均风险最大达到 1.85×10⁻⁵·a⁻¹, 应将其作为首要的环境健康风险管理控制指标。
- (3)1985 年到 1990 年,干流上郭家屯、张百湾、三道河子和滦县重金属浓度均出现降低,引起的健康风险也有所降低,均低于 ICRP 标准,但其余断面中,除大黑汀中断面外,却出现了异常升高,尤其是潘家口水库库区和大黑汀坝上,所产生的个人年均风险远远超过了 ICRP 标准,支流除小滦河沟台子和瀑河宽城外,均出现了显著降低。2008 年监测数据分析结果表明,As 健康风险普遍降低,干流略高于支流,均低

rigure 4. Change of health risk caused by the chemical carcinogens As for one person annually in different years

于 ICRP 标准。

参考文献:

- [1] Vincent T Covello, Miley W Merkhofer. Risk assessment methods 'approaches for assessing health and environmental risks[M]. New York: Plenum Press, 1993:1–34.
- [2] U S National Research Council. Risk assessment in the federal government managing the process[M]. Washington, D. C. National Academy Press, 1983.
- [3] Mary C Reiley. Science, policy, and trends of metals risk assessment at EPA How understanding metals bioavailability has changed metals assessment at US EPA[J]. Aquatic Toxicology, 2007, 84 292–298.
- [4] Lim Hye-sook, Lee Jin-soo, Chon Hyo-taek, et al. Heavy metal contamination and health risk assessment in the vicinity of the abandoned Songcheon Au-Ag mine in Korea [J]. Journal of Geochemical Exploration, 2008, 96 223–230.
- [5] Eleonora Wcislo, Dawn Ioven, Rafal Kucharski, et al. Human health risk assessment case study an abandoned metal smelter site in Poland [J]. Chemosphere, 2002, 47, 507–515.
- [6] 周 丰,刘 永,黄 凯,等.流域水环境功能区划及其关键问题[J]. 水科学进展, 2007, 18(2) 216-222. ZHOU Feng, LIU Yong, HUANG Kai, et al. Water environmental func
 - tion zoning at watershed scale and its key problems[J]. Advances in Water Science, 2007, 18(2) 216–222.
- [7] Li Yong-li, Liu Yun-guo, Liu Jing-ling, et al. Effects of EDTA on lead uptake by Typha oreentalis Presl 'a new lead-accumulating species in southern China[J]. Bulletin of Environmental contamination and toxicology, 2008, DOI :10. 1007/s00128-008-9447-0.
- [8] Steinemann A. Rethinking human health impact assessment[J]. Environmental Impact Assessment Review, 2000, 20 627-645.
- [9] IARC. Arsenic and arsenic compounds[J]. IARC Monogr Eval Carcinogen Risk Hum, 1980, 23 39–141.
- [10] Borum D, Abernathy C. Human oral exposure to inorganic arsenic. In: arsenic exposure and health [J]. Environmental Geochemistry and Health, 1994, 16 21–30.
- [11] 钱家忠, 李如忠, 汪家权, 等. 城市供水水源地水质健康风险评价[J]. 水利学报, 2004(8) 90-93.

- QIAN Jia-zhong, LI Ru-zhong, WANG Jia-quan, et al. Environmental health risk assessment for urban water supply source[J]. *ShuiLi Xue-Bao*, 2004(8) 90–93.
- [12] Smith A H, Hopenhayn-Rich C, Bates M N, et al. Cancer risks from arsenic in drinking water[J]. Environmental Health Perspectives, 1992, 97 259-267.
- [13] 高继军, 张力平, 黄圣彪, 等. 北京市饮用水源水重金属污染物健康风险的初步评价[J]. 环境科学, 2004, 25(2) 47-50.
 GAO Ji-jun, ZHANG Li-ping, HUANG Sheng-biao, et al. Preliminary health risk assessment of heavy metals in drinking waters in Beijing[J].

 Environmental Science, 2004, 25(2) 47-50.
- [14] 苏 伟, 刘景双, 李 方. 第二松花江干流重金属污染物健康风险评价[J]. 农业环境科学学报, 2006, 25(6):1611-1615.

 SU Wei, LIU Jing-shuang, LI Fang. Assessment on health risk of heavy metals in the second Songhua River[J]. Journal of Agro-Environment Science, 2006, 25(6):1611-1615.
- [15] Glenn W Suter . Integration of human health and ecological risk assessment[J]. Environmental Health Perspectives, 1997, 105(12):1282– 1283.
- [16] Glenn W Suter , Theo Vermeire, Wayne R, et al. An integrated framework for health and ecological risk assessment [J]. *Toxicology and Applied Pharmacology*, 2005, 207 :611–616.
- [17] Chowdhury Shakhawat, Husain Tahir, Bose Neil. Fuzzy rule –based modeling for human health risk from naturally occurring radioactive materials in produced water[J]. *Journal of Environmental Radioactivi–* ty, 2006, 89:1–17.
- [18] Pruppers M J M, Janssen M P M, Ale B J M, et al. Accumulation of environmental risks to human health geographical differences in the Netherlands[J]. *Journal of Hazardous Materials*, 1998, 61(1):187–196.
- [19]曾光明, 卓 利, 钟政林, 等. 水环境健康风险评价模型[J]. 水科学进展, 1998, 9(3) 212-217.

 ZENG Guang-ming, ZHUO Li, ZHONG Zheng-lin, et al. Assessment models for water environmental health risk analysis[J]. Advances in Water Science, 1998, 9(3) 212-217.
- $[20] \ EPA/540/186060. \ EPA. \ Superfund \ public \ health \ evaluation \ manual [S].$
- [21] 海河流域水资源保护局. 海河流域水资源公报[R]. 2006. HaiHe River Water Conservancy Commission. Water resources report of Haihe River Basin[R]. 2006.