DOI: 10.11895/j.issn.0253-3820.140988

离子液体自聚集磁性多壁碳纳米管 固相萃取环境水样中的磺胺类药物

曹小吉^{*1} 蔡若男² 沈凌晓² 董云渊² 陈林吉² 马永萍¹ 叶学敏¹ 刘劲松³ 莫卫民^{*12}

¹(浙江工业大学分析测试中心 杭州 310014) ²(浙江工业大学化学工程学院 杭州 310014) ³(浙江省环境监测中心 杭州 310012)

摘 要 将1-己基-3-甲基咪唑六氟磷酸([C₆MIM] [PF₆])离子液体自聚集于磁性多壁碳纳米管(Fe₃O₄ @ MWCNTs) 表面,并将其作为磁性固相吸附剂,建立了同时测定环境水样中磺胺二甲嘧啶、磺胺对甲氧嘧啶、磺 胺邻二甲氧嘧啶和磺胺二甲异噁唑 4 种磺胺类药物的涡旋辅助磁性固相萃取-高效液相色谱法。优化条件 为:将 20.0 mg [C₆MIM] [PF₆]包覆的 Fe₃O₄@ MWCNTs 分散于 200 mL 水样中,涡旋萃取 15 min 磁性分离获 取磁性吸附剂 3.5 mL 1.0% 乙酸铵-甲醇溶液洗脱,洗脱液氮吹至干 300 μ L 甲醇溶解后待下一步高效液相 色谱/二极管阵列检测器(HPLC-PDA) 分析。4 种磺胺类药物在 0.375 ~ 75.0 μ g/L 范围内与峰面积呈良好的 线性关系,其相关系数为 0.9985 ~ 0.9996 检出限(*S/N* = 3) 为 0.079 ~ 0.099 μ g/L 3 个加标浓度水平的回收 率为 80.60% ~ 99.99%,日内、日间测定的相对标准偏差分别为 1.3% ~ 6.9% 和 1.2% ~ 2.9% (*n* = 3)。结果 表明,本方法简单方便,易于操作,适用于环境水样中痕量磺胺类药物的检测。

关键词 离子液体;磁性多壁碳纳米管;磁性固相萃取;环境水样;磺胺类药物

1 引 言

磺胺类药物(SAs) 是一类具有对氨基苯磺酰胺结构药物的总称,被广泛应用于人类医药、畜牧养殖和水产养殖中^[1]。大量研究证实^[2,3] SAs 代谢时间长,在使用过程中易被转移至水体和土壤环境中,给人类造成慢性、远期和累积的危害。目前,多个国家已在废水、地表水,甚至饮用水中检出了不同浓度的SAs^[4,5]。因此,建立快速筛查环境水体中该类污染物的分析方法至关重要。

磺胺类药物在环境水样中残留浓度低再加上复杂基体的干扰,在检测前需要对其进行净化和富集。 目前制备环境水样中 SAs 的前处理方法包括固相萃取(SPE)^[6-8]、分散液液微萃取(DLLME)^[9,10]、双水 相萃取(ATPE)^[11]、单滴微萃取(SDME)^[12]等。然而,这些方法的操作繁琐复杂,需要耗费大量的时间 或有毒有机溶剂。

离子液体(ILs)因具有低挥发性、良好的热稳定性等特性而作为环境友好溶剂被广泛应用^[13~15]。 最近,本课题组成功地将离子液体自聚集于磁性石墨烯表面,建立了分析环境水样中硝基苯类化合物的 超声辅助磁性固相萃取-高效液相色谱法^[16]。近年来,基于 Fe₃O₄@ MWCNTs 的磁性固相萃取(MPSE) 技术在痕量污染物萃取分离领域已取得了一定的进展^[17,18]。但是迄今为止,以离子液体包覆的磁性多 壁碳纳米管(IL-Fe₃O₄@ MWCNTs)作为吸附剂的涡旋辅助磁性固相萃取-高效液相色谱法检测环境水样 中的 SAs 研究还未见报道。

本研究将 [C₆MIM] [PF₆]自聚集于 Fe₃O₄@ MWCNTs 表面,并以此为固相吸附剂,在涡旋辅助下,通 过对磁性纳米吸附剂和洗脱溶剂的用量、样品溶液的 pH 值、磁性萃取时间等影响磁性固相萃取效率的 相关因素进行系统优化 结合 HPLC-PDA 分析,建立一种简便快速、绿色环保的筛查环境水样中痕量磺 胺二甲嘧啶(SMZ)、磺胺对甲氧嘧啶(SME)、磺胺邻二甲氧嘧啶(SDX)和磺胺二甲异噁唑(SIZ)4种磺 胺类药物的分析方法。

²⁰¹⁴⁻¹¹⁻⁰⁷ 收稿; 2015-02-09 接受

本文系浙江省环保科研计划项目基金(No. 2014A011)、杭州市环境保护科技项目基金(No. 2013HZHB0021)和浙江省公益性技术应用研究计划项目基金(No. 2014C37077)资助

^{*} E-mail: xiaojicao@ zjut. edu. cn; mowm@ zjut. edu. cn

2 实验部分

2.1 仪器与试剂

Waters 2695 高效液相色谱仪(美国 Waters 公司),配备 Waters 2996 型二极管阵列检测器; QL-866 型旋涡混合器(江苏海门其林贝尔仪器制造有限公司)。

SMZ、SME、SDX 和 SIZ(纯度 > 98.0%,德国 Dr. Ehrenstorfer 公司); $[C_6MIM]$ [PF₆](纯度为 99%, 上海成捷化学有限公司); 甲醇、乙腈为色谱纯; 硫酸亚铁(II) 铵六水合物、硫酸铁(III) 铵十二水合物、 HCl、丙酮、无水乙醇和乙酸铵均为分析纯; Fe₃O₄@ MWCNTs(实验室自制); N50 铷铁硼磁铁(NdFeB, 宁 波市鄞州冠能磁业有限公司); 实验用水为超纯水。

2.2 标准溶液的配制

准确称取适量磺胺标准品,用甲醇配制成1.00 mg/mL标准储备液,-4 ℃避光保存,使用时,以甲醇稀释至所需浓度。

2.3 色谱条件

色谱柱 CAPCELL PAK C₁₈(150 mm × 4.6 mm i.d., 3 μm); 流动相: 乙腈(A) 0.1% 甲酸水溶液
(B);梯度洗脱:0~4 min 20% A; 4~6 min 20% ~25% A; 6~15 min 25% A。流速:1 mL/min; 柱温:
25 ℃; 检测波长为 270 nm; 进样量:10 μL。

2.4 Fe₃O₄@MWCNTs 及 IL-Fe₃O₄@MWCNTs 的制备

 $Fe_3O_4@$ MWCNTs 是根据文献 [19] 报道的化学共沉淀法制备的。参照文献 [20],将 [C₆MIM] [PF₆] 自聚集到磁性多壁碳纳米管表面 ,制得 IL-Fe₃O₄@ MWCNTs。

2.5 磁性固相萃取实验

将 200 mL 水样置于 300 mL 玻璃瓶中,加入 20.0 mg IL-Fe₃O₄@ MWCNTs,涡旋分散萃取 15 min。 然后将磁铁静置于瓶壁外 15 s,弃去上层清液。用 3.5 mL 1%乙酸铵-甲醇溶液在涡旋下对吸附了 SAs 的 IL-Fe₃O₄@ MWCNTs 进行洗脱,涡旋 2 min,继续用磁铁进行分离,取出洗脱液,用氮气吹干,并用 300 μ L 甲醇溶解后过 0.22 μ m 尼龙滤膜,待下一步 HPLC-PDA 分析。

3 结果与讨论

3.1 Fe₃O₄@MWCNTs 及 IL-Fe₃O₄@MWCNTs 的表征

图 1A 为 Fe₃O₄@ MWCNTs 的 X-射线衍射(XRD)图谱。图中 2θ 为 30.2°, 35.6°, 43.3°, 53.6°, 57.2°和 62.8°处的衍射峰分别对应纯立方尖晶石晶系 Fe₃O₄ 的 220, 311, 400, 422, 511 和 440 晶面 (JCPDS 卡 03-065-3107)的特征吸收峰 表明 Fe₃O₄ 纳米颗粒已成功嫁接到多壁碳纳米管上了。

此外 应用振动样品磁强计(VSM) 绘制了 IL-Fe₃O₄@ MWCNTs 的磁滞回曲线。如图 1B 所示, IL-Fe₃O₄@ MWCNTs 没有剩磁和磁矫顽力 具有良好的超顺磁性。其饱和磁化强度高达 30.79 emu/g, 完全满足磁性分离的磁响应要求。

由 IL-Fe₃O₄@ MWCNTs 的 X 射线能谱(图 1C) 可见 ,此材料含有 N , F , P 等离子液体的特征元素 , 表明 [C₆MIM] [PF₆]已经成功地自聚集在了 Fe₃O₄@ MWCNTs 上。

3.2 萃取条件的优化

离子液体自聚集于 Fe₃O₄@ MWCNTs 上,使得此材料带上了部分离子液体独特的性质,从而影响到 对目标分析物的萃取效率^[11]。本研究考察了 IL-Fe₃O₄@ MWCNTs 和 Fe₃O₄@ MWCNTs 对环境水样中 SAs 的萃取效果。如图 2A 所示,IL-Fe₃O₄@ MWCNTs 对 SAs 的萃取效率明显优于 Fe₃O₄@ MWCNTs,原 因可能是自聚集在 Fe₃O₄@ MWCNTs 表面上的 [C₆MIM] [PF₆]与 SAs 之间形成较强的 π - π 相互作用力 和疏水作用力,从而提高了萃取效率。因此,本实验采用 IL-Fe₃O₄@ MWCNTs 作为磁性固相吸附剂。

文献[69]表明,应用固相萃取技术处理 SAs 时,洗脱剂采用乙酸铵-甲醇溶液得到的洗脱效果最好。因此,本实验采用乙酸铵-甲醇溶液作为洗脱剂,并考察了乙酸铵浓度对萃取效率的影响(图2B), 当乙酸铵浓度从0增加到1.0%时,萃取效率随之增加,而当乙酸铵浓度超过1.0%时,其萃取效率开始

图 1 (A) Fe₃O₄@ MWCNTs 的 XRD 图; (B) IL-Fe₃O₄@ MWCNTs 的磁滞回曲线; (C) IL-Fe₃O₄@ MWC-NTs 的 EDS 图

Fig. 1 (A) XRD pattern of Fe₃O₄@ MWCNTs; (B) magnetization curve of IL-Fe₃O₄@ MWCNTs; (C) energy dispersive X-ray spectroscopic (EDS) image of IL-Fe₃O₄@ MWCNTs

下降 因此 本实验选择 1.0% 乙酸铵-甲醇溶液作为洗脱剂。

3.2.1 溶液 pH 的影响 由于 4 种 SAs 为弱酸性物质 样品溶液的 pH 值直接影响其电离平衡。本实 验分别考察了溶液 pH = 2~6条件下的萃取效率(图 2C),当溶液 pH = 4 时 A 种 SAs 的萃取效率达到 最大。原因可能是:溶液 pH < 4 时 SAs 的碱性基团发生电离 ,与 IL-Fe₃O₄@ MWCNTs 表面的 1-己基-3-甲基咪唑阳离子产生 π - π 作用力与库仑斥力;当溶液的 pH = 4 时 SAs 保持电中性 ,与 1-己基-3-甲基咪唑阳离子之间的库仑斥力减弱 , π - π 作用力和疏水作用力增强 ,萃取效率提高;当溶液 pH > 4 时 SAs 的 磺酰胺基团部分电离 ,与离子液体之间的 π - π 作用力和疏水作用力减弱 ,导致萃取效率降低。最终 ,确 定样品溶液的 pH = 4。

Fig. 2 Effect of (A) 1-hexyl-3-methyl-imidazolium hexa-fluorophosphate ($[C_6MIM][PF_6]$); (B) concentration of CH₃COONH₄ in elution; (C) solution pH; (D) extraction time; (E) amount of IL-Fe₃O₄@ MWCNTs and (F) the volume of eluent on extraction efficiency; SMZ: sulfamethazine; SME: sulfameter; SDX: sulfadoxine; STZ: sulfisoxazole.

3.2.2 萃取时间的影响 萃取时间对萃取效率的影响如图 2D 所示。萃取时间为 15 min 时 萃取基本 达到平衡。因而 本实验选取的萃取时间为 15 min。

3.2.3 萃取剂用量和洗脱剂体积的影响 考察了 IL-Fe₃O₄@ MWCNTs 用量($5.0 \sim 25.0$ mg) 对萃取效 率的影响。如图 2E 所示,当 IL-Fe₃O₄@ MWCNTs 用量为 20.0 mg 时,萃取效率达到最大值。可能的原 因是: 过多的 IL-Fe₃O₄@ MWCNTs 会对 4 种 SAs 形成永久性吸附,从而降低萃取效率。因而,本实验选择的 IL-Fe₃O₄@ MWCNTs 用量为 20.0 mg。

洗脱剂(1.0% 乙酸铵甲醇溶液)体积对萃取效率的影响如图 2F 所示,当洗脱剂体积为 3.5 mL 时, 萃取效率已超过 98%。综合考虑溶剂的消耗和测定的灵敏度,本实验选择的洗脱剂体积为 3.5 mL。 **3.2.4** 最大上样体积 SAs 在环境水样中的实际残留量非常低。本实验考察了上样体积(10.0,50, 100,200 和 350 mL)对萃取效率的影响。结果表明,当溶液体积 < 200 mL 时 A 种 SAs 的萃取效率保持 在 87.9% ~ 101.4% 之间;当溶液体积 > 200 mL 时,SAs 萃取效率明显下降。可能原因是:溶液体积增 大,会促使部分自聚集在 Fe₃O₄@ MWCNTs 上的离子液体溶解到水中,从而导致萃取效率降低。本方法 最大上样量为 200 mL。

3.3 方法评价

在优化的条件下,对4种SAs的线性范围、相关系数、检出限、精密度及回收率进行了考察,结果见表1。SMZ,SME,SDX和SIZ在0.375~75.0 μ g/L质量浓度范围内与色谱峰面积呈良好的线性关系, 其相关系数在 0.9985~0.9996 之间。检出限(*S/N* = 3)和定量限(*S/N* = 10)分别为 0.079~0.099 μ g/L和 0.26~0.33 μ g/L。

为了考察本方法的重现性,分别测定了水样的日内及日间精密度。日内精密度是通过1天之内平 行测定3次水样样品得到的相对标准偏差。日间精密度是通过连续3天测定同一组水样样品,每天测 定一次,得到的相对标准偏差。如表1所示,日内及日间精密度分别是1.3%~6.9%和1.2%~2.9%。 表1 最优条件下IL-Fe,0,@ MWCNTs-MSPE/HPLC 联用法的方法评价

化合物 Compound	线性范围 Linear range (µg/L)	线性方程 Linear equation	相关系数 Correlation coefficient	检出限	RSD (% , $n = 3$)	
				LOD ($\mu g/L$)	日内 Intra-day	日间 Inter-day
Sulfamethazine (SMZ)	0.375~75.0	Y = 44952X	0.9991	0.0787	1.3	2.2
Sulfameter (SME)	0.375~75.0	Y = 44745X	0.9996	0.0951	2.2	2.9
Sulfadoxine (SDX)	0.375~75.0	Y = 40141X	0.9996	0.0941	2.1	2.2
Sulfisoxazole (SIZ)	0.375~75.0	Y = 45378X	0.9985	0.0987	6.9	1.2

Table 1 Performance characteristics of IL-Fe₃O₄@ MWCNTs-MSPE/ HPLC under the optimal conditions

3.4 本方法与其它方法的比较

将本方法与文献报道的 SPE、dSPE、DLLME 和 SDME 等方法进行比较 结果见表 2。从表 2 可知 ,与 SPE、DLLME 和 SDME 相比 ,本方法只需 15 min 即可完成磁性萃取 ,15 s 可实现磁性分离 ,大大缩短了 萃取时间 ,简化了操作过程; 另一方面 ,与基于 $Fe_3O_4@$ MWCNTs 的 dSPE 方法相比 ,磁性萃取剂用量和 洗脱溶剂用量大大减少。

表2 与其它方法比较

Table 2 Comparison of the proposed method with other methods for determination of sulfonamides (SAs)

方法 Method	吸附剂 Adsorbent	吸附剂用量 Amount of adsorbent	萃取时间 Extraction time (min)	有机溶剂体积 Volume of organic solvent	检出限 LOD (µg/L)
SPE ^[7]	Oasis HLB	500 mg	140	20 mL	0.02~0.04
dSPE ^[9]	Magnetic-MWCNTs	150 mg	/	25 mL	$0.01 \sim 0.29$
DLLME ^[10]	[C ₈ MIM][PF ₆]	1 mL	25	6.5 μL	0.50~1.22
SDME ^[12]	$[C_4MIM][PF_6]$	9 μL	35	0	1~3
IL-Fe ₃ O ₄ @ MWCNTs-MSPE	IL-Fe ₃ O ₄ @ MWCNTs	20.0 mg	15	3.5 mL	0.079 ~0.099

第5期

3.5 样品测定

在最佳实验条件下,用建立的 IL-Fe₃O₄@ MWCNTs-MSPE/HPLC 方法对本地区的 3 个环境水样进行 分析检测 均未检测出 4 种 SAs 残留。空白加标水样的色谱图如图 3 所示。同时,考察了 3 个加标水平 的回收率。结果如表 3 所示,磺胺类化合物的回收率在 80.6% ~99.99% 之间,可以满足环境水样分析 的需求。

表 3 水样中 4 种磺胺类化合物的测定

Table 3 Determination results of four sulfonamides in water samples

样品编号 Sample number	加标 Spiked (µg/L)		回收率 Recovery (%, n = 3)				
		SMZ	SME	SDX	SIZ		
1	1.50	99.76 ± 0.74	93.57 ± 3.64	92.62 ± 2.43	89.52 ± 2.16		
	3.75	96.06 ± 2.46	90.08 ± 0.99	96.10 ± 1.10	81.48 ± 3.15		
	15	99.99 ± 0.58	91.85 ± 3.71	87.33 ±1.11	94.93 ± 0.70		
2	1.50	94.49 ± 2.20	88.72 ± 0.16	91.91 ± 4.52	80.60 ± 2.49		
	3.75	90.30 ± 0.52	85.96 ± 2.11	92.44 ± 0.84	86.39 ±1.75		
	15	92.14 ± 2.06	92.28 ± 0.91	87.63 ± 1.82	90.68 ± 1.91		
3	1.50	96.04 ± 2.38	97.46 ± 2.38	99.53 ± 3.05	93.12 ± 3.38		
	3.75	94.73 ± 0.71	94.98 ± 1.13	94.02 ± 1.24	88.22 ± 1.55		
	15	93.99 ± 0.48	96.61 ± 0.77	94.98 ± 1.20	85.93 ± 2.11		

4 结 论

本实验成功建立了同时测定环境水样中 4 种磺胺类药物的基于 [C₆MIM] [PF₆]包覆的 磁性多壁碳纳米管的涡旋辅助磁性固相萃取-高 效液相色谱法。在优化条件下,IL-Fe₃O₄ @ MWCNTs-MSPE 去除了基质干扰,取得了满意的 萃取效率,结果准确可靠。与文献报道的方法 相比,本方法仅需 20.0 mg 吸附材料、涡旋萃取 15 min、3.5 mL洗脱溶剂、15 s 的磁分离即可完 成,操作简单,有机溶剂消耗少,可应用于环境 样品中磺胺类化合物的快速筛查。

图 3 空白加标水样的色谱图

Fig. 3 Typical chromatogram of spiked samples obtained at wavelength of 270 nm. 1: SMZ; 2: SME; 3: SDX; 4: SIZ

References

1 WANG Chong-Yang , WANG Yuan-Peng , WANG Ning , JIANG Chun-Zhu , YU Xi , SONG Da-Qian , SUN Ying. Chinese J. Anal. Chem. , 2013 , 41(1): 83 - 87

王重洋,王远鹏,王宁,姜春竹,于希,宋大千,孙颖.分析化学,2013,41(1):83-87

- 2 Malintan N T , Mohd M A. J. Chromatogr. A , 2006 , 1127: 154 160
- 3 Niu H Y , Cai Y Q , Shi Y L , Wei F S , Liu J M , Mou S F , Jiang G B. Anal. Chim. Acta , 2007 , 594: 81-92
- 4 Watkinson A J, Murby E J, Kolpin D W, Costanzo S D. Sci. Total Environ. ,2009, 407: 2711-2723
- 5 Balakrishnan V K , Terry K A , Toito J. J. Chromatogr. A , 2006 , 1131: 1-10
- 6 Zhou J L , Kang Y H. J. Sep. Sci. , 2013 , 36: 564 571
- 7 ZHOU Ming-Ying, MA Jian, GAO Xiang-Ping, CHEN Bi-Juan, QIAO Xiang-Ying, TAN Zhi-Jun, GUO Meng-Meng. Progress in Fishery Sciences, 2011, 32(2): 102 – 105
 周明莹,马健,高湘萍,陈碧鹃,乔向英,谭志军,郭萌萌. 渔业科学进展, 2011, 32(2): 102 – 105
- 8 Sun N , Han Y H , Yan H Y , Song Y X. Anal. Chim. Acta , 2014 , 810: 25 31
- 9 Herrera-Herrera A V, Hernández-Borges J, Afonso M M, Palenzuela J A, Rodríguez-Delgado M Á. Talanta, 2013, 116: 695 – 703

10 CHANG An-Gang , ZHOU Kai , JIANG Jing , WU Xiang-Yang , ZHANG Zhen. Environmental Chemistry , 2013 , 32(2): 295 - 301

常安刚,周凯,江静,吴向阳,张祯.环境化学,2013,32(2):295-301

- 11 Han J , Wang Y , Liu Y , Li Y F , Lu Y , Yan Y S , Ni L. Anal. Bioanal. Chem. , 2013 , 405: 1245 1255
- 12 WU Cui-Qin, CHEN Di-Yun, ZHOU Ai-Ju, DENG Hong-Mei, LIU Yong-Hui. Chinese J. Anal. Chem., 2011, 39(1): 17-21

吴翠琴,陈迪云,周爱菊,邓红梅,刘永慧. 分析化学,2011,39(1):17-21

- 13 Wu M , Zhang H B , Zhao F Q , Zeng B Z. Anal. Chim. Acta , 2014 , 850: 41 48
- 14 Rajabi M , Ghanbari H , Barfi B , Asghari A , Haji-Esfandiari S. Shen J Z. Food. Res. Int. , 2014 , 62: 761 770
- 15 Shao M Y , Zhang X L , Li N , Shi J Y , Zhang H J , Zhang H Q , Yu A M , Yu Y. J. Chromatogr. B , 2014 , 961: 5-12
- 16 Cao X J , Shen L X , Ye X M , Zhang F F , Chen J Y , Mo W M. Analyst , 2014 , 139(8): 1938 1944
- 17 Luo M , Liu D H , Zhao L , Han J J , Liang Y R , Wang P , Zhou Z Q. Anal. Chim. Acta , 2014 , 852: 88 96
- 18 Rao W , Cai R , Yin Y L , Long F , Zhang Z H. Talanta , 2014 , 128: 170 176
- 19 Qu S , Wang J , Kong J L , Yang P Y , Chen G. Talanta , 2007 , 71: 1096 1102
- 20 Farahani M D , Shemirani F S. Microchim. Acta , 2012 , 179: 219 226

Magnetic Solid Phase Extraction Based on Ionic Liquid Coated Fe₃O₄-Grafted Multi-Walled Carbon Nanotubes for Determination of Sulfonamides in Environmental Water Samples

CAO Xiao-Ji*1, CAI Ruo-Nan2, SHEN Ling-Xiao2, DONG Yun-Yuan2, CHEN Lin-Ji2,

MA Yong-Ping1 , YE Xue-Min1 , LIU Jin-Song3 , MO Wei-Min*12

¹(Research Center of Analysis and Measurement, Zhejiang University of Technology, Hangzhou 310014, China)

² (College of Chemical Engineering Science, Zhejiang University of Technology, Hangzhou 310014, China)

³(Zhejiang Environmental Monitoring Centre, Hangzhou 310012, China)

Abstract In combination with high performance liquid chromatography-photodiode array detector (HPLC-PDA), a vortex-assisted magnetic solid phase extraction method with the 1-hexyl-3-methylimidazolium hexafluorophosphate ($[C_6MIM]$ [PF₆]) ionic liquid coated Fe₃O₄-grafted multi-walled carbon nanotubes (IL-Fe₃O₄ @ MWCNTs) as the magnetic adsorbent was developed for the determination of four sulfonamides including sulfamethazine, sulfisoxazole, sulfadoxine, and sulfameter in environmental water samples. The optimal conditions for analysis were as follows: 20.0 mg of IL-Fe₃O₄@ MWCNTs was dispersed into 200 mL of water sample under vortex for 15 min. Then , the IL-Fe₃O₄@ MWCNTs carrying sulfonamides was separated from the water sample by an external magnetic field. Next, the sulfonamides were eluted from IL-Fe₃ O_4 @ MWCNTs with 3.5 mL of 1.0% ammonium acetate methanol solution. Finally, the eluent was dried under a mild stream of nitrogen and reconstituted in 300 µL of methanol for the subsequent HPLC-PDA analysis. Under the optimized conditions, an excellent linearity was observed in the range of 0.375 - 75.0 μ g/L for the four sulfonamides, with the correlation coefficients ranging from 0.9985 to 0.9996. The limits of detections (S/N = 3) ranged from 0.079 to 0.099 μ g/L. The mean recoveries at three spiked levels ranged from 80.60% to 99.99%. The relative standard deviations (RSDs) of intra-day and inter-day varied from 1.3% to 6.9% and from 1.2% to 2.9% (n=3), respectively. The proposed method was demonstrated to be simple and feasible for the trace analysis of sulfonamides in environmental water samples.

Keywords Ionic liquid; Magnetic multi-walled carbon nanotubes; Magnetic solid phase extraction; Environmental water samples; Sulfonamides

(Received 7 November 2014; accepted 9 February 2015)