技术与应用

DOI: 10.3724/SP. J.1123.2011.01027

反相离子对色谱-电感耦合等离子体质谱法测定化妆品中不同形态的铬

庞艳华^{*} , 刘名扬 , 刘淑艳 , 董振霖 (辽宁出入境检验检疫局 ,辽宁 大连 116001)

摘要: 建立了反相离子对色谱(RP-IPC) 与电感耦合等离子体质谱(ICP-MS) 联用技术快速分离测定化妆品中 Cr(Ⅲ) 和Cr(Ⅵ) 的方法。样品经乙二胺四乙酸钠盐(EDTA) 50 ℃水浴中提取后 采用 XDB-C₁₈色谱柱分离 以 5% ($_{\rm V}$ / $_{\rm V}$) 甲醇-2. 0 mmol/L 四正丁基铵盐(TBA) 水溶液($_{\rm PH}$ 6. 0) 作为流动相 流速为 1. 0 mL/min 进样量为 100 μL。 采用碰撞池技术消除 ICP-MS 测定时 $_{\rm H}$ 0 $_{\rm H}$ 1 $_{\rm V}$ 2 Cr $_{\rm V}$ 0 的光谱学干扰。Cr(Ⅲ) 和Cr(Ⅵ) 的分离过程在 5 min 内完成。样品中加标量为 0. 01 ~ 0. 50 μg 时 其回收率为 82. 7% ~ 107. 2% 相对标准偏差(RSD) 小于 5. 62%。 该方法操作简便、灵敏度高、重现性好 适合于化妆品中Cr(Ⅲ) 和Cr(Ⅵ) 的同时分析。

关键词: 反相离子对色谱; 电感耦合等离子体质谱; 铬; 形态; 化妆品

中图分类号: 0658 文献标识码: A 文章编号: 1000-8713(2011) 10-1027-04

Simultaneous determination of chromium speciation in cosmetics using reversed-phase ion-pair chromatography-inductively coupled plasma mass spectrometry

PANG Yanhua*, LIU Mingyang, LIU Shuyan, DONG Zhenlin (Liaoning Entry-Exit Inspection and Quarantine Bureau, Dalian 116001, China)

Abstract: A method was developed to determine chromium speciation simultaneously in cosmetics using reversed-phase ion-pair chromatography (RP-IPC) with inductively coupled plasma mass spectrometry (ICP-MS) . After the extraction with disodium ethylenediaminetetraacetate (EDTA) in a water bath , the sample was separated on an XDB C_{18} column with the mobile phase of 5% (v/v) methanol-2.0 mmol/L tetrabutylammonium (TBA) (pH 6.0) , the flow rate of 1.0 mL/min and the injection volume of 100 μ L. The collision cell technology was applied to eliminate the mass interferences of 40 Ar 12 C $^{+}$ and 35 Cl 16 O 1 H $^{+}$ in the analysis of 52 Cr $^{+}$. The separation was achieved within 5 min. The recoveries of Cr(\blacksquare) and Cr(\blacksquare) ranged from 82.7% to 107.2% with the relative standard deviations (RSDs) less than 5.62% (n=6) with the spiked amounts of 0.01 – 0.50 μ g in different kinds of cosmetic samples. The developed method has the advantages of simplicity , sensitivity and good reproducibility , and can be used for the simultaneous determination of Cr(\blacksquare) and Cr(\blacksquare) in cosmetics.

Key words: reversed-phase ion-pair chromatography (RP-IPC); inductively coupled plasma mass spectrometry (ICP-MS); chromium; speciation; cosmetic

铬是环境污染和影响人类健康的重要元素之一。不同价态的铬具有不同的环境行为和生物效应 ,三价铬(Cr(Ⅲ)) 是人体必需的微量元素 ,可促

进葡萄糖的利用 是正常糖脂代谢所不可缺少的; 而 六价铬(Cr(VI)) 由于其氧化性和对皮肤的高渗透性被确认为有致癌作用[1] 因此Cr(III) 和Cr(VI)的

^{*} 通讯联系人: 庞艳华 博士 ,工程师 ,研究方向为食品分析和研究. Tel: (0411)82583912 , E-mail: cindy_gl@ eyou.com. 基金项目: 国家质检总局科研专项(2008IK132)及辽宁出入境检验检疫局科研计划项目(LK08-2008). 收稿日期: 2011-04-25

准确分析在食品科学、环境科学以及生命科学等方面具有重要意义。但是目前对于化妆品中 Cr 的检测仍然停留在检测总铬的水平上,还没有一种可以同时测定化妆品中Cr(III) 和Cr(IVI) 含量的方法。

目前对于铬形态分析研究较多的分离分析及富 集技术包括固相萃取[2,3]、离子交换[4,5]、毛细管电 泳[6]、纳米材料吸附[7]、流动注射系统[8]、浊点萃 取[9] 及色谱[10,11] 等 检测手段主要有原子吸收光谱 (AAS)、原子发射光谱(AES)及电感耦合等离子体 质谱(ICP-MS)等。其中高效液相色谱-电感耦合等 离子体质谱联用技术(HPLC-ICP-MS)可对不同形态 的痕量元素同时进行分析 并具有接口简单、检出限 低、线性范围宽、分析时间短等优点[12];但传统的四 极杆 ICP-MS 还存在比较严重的多原子离子干扰问 题,如⁴⁰Ar¹⁶O对⁵⁶Fe,⁴⁰Ar³⁵Cl对⁷⁵As,⁴⁰Ar⁴⁰Ar对⁸⁰Se, ⁴⁰Ar¹²C及³⁵Cl¹⁶O¹H对⁵²Cr的干扰等,这些多原子离 子干扰的存在,使被干扰元素难以直接测定。碰撞 反应池技术是消除四极杆质谱仪多原子离子干扰的 最先进技术^[13]。本文选用乙二胺四乙酸钠(EDTA) 提取化妆品中的Cr(Ⅲ)与Cr(Ⅵ),以四正丁基溴化 铵(TBA) 作为离子对试剂 以甲醇为有机改进剂 在 C₁s键合的反相色谱柱上实现了Cr(Ⅲ)与Cr(Ⅵ)的 同步快速分离,用带有碰撞池的 ICP-MS 来定量检 测不同形态的铬。

1 实验部分

1.1 仪器与试剂

7500ce 电感耦合等离子体质谱仪(美国 Agilent 公司),配有碰撞反应池; LC 1200 高效液相色谱系统(美国 Agilent 公司),配有 Agilent G1328A 泵、Rheodyne 9725 进样阀和 100 μL 进样环; Z323K 高速冷冻离心机(德国 Hermle 公司); MLS-1200 MEGA 微波消解装置(意大利 Milstone 公司)。

EDTA(优级纯) 购自美国 Amresco 公司; TBA (分析纯) 购自天津科密欧化学试剂公司; 甲醇为色谱纯; 硝酸、盐酸和氨水均为分析纯; 实验用水为18.2 MΩ• cm 超纯水。Cr(Ⅲ) 标准储备液(GSB 04-1723-2004) 和 Cr(Ⅵ) 标准储备液(GBWE 080 257) 均购自中国标准物质中心。实验所用溶液在进样前均用 0.45 μm 微孔滤膜过滤。

1.2 实验方法

1.2.1 样品前处理

称取 0.50 g 样品置于 10 mL 离心管中 加入 10 mL 0.5 mmol/L EDTA 涡旋混匀后于 50 ℃水浴中加热 60 min ,使Cr(Ⅲ) 与 EDTA 完全配合 ,冷却 ,取

部分溶液以 14 000 r/min 速度离心 10 min ,取上清液 过 0.45 μm 滤膜 ,备用。

1.2.2 LC 与 ICP-MS 条件

XDB- C_{18} 反相色谱柱(50 mm × 2. 1 mm , 5 μm) (美国 Agilent 公司); 流动相为 5% (v/v) 甲醇-2. 0 mmol/L TBA 水溶液(pH 6. 0); 流速为 1. 0 mL/min; 进样量为 100 μL。

ICP-MS 采用碰撞反应池模式 ,调节碰撞反应气 (He/H_2) 的混合气) 流速 ,以消除 质谱 检测中 40 Ar 12 C $^+$ 与 35 Cl 16 O 1 H $^+$ 对 52 Cr $^+$ 的光谱学干扰。实验 前调节 ICP-MS 参数以获得最优信噪比(S/N) ,并保证基线的稳定性。具体仪器参数: 射频功率为 1 250 W; 反射功率为 2 W; 载气流速为 0. 85 L/min; 辅助气流速为 0. 15 L/min; 雾化室温度为 2 °C; 采样锥直径为 1. 0 mm; 截取锥直径为 0. 4 mm; 提升率为 1. 0 mL/min; H₂ 流速为 1. 0 mL/min; He 流速为 3. 0 mL/min; 质量数为 52。

2 结果与讨论

2.1 前处理条件的优化

2.2 色谱条件的优化

固定流动相为 2.0 mmol/L TBA-5% (v/v) 甲醇 $_{\rm H}$ $_{\rm I}$ $_{\rm I}$

样品前处理时加入 EDTA 可以配合Cr(Ⅲ),而实验发现流动相中添加 EDTA 会导致 Cr(Ⅲ)与 Cr(Ⅵ)的分离度变差,这可能是因为流动相中离子强度的增大会降低分析物的保留时间,因此在流动相中不需要添加 EDTA。

在反相离子对色谱中,离子对试剂浓度的降低会使待测物的保留时间降低。当流动相的 pH = 6.0、甲醇为 5% (v/v) 时,考察了 TBA 浓度分别为 0.5、1.0 和 2.0 mmol/L 时Cr(III) 与Cr(VI) 的保留时间的变化,结果见表 1。甲醇含量的升高会增加流动相的极性,同样使得分析物的保留时间降低。当流动相 pH = 6.0、TBA 浓度为 2.0 mmol/L 时,考察了甲醇含量变化对Cr(III) 与Cr(VI) 的保留时间变化的影响(见表 2)。考虑到分离度及色谱分析时间 最终选择 2.0 mmol/L TBA、5% (v/v) 甲醇、pH = 6.0 作为最佳流动相条件。Cr(III) 与Cr(VI) 标准溶液的色谱分离图见图 1。可以看出,当流速为 1.0 mL/min 时,色谱分析时间不足 5 min。

表 1 TBA 浓度对Cr(III) 与Cr(VI) 出峰时间的影响 Table 1 Effects of TBA concentration on the retention times of Cr(III) and Cr(VI)

times of Ci (iii) and Ci (vi)				
Chromium	TBA/(mmol/L)			
speciation	0.5	1.0	2.0	
Cr(II I)	1.8	1.9	1.9	
Cr(VI)	2.9	3.1	3.4	

表 2 甲醇浓度对Cr(III) 与Cr(VI) 出峰时间的影响 Table 2 Effects of methanol content on the retention times of Cr(III) and Cr(VI)

Chromium	φ(Methanol) /%			
speciation	0	2	5	10
Cr(III)	2.2	2.1	1.9	1.8
Cr(VI)	3.6	3.5	3.4	3.2

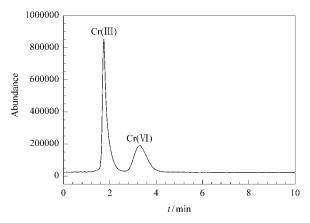


图 1 Cr(III) 与Cr(VI) 混合标准溶液的色谱图 Fig. 1 Chromatogram of a mixture of Cr(III) and Cr(VI) standards

2.3 线性方程及检出限

在 1.2.2 节所述实验条件下,将 $1.0 \sim 100$ $\mu g/L$ Cr(III) 与Cr(VI) 混合标准溶液依次进样,进样量为 100 μL 。以峰面积(Y) 为纵坐标、标准溶液的质量浓度(X , $\mu g/L$) 为横坐标绘制标准工作曲线,其线性方程、线性范围和相关系数见表 3。可以看出 Cr(III) 和Cr(VI) 的检出限($LOD_{*}S/N=3$) 分别为 0.3 和 0.5 $\mu g/L$ 。方法的定量限(LOQ) 以加标样品的色谱峰 S/N=10 确定 Cr(III) 和Cr(VI) 的定量限分别为 0.02 和 0.03 mg/kg。

表 3 Cr(III) 与Cr(VI) 的线性方程、相关系数、线性范围与检出限 Table 3 Regression equations , correlation coefficients , linear ranges and detection limits of Cr(III) and Cr(VI)

Chromium speciation	Regression equation	Correlation coefficient	Linear range/ (µg/L)	LOD/ (µg/L)
Cr(Ⅲ)	Y = 16124X + 92698	0.9994	1.0 - 100.0	0.3
Cr(VI)	Y = 63683X + 51724	0.9992	1.0 - 100.0	0.5

Y: peak area; X: mass concentration, µg/L.

2.4 加标回收试验和精密度

表 4 Cr(III) 与Cr(VI) 的回收率及其相对标准偏差(n = 6)
Table 4 Recoveries and their relative standard
deviations of Cr(III) and Cr(VI) (n = 6)

ry/ RSD/ % 89.8 1.81
**
9.8 1.81
.01.3 4.83
.03.2 5.48
98.2 2.96
06.8 5.62
03.6 5.08
2.5 3.24
02.1 4.44
03.8 4.57
02.2 3.52
04.7 4.31
07.2 2.95
1

2.5 样品分析

分别准确称取多种化妆品样品,按照1.2.1节和1.2.2节所述实验条件进行样品处理与分析测

min

定。总铬的测定参照标准方法^[17] ,结果见表 5。可以看出 .化妆品样品中总铬的含量均较低 ,没有超过食品中铬限量的卫生标准(\leq 2.0 mg/kg)。图 2 给出了实际样品的色谱图 ,实验所选取的化妆品样品中铬多以Cr(III) 形态存在。

表 5 实际样品的测定结果

Table 5 Analytical results of cosmetic samples

mg/kg

C1.	Total	Chromium speciation	
Sample	chromium	Cr(III)	Cr(VI)
Smoothing toner (柔肤水)	ND	ND	ND
Refreshing toner (爽肤水)	ND	ND	ND
Skin lotion (润肤液)	0.03	0.02	ND
Moisturizing lotion (保湿乳)	0.05	0.05	ND
Nutrient cream (面霜)	0.12	0.12	ND
Eye cream (眼霜)	0.21	0.20	ND
Foundation primer (隔离霜)	0.26	0.24	0.01
Pressed powder (粉饼)	0.32	0.19	0.12
Body wash (沐浴露)	0.09	0.09	ND

ND: not detected.

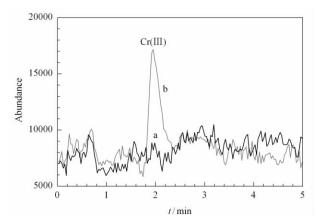


图 2 实际样品中铬形态的色谱图 g. 2 Chromatograms of chromium speciation in (a) smoothing toner and (b) skin

lotion samples

3 结论

本文采用 RP-IPC/ICP-MS 联用技术对化妆品中不同形态的铬进行了在线分离与测定。选用 0.5 mmol/L EDTA 作为提取溶剂 ,采用碰撞池技术消除 ICP-MS 测定时 40 Ar 12 C+、 35 Cl 16 O 1 H+ 对 52 Cr+的光谱学干扰 ,考察了 TBA 浓度、甲醇含量、pH 对 Cr(III) 和Cr(VI) 分离测定的影响,确定流动相最

佳组成为 2.0 mmol/L TBA-5% (v/v) 甲醇 ,pH = 6.0。当进样量为 $100~\mu$ L 时 ,Cr(Ⅲ) 和Cr(VI) 的检出限分别为 $0.3~\pi~0.5~\mu$ g/L ,实际样品加标回收率分别为 $85.1\%\sim103.8\%$ 和 $82.7\%\sim107.2\%$ 。方法的样品处理及分离分析过程没有发生 Cr(VI) 与 Cr(Ⅲ) 相互转化的现象 表明该方法可以用于化妆品中Cr(VI) 与Cr(Ⅲ) 的同时分析。

参考文献:

- [1] Cornelis R , Caruso J , Crews H , et al. Handbook of Elemental Speciation II: Species in the Environment , Food , Medicine and Occupational Health. Chichester: Wiley , 2005
- [2] Yaman M. J Anal Chem , 2003 , 58(5): 456
- [3] Motomizu S , Jitmanee K , Oshima M. Anal Chim Acta , 2003 , 499 (1/2): 149
- [4] Corti H R , Gómez D G , de Blanco E K , et al. J Nucl Mater , 1996 ,229(1/3): 132
- [5] Xu W J , Han D , Yuan S Y , et al. Chinese Journal of Chromatography (徐稳杰,韩冬,袁士义,等. 色谱) , 2001 , 19(4): 350
- [6] Yeh C F , Jiang S J. J Chromatogr A , 2004 , 1029(1/2): 255
- [7] Chen S T , Yan Y S , Xu W Z , et al. Spectroscopy and Spectral Analysis (陈松涛 , 闫永胜 , 徐婉珍 , 等. 光谱学与光谱分析) , 2007 , 27(5): 1018
- [8] Wang C, Xie WB, Liu J, et al. Chinese Journal of Analytical Chemistry (王畅,谢文兵,刘杰,等. 分析化学),2007,35 (3):451
- [9] Zhu X S , Jiang Z C , Hu B , et al. Chinese Journal of Analytical Chemistry (朱霞石 , 江祖成 , 胡斌 , 等. 分析化学) , 2003 , 31 (11): 1312
- [10] Byrdy F A , Olson L K , Vela N P , et al. J Chromatogr A ,1995 , 712(2): 311
- [11] Zhang N , Suleiman J S , He M , et al. Talanta , 2008 , 75(2): 526
- [12] Li B, Yang H X. Principles and Applications of Inductively Coupled Plasma Mass Spectrometry. Beijing: Geological Publishing House (李冰,杨红霞. 电感耦合等离子体质谱原理和应用. 北京: 地质出版社),2005
- [13] Qi J Y , Li X P , Chen Y H , et al. Chinese Journal of Analysis Laboratory (齐剑英 , 李祥平 , 陈永亨 , 等. 分析试验室) , 2008 , 27(5): 30
- [14] Scindia Y M , Pandey A K , Reddy A V R , et al. Anal Chem , 2002 ,74(16): 4204
- [15] Cathum S , Brown C E , Wong W. Anal Bioanal Chem , 2002 , 373(1/2): 103
- [16] Sahayam A C. Anal Bioanal Chem , 2002 , 372 (7/8): 840
- [17] SN/T 2288-2009