有机肥对土壤-小麦系统汞污染影响的研究

刘文拔,张琴,张崇玉

(贵州大学生命科学学院,贵州 贵阳 550025)

摘 要:以冬小麦为试验对象,采用盆栽试验,研究了不同有机肥、不同外源汞施用量对土壤和小麦的汞污染、迁移和累积的影响。结果表明,随着汞施入量的增加,土壤全汞和有效汞含量逐渐增加,使小麦吸收汞增加。在小麦整个生育期,土壤有效汞与小麦根、茎叶、籽粒吸收的汞之间呈极显著正相关性。随着有机肥施用量的增加,土壤有效态汞含量逐渐减少,继而降低小麦对汞的吸收。相关分析表明,有机肥施用量与土壤有效汞呈显著负相关。有机肥对土壤有效汞的抑制效果以低汞高有机肥处理效果最为显著,苗期达到 58.94% ,收获期达到 62.29%。有机肥施用量与苗期低汞处理下小麦茎叶和根部汞含量呈显著负相关,与收获期的所有汞处理下小麦茎叶、根部和籽粒汞含量呈极显著或显著负相关,在低汞处理,施用有机肥完全抑制了土壤中汞向籽粒中转移。所有处理小麦各器官汞含量的分布规律为根>茎叶>籽粒。

关键词:有机肥;土壤;全汞;有效汞

中图分类号:X171.5 文献标志码:A 文章编号:1672-2043(2009)05-0890-07

Effects of Applying Organic Fertilizer and Mercury Added on Hg Pollution in Soils-Winter Wheat System

LIU Wen-ba, ZHANG Qin, ZHANG Chong-yu

(College of Life Sciences, Guizhou University, Guiyang 550025, China)

Abstract Effects of applying organic fertilizer and mercury added on Hg pollution in soils - winter wheat system was conducted by pot experiment, taking winter wheat as experimental object. In pot experiment, organic fertilizer treatment was designed to four levels F1 (0.15 kg·pot⁻¹), F2(0.3 kg·pot⁻¹), F3(0.5 kg·pot⁻¹), F4(0.8 kg·pot⁻¹), applied Hg was designed to four levels :Hg1(0.1 mg·kg⁻¹), Hg2(0.3 mg·kg⁻¹), Hg3 (0.6 mg·kg⁻¹), Hg4 (1.5 mg·kg⁻¹). Full randomic test program with two factors was used in this experiment. The analytic result indicated that the contents of total Hg and available Hg in soils increased with increasing amount of Hg added, so that the content of Hg in winter wheat organs also increased. The relationships between contents of available Hg in soils and contents of Hg in roots, stems/leaves in seeding period were positive correlated significantly with the correlated coefficient of 0.923 0**(n=25) and 0.920 6**(n=25). The relationships between contents of available Hg in soils and contents of Hg in roots, stems/leaves and seeds in harvesting period were positive correlated significantly with the correlated coefficient of 0.964 5** (n=25), 0.918 2** (n=25), 0.918 80** (n=16), respectively. The contents of available Hg in soils were affected obviously by amount of applied organic fertilizer which absorded and restained available Hg in soils from seeding period to havesting period. At same Hg level, the contents of available Hg in soils decreased with incresing of applied organic fertilizer. The correlated analytic results showed that the relationships between contents of available Hg in soils and amounts of applied organic fertilizer not only were negtive correlated in seeding period but also in havesting period at four Hg levels (Hgl, Hg2, Hg3, Hg4), the correlated coefficients were -0.945 1*, -0.938 7*, -0.930 5*, -0.935 4* in seeding period and -0.913 7*, -0.913 5*, -0.915 0*, -0.917 3* in havesting period. The treatment of higher organic fertilizer with lower Hg is of best restraining effect, in seeding period reaching to 58.94%, in harvesting period to 62.29%. Applying organic fertilizer affected directly content of available Hg in soils and winter wheat to absorb Hg in soils. Relationships between amount of applied organic fertilizer and contents of Hg in wheat root and stem/leaf were negative correlated significantly under lower Hg levels (Hg1, Hg2) in seeding period, but were not under higher Hg levels (Hg3, Hg4). Under all of Hg levels in havesting period, the relationships between amount of applied organic fertilizer and contents of Hg in wheat root, stem/leaf and seed were negative correlated

收稿日期 2008-07-06

基金项目 贵州茅台科技联合基金项目(黔科合茅科联字[2008]7001)

作者简介:刘文拔(1981—) 男 硕士研究生 主要从事环境治理方面的研究工作。

通讯作者 张崇玉 E-mail zhcy60@hotmail.com

significantly, specially at lowest Hg level. Applying organic fertilizer almost eliminated Hg from soil to wheat seed. The distribution regular of contents of Hg in wheat organs was that root>stem/leaf>seed.

Keywords torganic fertilizer; soil; total mercury; available mercury

重金属汞是造成环境污染的主要元素之一。自工 业革命以来, 汞对环境的污染与日俱增, 汞可由污染 的土壤转入食物链进而影响人类的健康。因而汞污 染的治理和修复已成为人们研究的热点问题。土壤汞 污染治理与修复技术包括客土法、生物修复法、有机 物料法、化学物理法等[2-4],最近也有人采用 TC 型钛 系催化剂的方法来降低可溶性汞质。有机质对土壤中 重金属的影响众说纷纭,有些研究指出,有机物料的 加入降低了土壤重金属的活性區,而另一些报告的结 果则相反鬥。我们在对贵州几种典型土壤剖面汞的分 异规律研究时发现 土壤剖面中的汞含量与土壤有机 质之间有良好的正相关(另刊发表)。是否施用有机肥 可降低土壤中重金属汞的有效性 施用多少有机肥可 消除或降低小麦汞的生物有效性 这些问题目前报道 甚少。为此 我们以小麦为研究对象 通过施入不同量 的外源汞,探索了施用有机肥对重金属汞在土壤-小 麦系统的污染、迁移和累积的影响。

1 材料与方法

1.1 盆栽样品的采集与处理

试验所用有机肥料为商品有机肥 ,盆栽供试土壤 为表潜黄壤 ,采自贵州大学松林坡 ,土重 7.5 kg·盆⁻¹。2006 年 10 月 18 日播种 ,供试作物为冬小麦(川农四号) ,每盆播种 30 粒 ,出苗一周后保留 20 株。植物采两次样(营养生长期采一次样 ,成熟后再采一次样) ,地上部分和地下部分采集 , 采集后烘干粉碎备用 ,盆内土壤风干后研磨过 20 目、100 目筛备用。供试土壤和有机肥的基本性质见表 1。

有机肥处理设 4 个水平:F1(0.15 kg·盆⁻¹)、F2(0.3 kg·盆⁻¹)、F3(0.5 kg·盆⁻¹)、F4(0.8 kg·盆⁻¹)、均作为基肥施入土壤。

外源重金属 Hg 的投入是将 $HgCl_2$ 溶于水后按 Hg^{2+} 含量水平分别施入土壤。 Hg^{2+} 含量设 4 个水平: $Hg1(0.1~mg\cdot kg^{-1})$ 、 $Hg2(0.3~mg\cdot kg^{-1})$ 、 $Hg3(0.6~mg\cdot kg^{-1})$ 、

Hg4(1.5 mg·kg⁻¹)_o

试验采用二因素完全随机处理方案(见表2)。

表 2 处理组合

Table 2 Treatment combination

序号	处理	序号	处理	序号	处理	序号	处理	
No.	treatment	No.	treatment	No.	treatment	No.	treatment	
1	F1Hg1	7	F2Hg3	13	F4Hg1	19	F3Hg0	
2	F1Hg2	8	F2Hg4	14	F4Hg2	20	F4Hg0	
3	F1Hg3	9	F3Hg1	15	F4Hg3	21	F0Hg1	
4	F1Hg4	10	F3Hg2	16	F4Hg4	22	F0Hg2	
5	F2Hg1	11	F3Hg3	17	F1Hg0	23	F0Hg3	
6	F2Hg2	12	F3Hg4	18	F2Hg0	24	F0Hg4	

注:以上1到16处理为二因素完全随机处理。在此基础上另外增设4个只施有机肥而不施重金属的处理(16~20)、4个只施重金属而不施有机肥的处理(21~24)以完善处理方案。各处理重复3次再加上空白处理共75个处理。日常管理措施保持相对一致。

1.2 分析方法

pH 值:采用电位法(水土比 2.5:1) ;有机质:重铬酸钾容量法;全氮:用凯氏定氮法;全磷:钼锑抗比色法;全钾:氢氟酸消解法;土壤中有效态汞的测定:0.1 mol·L⁻¹ 的盐酸在恒温振荡器上振荡浸提,然后用原子荧光光度仪测定;土壤中全汞:用(1+1)王水在沸水浴热消解后,用原子荧光光度仪测定;植株样中汞的测定,硝酸水浴消解–原子荧光光度仪测定^[3]。

2 结果与讨论

2.1 小麦苗期施用有机肥对土壤和小麦各器官汞含量的影响

从表 3 可看出,在不施用有机肥的情况下,土壤中的全量汞和有效态汞均随着外源汞施入量的增加而增加。在未施用外源汞的条件下,施用有机肥明显降低了土壤中有效态汞的含量,这种现象与相关的资料报道一致^[3]。与对照比较,无论施用有机肥多少,土壤中的全汞、有效态汞含量均随着外源汞施入量的增加而增加。在同一汞水平条件下,随着有机肥的

表 1 盆栽供试黄壤和有机肥基本性质

Table 1 The basic character of experimental soil and organic fertilizer

供试土壤 Soil name	pН	有机质 OM./g·kg ⁻¹	全氮 TN/%	全磷 TP/%	全钾 TK/%	全汞 THg/μg·kg ⁻¹	有效汞 Avai.Hg/μg·kg ⁻¹
盆栽土样 soil	6.91	9.143	0.088	0.134	0.645	132.51	55.41
有机肥 OM.	_	754.5	2.99	0.66	1.04	33.01	_

表 3 小麦苗期施用有机肥对土壤和小麦各器官汞 含量的影响(μg·kg-¹)

Table 3 The effect of applying organic fertilizer on the contents of Hg in wheat organs and soil in seeding period(µg·kg⁻¹)

Hg 含量 Content of Hg		有机肥处理 treatments of applying organic fertilizer					
		F0	F1	F2	F3	F4	
土壤全量 Hg	Hg0	132.51h	136.77h	134.59h	129.43h	130.73h	
total Hg in soil	Hg1	221.15g	226.62g	224.92g	219.63g	228.16f	
	Hg2	414.42f	$424.87\mathrm{e}$	$419.76\mathrm{ef}$	$414.55 {\rm fe}$	419.75ef	
	Hg3	$719.51\mathrm{cd}$	717.23d	$723.54\mathrm{cd}$	$726.12\mathrm{e}$	$722.24\mathrm{cd}$	
	Hg4	1 626.3a	1 623.41a	1 611.67b	1 628.47a	1 630.42a	
土壤有效态 Hg	Hg0	55.41q	38.14s	33.76t	19.52u	18.61u	
available	Hg1	93.02m	77.43p	61.72q	40.51r	38.19s	
Hg in soil	Hg2	178.46i	152.96jk	116.86l	86.54n	81.34o	
	Hg3	316.47f	272.99g	209.70h	155.62j	151.62k	
	Hg4	753.59a	644.94b	512.88c	381.24d	369.54e	
小麦根部 Hg	Hg0	13.72p	13.00q	11.14r	7.90u	9.04t	
Hg in roots of	Hg1	18.19m	17.44n	14.30o	7.49v	8.18u	
wheat	Hg2	22.82j	22.71j	18.80l	10.14s	11.04t	
	Hg3	28.26f	27.84g	26.18h	22.34k	23.70i	
	Hg4	44.21a	43.58b	42.32c	40.10e	41.78d	
小麦茎叶 Hg	Hg0	11.42q	10.80r	8.53t	5.67x	6.40v	
Hg in stem/leaf	Hg1	15.56n	15.20o	12.21p	6.11w	7.06u	
of wheat	Hg2	20.02k	19.721	16.28m	8.35t	9.44s	
	Hg3	26.16f	25.27g	24.02h	21.32j	22.48i	
	Hg4	41.24a	40.39b	39.09c	37.04d	38.10e	

注 表中有不同字母者表示差异显著(P=0.05) 下同。

Note Data in the table followed with different letters are significantly different at P=0.05, the same below.

增加 土壤中全量汞几乎没有发生变化 而土壤中的 有效态汞则随着有机肥施用量的增加而减少。经显 著性检验 在所有汞水平 不同有机肥处理之间土壤 全量汞无显著性差异,而土壤有效态汞差异显著 均 达到显著水平(0.05)。在 F1 水平 施用有机肥降低土 壤有效态 Hg 为 13.74%~16.76% ,平均为 14.80% ,其 中在低汞条件下效果最好;在 F2 水平,施用有机肥 降低土壤有效态 Hg 为 31.19%~34.52%, 平均为 33.28% :在 F3 水平 施用有机肥降低土壤有效态 Hg 为 49.41%~56.45% ,平均为 52.05% ,其中在低汞条件 下效果最好;在 F4 水平,施用有机肥降低土壤有效 态 Hg 为50.96%~58.94% ,平均为 54.10%。总体上看, 施用有机肥越多,降低土壤中的有效态越明显,然 而,在不同施入汞水平其效果不同,其中以低汞高有 机肥效果最好 ,如 F4Hg1 降低土壤有效汞最好 ,达到 58.94%,而高汞低有机肥处理效果最差。出现这种现

象的原因为在外源低汞水平时,有机肥的施用几乎吸附或者络合了施入土壤中的汞,使其随着有机肥施用量的增加土壤中的有效态汞逐渐减少,它们之间极显著或显著相关。但是在外源高汞水平(Hg4)时,有机肥的施用只能部分吸附或者络合了施入土壤中的汞,而一部分汞没有被吸附和络合,从而使土壤中存在大量游离态的汞,这部分汞为作物吸收创造了条件。对FHg 各处理有机肥施用量与土壤中有效态汞含量进行相关分析发现,在 Hg1 水平,有机肥施用量与土壤有效 Hg 含量之间达到了极显著负相关(r1=-0.945 1**),在 Hg2、Hg3、Hg4 水平,有机肥施用量与土壤有效 Hg 含量之间呈显著负相关 相关系数分别为 r2=-0.938 7*、r3=-0.930 5* 和 r4=-0.935 4*(见图1)。由此可见,施用有机肥可降低土壤中有效态汞。

与不施有机肥相比较 施用有机肥对降低小麦吸收土壤中汞的效应与施入外源汞的量有关 在低汞条件下 ,可大幅度降低小麦对汞的吸收 ,而随着外源汞施入量的增加 对降低小麦吸收汞的幅度减小。在有机肥 F3 水平和低汞处理(Hg1 和 Hg2),平均降低小麦茎叶和根部吸收分别为 59.44%和 57.19%,但在高汞处理(Hg3 和 Hg4),有机肥 F3 水平平均降低小麦茎叶和根部吸收分别为 14.34%和 15.15%。显然,在低汞情况下 施用有机肥可显著降低小麦对汞的吸收 在所有有机肥施用量中 F3 表现出了降低汞吸收的最佳效果。

小麦吸收汞的多少很大程度上与土壤中有效态 汞含量有关。经相关分析,所有处理土壤中有效态汞含量与小麦茎叶和根部汞含量达到极显著相关性,相关系数分别为 r=0.923 0^{**}、r=0.920 6^{**}(见图 2)。由此可见,有机肥的施用影响了土壤有效态汞含量,进而影响作物对土壤中汞的吸收。相关分析表明,有机肥施用量与小麦各器官吸收的汞之间有一定的相关关系,同时

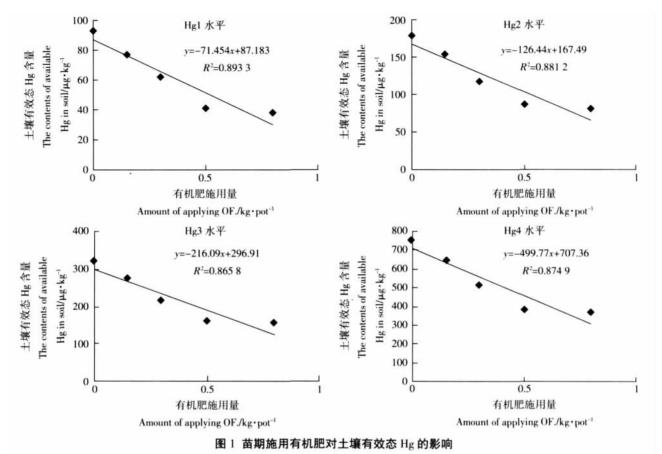


Figure 1 The effect of applying organic fertilizer on available Hg in soils

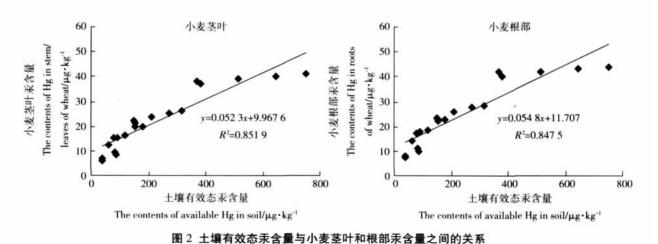


Figure 2 The relationship of the contents of available Hg in soils with the contents of stem/leaves roots of wheat

这种相关关系又因汞的施入量不同而发生变化。在Hg1、Hg2 水平,有机肥施用量与茎叶、根部汞含量之间达到显著负相关,与茎叶汞含量的相关系数分别为-0.900 9、-0.901 7,与根部汞含量的相关系数分别为-0.914 6、-0.905 9 在 Hg3、Hg4 水平,有机肥施用量与茎叶、根部汞含量之间呈负相关,但相关不显著。与茎叶汞含量的相关系数分别为-0.848 6、-0.835 0;与根

部汞含量的相关系数分别为-0.858 0、-0.741 4。从表 3 中也可看出 在同一 FHg 处理 小麦不同器官对汞的 吸收程度不同 均呈现根部汞>茎叶汞的规律。

2.2 收获期施用有机肥对土壤和小麦各器官汞含量的影响

与苗期土壤有效态汞相比较,收获期25个处理 土壤中的有效态汞含量均降低(见表4),出现这种现

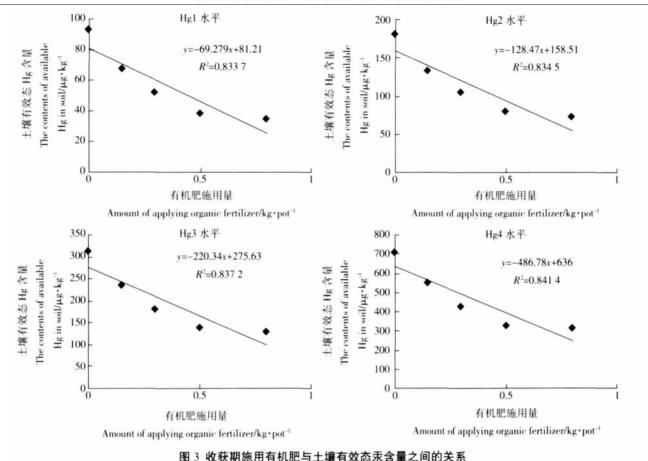


Figure 3 The relationship bwtten amount of applying organic fertilizer and the contents of available Hg in soils in harvesting period

象可能有两个原因:一是小麦到收获期时,小麦经过了对土壤中有效态汞的漫长吸收,使土壤中的汞逐步转移到小麦体内,导致土壤中有效态的减少;二是施入土壤中的有机肥经过微生物长期分解后,使土壤吸附的表面积增大,增强了对有效态汞的吸附,从而减低了土壤中的有效态汞含量。

从同一 Hg 水平不同有机肥处理的分析结果看,随着有机肥的增加土壤中的有效态汞含量逐渐降低,其降低的幅度又因外源施入量的不同而不同,在Hg1 水平,从 F1 到 F4 降低的幅度在 27.55%~62.29%范围 在 Hg2 水平 降低的幅度在 26.56%~59.66%范围,在 Hg3 水平,降低的幅度在 23.47%~58.25%范围 在 Hg4 水平,降低的幅度在 26.56%~59.66%范围。从有机肥不同施用量对降低土壤有效汞的效果看 F1 水平平均降低 24.85% F2 水平平均降低41.77% F3 水平平均降低55.84% F4 水平平均降低59.01%,与苗期相比较,仍然是低汞高有机肥处理效果最佳,不同的是到收获期有机肥降低土壤有效汞的幅度大于苗期。经相关分析,在不同外源汞施入(Hg1、Hg2、Hg3、

Hg4)水平,有机肥与土壤有效汞含量之间均达到了显著负相关水平(相关系数分别为-0.9137*、-0.9135*、-0.9150*、-0.9173*)(见图3)。说明施用有机肥在小麦收获期仍然具有降低土壤有效汞的能力。

小麦到达收获期时 小麦生长发育除了茎叶和根以外,已经发育出了籽粒,与苗期比较,使小麦生物量有了大幅度的提高。应该说,在没有施用有机肥的情况下,随着小麦生物量的增加,小麦植株中的汞含量由于稀释效应而降低。但是从表 4 结果看,小麦茎叶和根部汞含量反而高于苗期,同时还有一部分汞转移到小麦籽粒中。这是由于小麦在不断生长过程中,土壤中的汞不断向小麦中迁移和积累,其吸收和积累的汞量远大于小麦生物量增加所产生对汞的稀释效应,表现出了高于苗期茎叶、根部汞含量的现象。小麦从土壤吸收汞的机理主要为被动吸收,其迁移方式既存在质流扩散,也可能存在截获。小麦各器官吸收的汞与土壤中的有效汞有关。经相关分析,土壤中有效态汞含量与小麦跟部、茎叶的相关系数分别为 0.964 5**和 0.918 2** 二者之间呈现极显著正相关关系。由于

表 4 收获期施用有机肥对土壤和小麦各器官汞 含量的影响(μg·kg⁻¹)

Table 4 The effect of applying organic fertilizer on the contents of Hg in organs of wheat and soil in harvesting period(µg·kg⁻¹)

	有机肥处理 treaments of applying organic fertilizer					
content of Hg		F0	F1	F2	F3	F4
土壤全量Hg	Hg0	125.32h	128.43h	124.17h	127.26h	128.55h
total Hg in soil	Hg1	225.11f	223.54fg	223.37fg	218.32fg	215.64g
	Hg2	$426.47\mathrm{d}$	$413.84\mathrm{e}$	$418.18 \mathrm{de}$	$419.81\mathrm{de}$	$422.11\mathrm{de}$
	Hg3	$719.83\mathrm{c}$	$722.23\mathrm{e}$	$717.76\mathrm{c}$	$717.37\mathrm{e}$	$721.52\mathrm{e}$
	Hg4	1623.32a	$1613.66\mathrm{b}$	$1620.54\mathrm{ab}$	1621.93ab	1624.32a
土壤有效态Hg	Hg0	49.77q	34.61s	25.06t	18.26u	17.68u
available Hg in soil	Hg1	92.69m	67.15p	$51.89\mathrm{q}$	38.13r	$34.95 \mathrm{s}$
III SOII	Hg2	179.92h	132.14j	104.121	78.98n	72.57o
	Hg3	307.92f	235.66g	179.71h	138.69i	128.56k
	Hg4	706.87a	$552.69\mathrm{b}$	$429.30\mathrm{c}$	$327.07\mathrm{d}$	$312.23\mathrm{e}$
小麦根部Hg	Hg0	20.72q	19.00r	17.62s	12.26t	11.54u
Hg in roots of wheat	Hg1	28.96m	25.41p	21.11q	18.69r	17.63s
wiicat	Hg2	35.14h	32.55k	29.411	28.39n	26.85o
	Hg3	41.68f	38.25g	35.62h	33.51j	33.14j
	Hg4	81.20a	75.12b	$69.23\mathrm{c}$	$62.53\mathrm{d}$	61.79e
小麦茎叶Hg	Hg0	17.21q	15.22r	13.26s	9.27u	7.46v
Hg in stem/ leaf of wheat	Hg1	22.21m	20.54n	18.54o	13.14s	11.25t
rear or wheat	Hg2	29.14i	27.56j	24.381	20.26n	17.74p
	Hg3	39.28f	35.12g	33.52h	27.24k	24.261
	Hg4	54.23a	50.38b	$46.39\mathrm{c}$	$41.13\mathrm{d}$	39.94e
小麦籽粒Hg	Hg0	0q	0q	0q	0q	0q
Hg in seed of wheat	Hg1	2.14n	0q	0q	0q	0q
wiicat	Hg2	5.19h	4.23j	3.12m	1.62o	1.25p
	Hg3	$7.54 \mathrm{d}$	6.63e	5.45f	3.81k	3.541
	Hg4	10.07a	9.54b	8.11c	5.24g	5.10h

部分籽粒中的汞未检出,无法进行对所有数据统计分析,但对检测到的 16 个数据进行统计分析,土壤中有效态汞含量与籽粒中的汞含量呈现极显著正相关关系(r=0.918 8**)。

到达收获期时 施用有机肥是否具有降低小麦对土壤中汞的吸收呢?从分析结果可看出 在试验的 25个处理中,小麦根部、茎叶、籽粒中的汞含量均呈现不施有机肥大于施用有机肥的规律,在同一 Hg 水平 除在 Hg1 水平籽粒没有检测到汞以外,其余处理均随着有机肥施用量的增加,小麦各器官汞含量逐渐减少。相关分析表明,从 Hg1~Hg4 水平,有机肥施用量与茎叶汞含量呈极显著负相关(-0.975 2**、-0.984 6**、-0.981 5**、-0.956 4**)、与根部汞含量呈显著负相关(-0.933 1*、-0.943 4*、-0.915 8*、-0.937 9*),而对籽粒吸

收汞的影响随外源汞施入量的不同变化较大,在 Hg1 水平 施用有机肥完全抑制了汞向籽粒中迁移 使得籽粒汞未检出 在 Hg2 水平 有机肥施用量与籽粒汞含量呈极显著负相关($-0.960~7^{**}$),在 Hg3、Hg4 水平 ,与籽粒汞含量呈显著负相关($-0.955~0^{**}$ 、 $-0.942~4^{*}$)。

与不施有机肥比较,有机肥不同施用量对降低小麦吸收土壤汞的能力不同(表 5)。在同一 Hg 水平 除低汞处理(Hg1)以外,随着有机肥施用量的增加,抑制小麦根部、茎叶和籽粒吸收汞的程度逐渐增大;不同 Hg 处理比较,外源汞施入量越小,有机肥对小麦吸收汞的抑制作用越明显;小麦不同器官比较,施用有机肥抑制籽粒吸收汞的效果最为明显,茎叶次之,根部最小,尤其在低汞情况下,施用有机肥几乎完全抑制了汞向籽粒中转移,这对粮食安全生产具有现实的重要意义。土壤中汞向小麦各器官的迁移规律表现为根部>茎叶>籽粒。

表 5 有机肥对降低小麦吸收汞的范围

Table 5 Organic fertilizer reducing range of Hg absorbed by wheat

汞水平	有机肥水平	小麦各器官汞降低的幅度/% Reduced range of Hg in wheat organs				
Hg level	organic fertilizer level	根部 root	茎叶 stem/leaf	籽粒 seed		
Hg1	F1	12.26	7.52	100		
	F2	27.10	16.52	100		
	F3	35.46	40.84	100		
	F4	39.12	49.35	100		
Hg2	F1	7.37	5.42	18.50		
	F2	16.31	16.33	39.88		
	F3	19.21	30.47	68.79		
	F4	23.59	39.12	75.92		
$_{\rm Hg3}$	F1	8.23	10.59	12.07		
	F2	14.54	14.66	27.72		
	F3	19.60	30.65	49.47		
	F4	20.49	38.24	53.05		
Hg4	F1	7.49	7.01	1.32		
	F2	14.74	14.46	19.46		
	F3	22.99	24.16	47.35		
	F4	23.90	26.35	49.35		

3 结论

(1)随着外源汞施入量的增加,土壤全量汞、有效态汞含量增加,导致小麦吸收汞增加;在苗期,土壤有效态汞含量与小麦根部、茎叶汞含量呈显著正相关关系,相关系数分别为 0.923 0** (n=25)、0.920 6** (n=

- (2)土壤有效态汞含量的高低明显地受有机肥施用量的影响。从小麦苗期到收获期,施用有机肥均对土样中有效态汞有一定的吸附抑制作用,在同一汞水平,随着有机肥施用量的增加,土壤中有效态含量逐渐减少。经相关分析,4个施入 Hg 水平(Hg1、Hg2、Hg3、Hg4)下有机肥施用量与土壤有效态汞含量之间的相关系数在苗期分别为-0.945 1*、-0.938 7*、-0.930 5*、-0.935 4*,在收获期分别为-0.913 7*、-0.913 5*、-0.915 0*、-0.917 3* 均呈显著负相关。土壤有机肥对土壤有效汞的抑制效果以低汞高有机肥处理效果最为显著,苗期达到 58.94%,收获期达到 62.29%,而高汞低有机肥处理效果最差,苗期达到50.96%,收获期达到 55.83%。
- (3) 有机肥的施用直接影响土壤有效态汞的含量 继而影响小麦对土壤汞的吸收。相关分析结果表明 Æ 苗期 Hg1、Hg2 水平 ,有机肥施用量与茎叶、根部汞含量之间达到显著负相关水平 ,在 Hg3、Hg4 水平 ,有机肥施用量与茎叶、根部汞含量之间呈负相关 ,但相关不显著 ;在收获期 ,从 Hg1~Hg4 水平 ,有机肥施用量与茎叶汞含量呈极显著负相关 ,与根部汞含量呈显著负相关 ,而对籽粒吸收汞的影响随外源汞施入量的不同变化较大 ,在 Hg1 水平 ,施用有机肥完全抑制了汞向籽粒中迁移 ,使得籽粒汞未检出 ,在 Hg2 水平 ,有机肥施用量与籽粒汞含量呈极显著负相关 ,在Hg3、Hg4 水平 ,与籽粒汞含量呈显著负相关 ,在Hg3、Hg4 水平 ,与籽粒汞含量呈显著负相关(-0.955 0*、-0.942 4*)。
 - (4)在苗期小麦各器官吸收汞的规律为根部>茎

叶 在苗期小麦各器官吸收汞的规律为根部>茎叶>籽 粒。

参考文献:

- [1] 鲁洪娟, 倪吾钟, 叶正钱, 等. 土壤中汞的存在形态及过量汞对生物的不良影响[J]. 土壤通报, 2007, 38(3) 597-600.
 - LU Hong-juan, NI Wu-zhong, YE Zheng-qian, et al. Mercury form in soils and effect of excessive mercury on plants and human beings [J]. *Chinese Journal of Soil Science*, 2007, 38(3) 597–600.
- [2] 张书海, 沈跃文. 污灌区重金属污染对土壤的危害[J]. 环境监测管理与技术, 2000, 12(2) 22-24.
 - ZHANG Shu-hai, SHEN Yue-wen. Danger to soil by heavy metals pollution from polluted irrigation[J]. *Environmental Monitoring Management and Technology*, 2000, 12(2) 22–24.
- [3] 陈怀满, 郑春荣, 涂 从, 等. 中国土壤重金属污染现状与防治对策[J]. AMBIO:人类环境杂志, 1999, 28(2):130-134.

 CHEN Huai-man, ZHENG Chun-rong, TU Cong, et al. Heavy metal pollution in soils in China: status and countermeasures[J]. Journal of Human Beings Environment, 1999, 28(2):130-134.
- [4] 王起超, 刘汝海, 吕宪国, 等. 湿地汞环境过程研究进展[J]. 地球科学进展, 2002, 17(6) \$81–885.
 WANG Qi-chao, LIU Ru-hai, LV Xian-guo, et al. Progress of study on

the mercury process in the wetland environment[J]. Advance in Earth Sciences, 2002, 17(6) \$81-885.

- [5] 叶玉汉, 胡富陶, 屠恒炜. 可溶态汞治理新方法的研究[J]. 环境科学, 1995, 16(3) 35-38.
 - YE Yu-han, HU Fu-tao, TU Heng-wei. Study on new method of Harness of dissolved mercury[J]. Environment Sciences, 1995, 16(3) 35–38.
- [6] Huang Y X, Wang M L, Lin S H, et al. The effect of the humius, sulfur, chloraresodium on absorption and accumulation of rice Hg[J]. Acta Ecology Science, 1982(2):1-9.
- [7] 张秋芳, 王 果, 杨佩艺, 等. 有机物料对土壤镉形态及其生物有效性的影响[J]. 应用生态学报, 2002, 13(2):1659-1662.

 ZHANG Qiu-fang, WANG Guo, YAAG Pei-yi, et al. Effects of manure on the conformation and biological availability of soil Cd[J]. Chinese

Journal of Applyied Ecology, 2002, 13(2):1659-1662.