水葫芦高温堆肥过程中氮素损失及控制技术研究

王海候¹³,沈明星¹³,常志州^{23*},陆长婴¹³,陈凤生¹³,施林林¹³,宋浩¹³

(1.江苏太湖地区农业科学研究所,江苏 苏州 215155;2.江苏省农业科学院资源与环境研究所,南京 210014;3.农业部苏州水稻 土生态环境重点野外科学观测试验站,江苏 苏州 215155)

摘 要:为减少水葫芦高温堆肥过程中氮素损失,采用静态高温好氧堆肥的方法,分析了水葫芦堆肥过程中氮素转化规律,研究了添加化学保氮剂对减少堆肥中氮素损失的效果。结果表明,水葫芦堆肥过程中总氮及有机氮含量均呈上升趋势,按态氮与硝态氮含量均呈先上升后下降的趋势,总氮损失率为12.84%,水葫芦堆肥过程中氮素损失途径主要为以 NH₃、N₂O 等气态形式逸出,其中,堆肥前 10 d 是 NH₃ 挥发的高峰期,堆制后第 5~9 d 的 N₂O 排放速率最大,添加化学保氮剂对水葫芦堆肥过程第 4~10 d 的氨挥发具有显著的抑制作用,NH₃ 挥发量可减少 23.82%,另外,化学保氮剂处理降低了堆制后第 0~5 d 的 N₂O 排放速率,增加了第 9 d 以后的 N₂O 排放速率,使用化学保氮剂原位控制水葫芦堆肥过程的氮素损失具有较好的效果,与常规对照相比,化学保氮剂对水葫芦堆体的保氮效率为 32.70%。

关键词 水葫芦 高温堆肥 氮素损失 保氮剂

中图分类号 S141.4 文献标志码 :A 文章编号 :1672-2043(2011)06-1214-07

Nitrogen Loss and Technique for Nitrogen Conservation in High Temperature Composting of Hyacinth

WANG Hai-hou^{1,3}, SHEN Ming-xing^{1,3}, CHANG Zhi-zhou^{2,3*}, LU Chang-ying^{1,3}, CHEN Feng-sheng^{1,3}, SHI Lin-lin^{1,3}, SONG Hao^{1,3} (1. Taihu Research Institute of Agricultural Sciences, Suzhou 215155, China; 2. Institute of Agricultural Resources and Environments, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; 3. Key Scientific Observation & Experiment Station Paddy Field Eco-environment, Suzhou, Ministry of Agriculture, Suzhou 215155, China)

Abstract (This study aimed at investigating the mechanism of nitrogen loss and effect of ammonia–fixing synergist on reducing nitrogen loss in high temperature composting of hyacinth. An aerated static pile compost system was employed to compost the hyacinth. The results showed that both of the total N and org–N increased during composting process , while the NH₄^{*}–N and NO₃^{*}–N increased during 0~3 d of composting , then decreased. At the end of composting total N loss accounted for 12.84%. Main ways of nitrogen loss during the composting process were volatilization in the form of ammonia(NH₃) and nitrous oxide(N₂O). The maximum release rate of NH₃ was observed during the first 10 d of composting , while the maximum N₂O emission rate was observed at 5~9 d. The main role of ammonia–fixing synergist in reducing nitrogen loss was the reduction of NH₃ volatilization during 4~10 d and the amount of NH₃ volatilization decreased by 23.80%. When treated with ammonia–fixing synergist, the N₂O emission rate increased during the first 5 d , while decreased after 9 d of composting. The effect of adding ammonia–fixing synergist in nitrogen conservation was better than the control group , and the nitrogen conservation ratio was 32.70%. **Keywords** hyacinth; high temperature composting; nitrogen loss; ammonia–fixing synergist

水葫芦具有极强的富集水体氮磷养分的能力,可 在短期内迅速将氮磷养分吸收到体内,从而达到净化 水体的目的,国内外已有许多应用水葫芦控制性种养

收稿日期 2010-12-11

技术去除水体富营养化的研究报道^[1-3],但是,在这一 技术体系中,水葫芦的后续利用是最关键的环节,决 定着这一技术的应用前景。由于水葫芦植株富含氮磷 钾养分,是良好的有机物料,采用高温好氧堆肥方法, 可实现水葫芦的无害化、减量化、资源化利用。然而, 高温好氧堆肥过程中氮素容易损失,其损失途径主要 是铵态氮转化为氨气挥发,少量随水溶液流失,以及 经硝化或反硝化作用引起的 NO、排放,这不仅降低了 堆肥的养分,而且带来了恶臭和酸雨等环境问题。因

基金项目 科技部支撑计划(2009BAC63B02); 江苏省农业科技自主创 新资金项目 (CX (10)228); 苏州市应用基础项目 (SYN201010) 苏州市社会发展项目(SS201025) 作者简介: 汪海候(1979-) 男, 江苏启东人,硕士,助研,主要从事农 业资源与环境研究。E-mail: wanghaihou@126.com

^{*} 通讯作者:常志州 E-mail: czhizhou@hotmail.com

此 控制堆肥过程氮素损失一直是国内外学者的研究 热点^[4-6]。目前控制方法主要有2种:一是改变工艺条件,如适量的通风、控温、加湿等;二是添加吸附材料 或富碳物料、或者添加与释放氨进行反应的化学试 剂、以及添加保氮除臭的微生物菌剂等^[7]。

近年来,一些学者利用鸟粪石结晶反应原理,通 过添加镁盐,去除和回收污水、垃圾渗滤液中的氮和 磷^[8-11],不仅能达到污水处理的目的,而且能有效保护 和节约有限的自然资源。将鸟粪石结晶反应应用于好 氧堆肥过程,通过添加镁盐和磷盐使 NH₃在堆肥中 以磷酸铵镁结晶(MgNH₄PO₄·6H₂O)的形式沉淀下来, 可有效减少堆肥过程 NH₃的挥发^[12-13]。因此,有关利用 化学保氮剂控制堆肥过程氮素损失的研究报道较 多^[14-17],但是,绝大多数研究主要针对动物源性畜禽粪 便堆肥过程。水葫芦作为水生植物有机物料,其物质 组成与动物源性有机物料不尽相同,堆肥过程氮素转 化规律及损失特征也可能不同,而有关化学保氮剂对 控制水生植物有机物料堆肥过程氮素损失作用效果 的报道并不多见。

为此,本文研究了水葫芦高温堆肥过程中氮素转 化规律及损失特征,同时,探讨了化学保氮剂对减少 水葫芦堆肥过程氮素损失的作用效果,旨在为控制水 葫芦堆肥过程氮素损失以及化学保氮剂在水葫芦堆 肥生产中的应用提供理论依据。

1 材料与方法

1.1 试验设计及实施概况

试验于 2010 年 8 月初至 9 月下旬,在江苏太湖 地区农业科学研究所玻璃温房内进行。试验材料:水 葫芦(打捞于农科所农田四周池塘)干基含 C 量 38.4%、含 N 量 1.6%、C/N 24。打捞出水的水葫芦(含 水率 95%),先进行 3~5 cm 切碎处理,再进行晾晒处 理,控制含水率 65%~70%。

堆肥于反应器中进行,反应器为立方体形,顶部 无盖,底部有均匀分布的通气孔(φ=2 cm),孔面积总 和约为底部面积的 1/3,反应器箱底装有4个活动轮, 轮高 25 cm;反应器容积为1m³(长、宽、高均为1m), 其中一侧壁居中垂直方向均匀分布3个测温孔,其对 面侧壁开有可嵌入挡板式出料口(长40 cm,宽30 cm),每个反应器可装入堆料 200 kg。

以经晾晒处理后的水葫芦作为堆肥材料,设计添加与不添加(常规对照)化学保氮剂处理,化学保氮剂 (质量比,Mg(OH)₂:H₃PO₄:H₂O=3:12:85)投加量占堆体 总重的 2%(折合干基占比为 8%)^[17]。重复 2次。

堆肥期间于每日9.00-11.00测定堆体温度,每 隔7d左右翻堆1次,根据堆体实际水分适当添加 水,保持堆体含水量65%左右,直至试验结束。

1.2 样品采集与测定

(1)分别在堆制后 0、3、7、14、21、28、35 d 采集新 鲜堆肥样品 1 kg,分成 3 份。一份于 105 ℃下烘干 6 h,测水分;一份鲜样与去离子水为 1:10 的重量比振 荡 30 min 后过滤,水浸提液测定铵态氮(凯氏定氮 法)、硝态氮(紫外分光光度法);一份自然风干,研磨 后测定物料的全氮(H₂SO₄-H₂O₂ 消煮,凯氏氮与硝态 氮之和)、有机氮(H₂SO₄-H₂O₂ 消煮,凯氏氮与铵态氮 之差)、灰分含量(马弗炉 550 ℃烘干法)。

(2)NH₃ 挥发强度测定,采用 2%硼酸溶液吸收-稀硫酸反滴定法。堆肥开始后,将已知截面面积(ф= 20 cm ,h=30 cm)且开口向下的圆柱形透明有机玻璃 箱安装于堆体上,箱内放入装有 50 mL 2%硼酸吸收 液的烧杯,箱顶部有一气压平衡孔,与软管连接并向 上延伸至 2.5 m 高,利用硼酸收集塑料箱覆盖范围内 挥发的 NH₃,每 1~2 d 用 0.01 mol·L⁻¹ 的硫酸滴定硼 酸吸收液 1 次,并记录硫酸滴定量,直至堆肥结束。每 个堆体的 NH₃ 挥发强度测定重复 3 次。

(3) N₂O 排放速率测定采用静态气体采集箱-气 相色谱法^[18-19]。在堆制后 2、5、9、13、16、20、29 d,于早 上 9 00-11 00,各处理堆体上安装气样采集箱底 座 盖上气体采集箱(长 20 cm、宽 20 cm、高 30 cm,内 部容积为 12 L 取样口位于 2/3 箱高处),水密封,分 别于 10、20、30 min 后用针筒抽气 50 mL ,转移至 100 mL 气样袋,待分析。每个堆体重复 3 次。利用气相色 谱仪(HP6890)测定气样中 N₂O 的浓度。N₂O 由 ECD (带有 Ni⁶³ 电子捕获检测器,岛津 GC-14B 气相色谱 仪)检测。气体排放通量计算公式如下:

 $F = \rho \cdot V \cdot (dc/dt) \cdot 273/(273+T)/m$

式中 F 为被测气体排放速率 $mg \cdot kg^{-1} \cdot h^{-1} p$ 为被测 气体标准状态下的密度 (N_2O 为 1.978 kg·m⁻³) V 为 取样箱顶部空间的体积 m^3 ;dc/dt 为采样箱内被测气 体的浓度变化率 T 为采样过程中采样箱内的平均温 度 C m 为堆体干基质量 kg。

1.3 计算方法

根据堆制腐熟过程中灰分无损失(绝对量不变), 推导氮素损失率^[20]的计算公式:

 $N_{\text{B} \notin \mathbb{P}}(\%) = (N_0 - H_0) / (H_n \times N_n) / N_0 \times 100\%$

式中 N₀为堆肥为 0 d 时全氮质量分数 (以干基

1216

计) % *H*₀为堆肥0 d 时灰分含量分数 % *N*_n为堆肥 为 n d 时全氮质量分数 % *H*_n为堆肥 n d 时灰分质量 分数 %。

氮素固定率^[15]的计算如下:

N _{固定率}(%)=(N_{CK 损失率}-N_{处理损失率})/N_{CK 损失率}×100% 1.4 数据处理

采用 SPSS13.0 统计分析软件进行数理分析,采用 Excel 进行绘图。

2 结果与分析

2.1 堆肥过程中温度变化

堆温变化反映了堆体内微生物活性的变化,堆肥 初期嗜温性微生物的旺盛代谢,使堆体温度不断上 升;嗜热性微生物的适宜温度为45~65℃,当堆温升 高到45℃以上,即进入高温阶段,嗜热性微生物逐渐 代替了嗜温性微生物;根据堆体温度,堆肥化进程可 划分为升温期、高温期、降温期和稳定期4个阶段^[21]。

由图 1 可以看出,水葫芦堆肥过程的升温阶段很短,主要经历了高温期、降温期和稳定期 3 个阶段。水葫芦堆制后第 2 d,温度均上升到 50 ℃以上;第 7 d 达到最高温度 2 个处理的最高堆温分别为 64.0、63.0 ℃,堆制后第 23 d,温度低于 45 ℃进入降温期;第 30 d 堆体温度维持在 30 ℃左右,进入稳定期。整个堆肥 过程,化学保氮剂处理与常规对照的温度变化趋势一 致,无明显差异。化学保氮剂处理与常规对照的堆温 50 ℃以上均持续了 15 d 以上,符合高温堆肥无害化 要求。

2.2 堆肥过程中不同形态氮素含量变化

堆肥过程中,物料各形态氮素,在微生物的作用 下,会发生如有机氮矿化、氨挥发、硝化及反硝化等过 程,都可能会导致氮素的损失。 图 2 为水葫芦堆肥过程中各形态氮素含量的动态变化 水葫芦堆肥过程总氮及有机氮含量变化均呈上升趋势 ,其中高温阶段上升幅度较大。图 2 结果表明 ,水葫芦堆肥过程中 ,铵态氮与硝态氮含量均于堆制后 0~3 d 迅速增加 ,堆制 3 d 后分别达最大值 ,之后 逐渐降低。其中 ,铵态氮含量于堆制后第 14 d 就低于 400 mg·kg⁻¹ ,无明显的变化 ,而硝态氮含量在堆肥降 温期与稳定期仍不断下降 ,说明堆肥后期硝态氮的损失量较大。

化学保氮剂处理的各形态氮素含量变化见图 2。 与常规对照相比 化学保氮剂处理提高了堆体总氮、有 机氮含量 但差异幅度较小 :在堆肥升温期及高温期 , 化学保氮剂处理与常规对照的铵态氮及硝态氮含量的 差异较为明显 堆制后 0~14 d 化学保氮剂处理提高了 水葫芦堆肥体铵态氮含量 降低了硝态氮含量。 2.3 堆肥过程 NH₃、N₂O 排放损失

2.3.1 NH₃ 挥发

根据水葫芦堆肥过程 NH₃ 挥发量测定结果可 知 ,NH₃ 挥发主要集中在堆肥初期的高温阶段,堆制 10 d 后,用 2%硼酸试剂吸收再滴定,测定值已经很 小,几乎检测不出 NH₃ 挥发量。图 3 结果表明,水葫 芦堆制后第 1 d 即产生 NH₃ 挥发 0~4 d 的氨挥发量 占总量的 34.85% ;4~10 d 的 NH₃ 挥发累积量随着堆 制天数的增加,先快速倍增,之后增加趋势逐渐平缓, 氨挥发量占总量的 62.71% 堆制 10 d 后 ,NH₃ 挥发累 积量无明显的增加趋势,且 10~35 d 的氨挥发仅占总 量的 2.44%。

添加化学保氮剂可显著降低水葫芦堆肥过程中的 NH₃ 挥发量,由图 3 可知,堆制后 0~4 d,化学保氮剂处理与常规对照的 NH₃ 挥发量动态变化一致,堆制第 4 d 后,化学保氮剂处理的水葫芦堆肥体 NH₃ 挥

Figure 1 Changes in pile temperature during the composting process

Figure 3 Changes of accumulation of ammonia vollatilization during composting of hyainth

发量明显低于常规对照处理,成对数据T检验结果表 明,化学保氮剂处理的NH₃挥发累积量与常规对照 相比达极显著水平(P<0.01),可见,添加化学保氮剂 对水葫芦堆肥过程第4~10d的氨挥发具有显著的抑 制作用。

将 NH₃ 累积挥发量与堆肥时间的关系进行曲线 拟合分析,结果表明水葫芦堆肥过程 NH₃ 挥发累积 量与堆肥时间呈极显著的对数曲线相关,对数曲线方 程分别为

 $y_{\pmlmed planet 2} y_{\pmlmed planet 2} = 9.838 \ 8 \ln(x) - 2.636 \ 2 \ (R^2 = 0.954 \ 5^{**})$ $y_{\pmlmed planet 2} = 13.064 \ln(x) - 4.009 \ (R^2 = 0.910 \ 6^{**})$ 根据拟合的曲线方程,计算水葫芦堆肥过程中每 1 kg 干基的 NH₃ 最大累积挥发量,其中,常规对照为 42.44 mg,化学保氮剂处理为 32.33 mg,化学保氮剂处 理下,NH₃挥发量可减少 23.82%。

2.3.2 N₂O 排放

由图 4 可知, 水葫芦堆肥过程 N₂O 排放速率呈 先上升后下降的变化趋势,其中,常规对照的 N₂O 排 放速率于堆制后第 5 d 达最大值 145.25 μg·kg⁻¹·h⁻¹, 化学保氮剂处理的 N₂O 排放速率于堆制后第 9 d 达 最大值 190.55 μg·kg⁻¹·h⁻¹;第 10 d 后 N₂O 排放速率 不断下降,至第 30 d 左右 N₂O 排放速率基本接近于 王海候等 水葫芦高温堆肥过程中氮素损失及控制技术研究

1218

Figure 4 Change of N_2O emission rate during composting of hyacinth

零 ;可见,水葫芦堆肥过程中,以 N₂O 形态损失的氮, 在堆制后第 5~9 d 的损失速率最大。

添加化学固氮剂对 N₂O 排放速率具有明显的影 响(图 4),主要表现为堆制后 0~5 d,化学保氮剂处理 的 N₂O 排放速率明显低于常规对照;第 9 d 后,化学 保氮剂处理的堆体 N₂O 排放速率则明显高于对照处 理。虽然不同处理的 N₂O 排放速率呈相同的变化趋 势,但化学保氮剂处理与常规对照相比,延缓了 N₂O 排放过程在堆肥期间的出现时间。

2.4 添加化学保氮剂对控制堆肥氮素损失的效果

本文根据有机物料堆制腐熟过程中灰分无损失的原理^[20],计算氮素损失率。表1所示为水葫芦堆肥前后各形态氮素的损失率分析结果,水葫芦常规堆肥过程中,铵态氮、硝态氮、有机氮分别下降89.73%、39.85%、3.99%,总氮损失率为12.84%。

化学保氮剂处理的铵态氮、硝态氮、有机氮分别 下降 88.24%、47.49%、-0.55%,总氮损失率为 8.64%; 与常规对照相比,化学保氮剂对水葫芦堆体的固氮效 率为 32.70%。

表1 堆肥前后各形态氮素的损失率及保氮剂固氮效果 Table 1 Loss percentage of different nitrogen forms and effect of nitrogen conservation during composting

introgen conservation during composting					
类别	铵态氮/%	硝态氮/%	有机氮/%	总氮/%	固氮效果/%
保氮剂处理	88.24	47.49	-0.55	8.64	32.70
常规对照	89.73	39.85	3.99	12.84	—

3 讨论

3.1 水葫芦高温堆肥过程中各形态氮素变化及损失 特征

水葫芦常规堆肥过程总氮及有机氮含量变化均 呈上升趋势,其中高温阶段上升幅度较大,这可能是 由于有机物的矿化分解 ,CO₂的损失而引起的干物质 减少,从而造成氮素占比的提高。一般认为堆肥过程 中,高温期有机物不断分解,按态氮含量迅速上升,而 硝化细菌生长受抑制,硝态氮含量变化幅度较小,降 温期和稳定期的铵态氮转化为硝态氮,按态氮含量下 降,硝态氮含量上升。本试验结果表明,按态氮含量下 降,硝态氮含量上升。本试验结果表明,按态氮与硝态 氮含量均于堆制后 0~3 d 迅速增加,在第 3 d 分别达 最大值,之后逐渐降低,按态氨与硝态氮含量呈现相 同的变化趋势,其原因可能是水葫芦虽然进行切碎处 理,但是物料颗粒间隙相对较大,含氧浓度相对较高, 提高了硝化作用强度,从而促使硝态氮含量在堆肥初 期显著提高;堆肥后期堆体体积不断缩小,物料逐渐 紧实,虽然定期翻堆,仍容易形成厌氧环境,同时堆温 不断下降,反硝化损失也降低了硝态氮含量。

本试验过程中堆体无渗滤液产生,所以气态形式 逸出的氮应是堆肥过程全部的氮损失。水葫芦堆肥过 程 NH₃ 挥发量测定结果表明,NH₃ 挥发主要集中在堆 肥初期的高温阶段,水葫芦堆制后第 1 d 即产生 NH₃ 挥发 0~4 d 的氨挥发占总量的 34.85%, 4~10 d 的氨 挥发占总量的 62.71%,10~35 d 的氨挥发仅占总量的 2.44%;N₂O 排放速率呈先上升后下降的趋势,N₂O 排 放高峰主要出现在堆制后的 5~9 d。水葫芦堆肥过程 中,在堆肥初期的高温阶段,氮素以 NH₃、N₂O 等气态 形式损失的速率较高,这可能与该阶段的高温环境, 使 NH₃/NH[‡]平衡向生成 NH₃ 方向移动和决定 NH₃ 的 排放,另外,NH[‡]通过氧化,转化为 NO₃⁻,N₂O 提这一过 程的副产物,虽然提高堆体含氧量可控制 N₂O 排放, 但无法预防来自硝化过程的 N₂O 损失^[2]。

3.2 添加化学保氮剂控制堆肥氮素损失的效果

堆肥过程中,化学保氮剂对不同来源有机物料的 保氮效果存在一定差异。林小凤等以新鲜鸡粪与麦秸 作为堆料,添加不同比例的氯化铁、过磷酸钙及其混 合物作为保氮剂,结果表明堆肥体总氮、铵态氮、硝态 氮都有不同程度的增加,并且保氮效率随着保氮剂添 加量的增加而提高,最高可达85%^[15]。任丽梅等将氢 氧化镁和磷酸混合物作为保氮剂应用于鸡粪与麦麸 混合堆肥过程,结果表明,堆肥体总氮、铵态氮均有增 加,但硝态氮含量几乎接近于0 mg·kg⁻¹,不同投加量 条件下,固氮效率为73.1%~97%^[16]。本试验结果表明, 与对照相比,化学保氮剂处理的总氮、有机氮、铵态氮 含量均有增加,但硝态氮含量却降低,除硝态氮含量 外,其他形态的氮素含量变化与前人结论一致,硝态 氮含量变化的不一致,可能与不同研究报道中所选的 化学保氮试剂类型及堆肥材料的差异性有关。另外, 化学保氮剂对水葫芦堆肥过程氮素损失的固定效率 32.70%,与动物源性的畜禽粪便固氮效率相比,差异 幅度较大。一方面这可能与不同来源的有机物料堆肥 过程的氮素损失率不同有关,畜禽粪便堆肥过程的氮 素损失率平均为40%以上^[17],而水葫芦常规堆肥处理 的氮素损失率为12.84%;另一方面可能与保氮剂的 试剂类型及投加量不同有关^[15,17]。

堆肥过程中,化学保氮剂处理的铵态氮、有机氮 分别下降了88.24%、-0.55%,总氮损失率为8.64%, 其铵态氮含量下降幅度仅比对照低1.49%,有机氮没 有下降反而上升。其原因可能是有机氮的分解与铵态 氮合成小分子水溶性有机氮是一个可逆的平衡过程, 化学保氮剂处理的铵态氮合成作用大于常规对照处 理。

化学保氮剂处理由于提供酸性环境 使铵离子不 能以氨气的形式挥发。水葫芦堆肥体在高温阶段氨 挥发强度较大,添加化学保氮剂对高温阶段的 NH。 挥发具有较好的控制效果,这与李冰等研究结论一 $\mathbf{Y}^{[14]}$ 。添加化学保氮剂对 N_2O 排放速率具有明显的影 响 化学保氮剂处理降低了堆制后 0~5 d 的 N₂O 排放 速率 这与化学保氮剂提高了水葫芦堆肥初期的铵态 氮含量、降低了硝态氮含量以及整个堆肥过程有机氮 没有损失反而增加的结论相吻合 其原因可能是保氮 剂固定了铵态氮,铵态氮硝化作用强度减弱,从而进 一步减少了由硝化作用而产生的 N₂O 排放 ;另外 ,化 学保氮剂处理提高了第9d之后的 N₂O 排放速率 这 可能与本试验所添加的化学保氮剂的组分比例与使 用量兼顾了经济效益有关[17] 堆制一定天数以后铵态 氮转化与有机氮的分解基本达到平衡 其后平衡被打 破,有机氮分解占主导地位10,从而导致化学保氮剂 处理在该时间段的 N₂O 排放速率大于常规对照。

4 结论

(1)水葫芦堆肥过程中,堆温变化明显呈现出高 温期、降温期和稳定期3个阶段,整个堆肥过程,化学 保氮剂处理与常规对照相比,温度变化趋势一致,无 明显差异;两处理的堆温都在50℃以上持续了15d 以上,符合高温堆肥无害化要求。

(2)水葫芦堆肥过程中总氮及有机氮含量均呈上 升趋势,按态氮与硝态氮含量均呈先上升后下降的趋势,与初始阶段相比,堆肥结束后铵态氮、硝态氮、有 机氮分别下降了 89.73%、39.85%、3.99%,总氮损失率 为 12.84%。

(3)水葫芦堆肥过程中,氮素损失主要以NH₃、 N₂O 等气态形式逸出,其中,NH₃挥发主要集中在堆 肥初期的10d内,N₂O 排放高峰主要出现在堆制后的 第5~9d,添加化学保氮剂对水葫芦堆肥过程第4~10 d 的氨挥发具有显著的抑制作用,NH₃挥发量可减少 23.82%;添加化学保氮剂对 N₂O 排放速率具有明显 的影响作用,化学保氮剂处理降低了堆制后第0~5 d 的 N₂O 排放速率,提高了第9 d 以后的 N₂O 排放速 率。

(4)添加化学保氮剂处理的总氮损失率为8.64%, 与常规对照相比,化学保氮剂对水葫芦堆体的保氮效 率为32.70%,因此,采用质量比Mg(OH)₂:H₃PO₄:H₂O= 3:12:85 的混合物作为化学保氮剂、投加量占堆体总 重的2%(折合干基占比为8%)对原位控制水葫芦堆 肥过程的氮素损失具有一定的效果,但是本研究使用 的保氮剂的组分比例及使用量是以畜禽粪便堆肥材 料为基础的,而以控制水葫芦堆肥过程中氮素损失为 目的,其化学保氮剂适宜施用方法还有待于作进一步 研究。

参考文献:

- [1] 童昌华,杨肖娥, 濮培民. 富营养化水体的水生植物净化试验研究
 [J]. 应用生态学报, 2004, 15(8):1447-1450.
 TONG Chang-hua, YANG Xiao-e, PU Pei-min. Purification of eutrophicated water by aquatic plant[J]. *Chinese Journal of Applied Ecology*, 2004, 15(8):1447-1450.
- [2] Amanda M Nahlik, William J Mitsch. Tropical treatment wetlands dominated by free-floating macrophytes for water quality improvement in Costa Rica[J]. *Ecological Engineering*, 2006, 28 246–257.
- [3] 郑建初, 常志州, 陈留根, 等. 水葫芦治理太湖流域水体氮磷污染的可行性研究[J]. 江苏农业科学, 2008, 3 247-250. ZHENG Jian-chu, CHANG Zhi-zhou. CHEN Liu-gen, et al. Study on feasibility of hyacinth treating water N and P pollution in the Taihu Lake area[J]. *Jiangsu Agricultural Sciences*, 2008, 3 247-250.
- [4] Raviv M, Medina S, Karasnovsky A, et al. Conserving nitrogen during composting[J]. *Bio Cycle*, 2002, 43(9) 48.
- [5] JFriis B Beck, Smars S, Jonsson H, et al. Gaseous emissions of carbon dioxide, ammonia and nitrous oxide from organic household waste in a composting reactor under different temperature regimes[J]. Agric Eng Res, 2001, 78(4):423–430.
- [6] 李国学, 李玉春, 李彦富. 固体废弃物堆肥化及堆肥添加剂研究进展 [J]. 农业环境科学学报, 2003, 22(2) 252-256.

LI Guo-xue, LI Yu-chun, LI Yau-fu. Advance on composting of solid waste and utilization of additives[J]. *Journal of Agro-Environment Science*, 2003, 22(2) 252–256.

[7] 杨延梅, 刘鸿亮, 杨志峰, 等. 控制堆肥过程中氮素损失的途径和方

12

法综述[J]. 北京师范大学学报(自然科学版), 2005, 41(2) 213-216. YANG Yan-mei, LIU Hong-liang, YANG Zhi-feng, et al. Methods and techniques in the control of nitrogen loss during the composting-a review[J]. Journal of Beijing Normal University (Natural Science), 2005, 41(2) 213-216.

- [8] De-Bashan Luz E, Bashan Yoav. Recent advances in removing phosphorus from wastewater and its future use as fertilizer (1997-2003)[J]. *Water Research*, 2004, 38(19):4222-4246.
- [9] 王绍贵,张 兵,汪慧贞. 以鸟粪石的形式在污水处理厂回收磷的研究[J]. 环境工程, 2005, 23(3) .78-81.
 WANG Shao-gui, ZHANG Bing, WANG Hui-zhen. Study on P recovery as guano from wastewater treatment plant[J]. *Environmental Engineering*, 2005, 23(3) .78-81.
- [10] Ganrot Zsofia, DaveGran, NilssonEva. Recovery of N and P from human urine by freezing, struvite precipitation and adsorption to zeolite and active carbon[J]. *Bioresource Technology*, 2007, 98(16) 3112–3121.
- [11] Suzuki Kazuyoshi, Tanaka Yasuo, Kuroda Kazutaka. Recovery of phosphorous from swine wastewater through crystallization[J]. *Bioresource Technology*, 2005, 96(14) 1544–1550.
- [12] Jeong Yeon-Koo, Kim Jin-Soo. A new method for conservation of nitrogen in aerobic composting processes[J]. *Bioresource Technology*, 2001, 79(2) :129–133.
- [13] Jeong Yeon-Koo, Hwang Sun-Jin. Optimum doses of Mg and P salts for precipitating ammonia into struvite crystals in aerobic composting[J]. *Bioresource Technology*, 2005, 96(1) :1–6.
- [14] 李 冰, 王昌全, 江连强, 等. 化学改良剂对稻草猪粪堆肥氨气释放
 规律及期腐熟进程的影响 [J]. 农业环境科学学报, 2008, 27(4):
 1653-1661.

LI Bing, WANG Chang –quan, JIANG Liang –qiang, et al. Effect of chemical amendments on NH₃ emissions and compost maturity during co-composting of pig manure straw [J]. *Journal of Agro–Environment Science*, 2008, 27(4) :1653–1661.

[15] 林小凤,李国学,任丽梅,等.氯化铁和过磷酸钙控制堆肥氮素损失的效果研究[J].农业环境科学学报,2008,27(4):1662-1666.
LIN Xiao-feng, LI Guo-xue, REN Li-mei, et al. Effect of FeCl₃ and Ca(H₂PO₄)₂ as amendments on reducing nitrogen loss during composting [J]. Journal of Agro-Environment Science, 2008, 27 (4):1662-1666.

[16] 任丽梅, 贺 琪, 李国学, 等. 氢氧化镁和磷酸固定剂控制堆肥氮素

损失的研究[J]. 农业环境科学学报, 2009, 28(4) 814-819.

REN Li-mei, HE Qi, LI Guo-xue, et al. Effect of Mg(OH)₂ and H₃PO₄ amendments on nitrogen conservation during composting[J]. *Journal of Agro-Environment Science*, 2009, 28(4) \$14–819.

[17]任丽梅,贺 琪,李国学,等. 氢氧化镁和磷酸混合添加剂在模拟堆
 肥中的保氮效果研究及其经济效益分析 [J]. 农业工程学报, 2008, 24(4) 225-228.

REN Li-mei, HE Qi, LI Guo-xue, et al. Effect of Mg(OH)₂ and H₃PO₄ amendments on nitrogen conservation during simulated aerobic composting and its benefit analysis[J]. *Transactions of CSAE*, 2008, 24(4) : 225–228.

- [18] 谢军飞,李玉娥.农田土壤温室气体排放机理与影响因素研究进展[J].中国农业气象, 2002, 23(4):47-52.
 XIE Jun-fei, LI Yu-e. A Review of studies on mechanism of green house gas(GHG) emission and its affecting factors in arable soils[J]. *Chinese Journal of Agro-meteorology*, 2002, 23(4):47-52.
- [19] 李玉娥, 饶敏杰. 动物废弃物源甲烷排放量的估算与减缓技术选择[J]. 农村生态环境学报, 1995, 11(3) 8-12.
 LI Yu-e, RAO Min-jie. Methane emitted from livestock manure and mitigation technologies[J]. Rural Eco-Environment, 1995, 11(3) 8-
- [20] 曹喜涛, 黄为一, 常志州, 等. 鸡粪堆制过程中氮素损失及减少氮素 损失的胡理[J]. 江苏农业学报, 2004, 20(2):106-110. CAO Xi-tao, HUANG Wei-yi, CHANG Zhi-zhou, et al. Mechanism of nitrogen loss and reduction in nitrogen loss during the compost of chicken manure[J]. *Jiangsu of Agr Sci*, 2004, 20(2):106-110.
- [21] 黄懿梅, 安韶山, 白红英, 等. 鸡粪与不同秸秆高温堆肥中氮素的变化特征[J]. 西北农林科技大学学报(自然科学版), 2004, 32(11): 53-58.

HUANG Yi-mei, AN Shao-shan, BAI Hong-ying, et al. Study on nitrogen changes during the composting of chicken manure and different straws under higher temperature[J]. *Jour of Northwest Sci–Tech Univ of Agri and For(nat Sci Ed)*, 2004, 32(11) 53–58.

[22] 单德鑫, 李淑芬, 许景钢. 固体有机废弃物堆肥过程中氮的转化[J]. 东北农业大学学报, 2007, 38(2) 265–269.

SHAN De-xin, LI Shu-fen, XU Jing-gang. Nitrogen transformations in solid organic waste composting[J]. *Journal of Northeast Agricultural U-niversity*, 2007, 38(2) 265–269.