Pb²⁺ 印迹丙烯酸 co 苯乙烯的制备及其吸附性的 FAAS 法分析

肖开提•阿布力孜,阿不都热衣木•苏巴洪,王吉德,司马义•努尔拉*

新疆大学化学化工学院,新疆乌鲁木齐 830046

摘 要 以丙烯酸为功能单体、苯乙烯为骨架单体、Pb²⁺为模板离子、采用无皂乳液聚合法合成铅离子印迹 共聚物(Pb(II)-IIPs)并采用紫外光谱、傅里叶变换红外光谱和扫描电镜对 Pb(II)-IIPs 和非印迹聚合物 (NIPs)的表面形貌和结构进行表征。以火焰原子吸收光谱法(FAAS)为检测手段,研究了 Pb IIPs 对 Pb²⁺ 的 吸附和选择识别能力。结果表明,与 NIPs 相比, Pb(II)-IIPs 对 Pb(II)具有较好的特异吸附性能和选择性 识别能力。在 Cd(II), Cu(II), Mn(II)和 Zn(II)存在下,其相对选择性系数分别达到 6 25, 6 18, 6 25, 6 38。在室温下, pH 6,吸附时间为 2 5h 时,吸附基本达到平衡,吸附率可达到 96%。以 3 mol* L⁻¹的盐 酸溶液作为解吸剂对含铅 Pb(II)-IIPs 进行洗脱,吸率可达到 98%以上。在最佳吸附条件下,其对 Pb(II)的 吸附容量可达到 40.2 mg* g⁻¹。

关键词 铅离子;离子印记聚合物;丙烯酸;吸附性 中图分类号:0657.3 文献标识码:A **DOI**:10.3964/jissn 1000-0593(2011)06-1702-05

引 言

在重金属污染中铅污染是危害最大的环境污染问题之 一,生物毒性显著的铅是一种无机环境激素,在人体内聚集 到一定程度就会影响人的正常代谢活动,对人体造成严重危 害^[1]。铅在自然环境中多数以微量形式存在,浓度很低,与 之共存的高浓度基体的干扰大,用常规分析方法难以直接测 定,只能先对痕量铅进行分离富集,然后测定。表面分子印 迹是一种新型的亲和分离技术^[2,3]。它主要是利用在聚合过 程中加入模板分子,聚合结束后将模板分子洗脱,在聚合物 内部留下与模板分子空间结构互补的空穴及官能基团,从而 对模板物质进行记忆性识别和吸附^[4,5]。

离子印迹聚合物与分子印迹聚合物相类似,但是它除了 保留了分子印迹技术的优点外还具有识别印迹离子的功 能^[6]。因此广泛用于过渡金属离子、有毒金属离子、稀有和 贵金属离子的分离与回收以及金属络合物传感器、催化等领 域^[7-12]。依据酸碱理论,羧基属于硬碱,Pb²⁺属于交界酸,二 者可形成稳定的络合物^[13]。本文以丙烯酸(AA)为功能单 体,利用无皂乳液聚合方法结合离子印迹技术合成Pb(II)-IIPs,以FAAS为检测手段,研究了Pb(II)-IIPs对水溶液中 Pb²⁺的吸附和解吸条件、吸附能力及选择性识别能力。实验 结果表明,所合成的Pb(II)-IIPs对Pb²⁺具有良好的吸附及 选择识别能力;将其应用于水样可实现痕量 Pb²⁺的分离富 集与测定。

1 实验部分

1.1 主要仪器

Analyst300 原子吸收光谱仪及其配套设备(Perkin Elmer 公司), DHG-9140A型电热恒温干燥箱(上海), 台式离心机 (TDL-4), 金怡 601 超级恒温水浴(江苏), DZE-6020型真空 干燥箱(上海), Delta 320 pH 计, D25-2型电动搅拌机(杭 州), 铅、镉、铜、锰和锌空心阴极灯。

12 试剂与药品

1 000 g・L⁻¹铅、镉、铜、锰和锌标准溶液;丙烯酸 (AA,天津市博迪化工有限公司)、苯乙烯(St,天津市百世 化工有限公司)、二乙烯苯(DVB, New Jersey USA)、过硫酸 钾(KPS,北京化工厂)、盐酸及氨水(乌鲁木齐迪城化工有限 公司)、柠檬酸(上海试剂一厂),磷酸氢二钠(广东西陇化工 厂),以上试剂均为分析纯;去离子水。

13 Pb(II)-IIPs的制备

先将 4 1 mL AA 溶解到 40 mL 水中, 然后加入 3 31 g Pb(NO₃)₂, 在室温下磁力搅拌器中搅拌 30 min, 使 AA 与 Pb²⁺充分络合, 然后将溶液移到三口圆底烧瓶中, 再加入 5 mL St 和 0 5 mL DVB, 在水浴中搅拌升温至 70 ℃时加入

基金项目: 国家自然科学基金项目(20674066)资助

收稿日期: 2010-09-15, 修订日期: 2010-12-10

作者简介: 肖开提・阿布力孜, 1966 年生, 新疆大学化学化工学院副教授 * 通讯联系人 e mail: is mayil nu@ sohu. com © 1994-2012 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

0.1 g KPS 在氮气保护下恒温反应 3 h。冷却至室温,得到白 色粉末,将粗产品用大量去离子水和甲醇洗涤,抽滤后用3 mol•L⁻¹ HCI 洗涤至无 Pb²⁺ 检出为止. 然后在 50 ℃下 真 空干燥 24 h, 备用。非印迹聚合物的制备与 Pb(II)-IIPs 的 制备相似,只是在制备过程中不加 $Pb(NO_3)_2$,也无需脱除 Pb^{2+}

1.4 吸附与解吸实验方法

移取 10 mL 标准溶液干具寒离心管. 用柠檬酸和磷酸氢 二钠缓冲溶液调整 pH 6 后加 50 mg Pb(II)-IIPs 或 NIPs, 盖紧管寒,在室温下保证固液接触时间25h后离心分离清 液待测用;将聚合物用去离子水洗净后,加入 10 mL 3 mol • L^{-1} 盐酸溶液、盖紧瓶寒在室温下震荡 10 min、充分解吸 后分离清液待测用,用 FAAS 法在最佳测定条件下进行测 定,以 $Q(mg \cdot g^{-1}) = (Co - Ce)V/W, E(\%) = (Co - Ce)V/W$ Ce) / Co 和 B(%) = CdVd/(Co-Ce) V 式分别计算静态吸附 容量、吸附率和解吸率;式中,Co,Ce和Cd分别为吸附前 溶液 Pb²⁺ 浓度、吸附达到平衡 后溶液 Pb²⁺ 浓度和解吸达到 平衡后解吸液中 Pb^{2+} 浓度(mg• L⁻¹); V 和 Vd 分别为吸附 原液体积和解吸液体积(mL); W 为 Pb(II)-IIPs 或 NIPs 的 干重量(g)。

结果与讨论 2

2.1 络合物紫外光谱表征

采用紫外吸收光谱法考察了 Pb²⁺ 与 AA 之间的相互配 位作用; 单一 Pb²⁺, AA 和 Pb-AA 配合物的紫外光谱如图 1 所示。 Pb^{2+} 与 AA 混合后, 如果彼此之间没有配位作用, 据 吸收光谱的叠加性原理、混合物的紫外吸收光谱应为 Pb^{2+} 和 A A 紫外吸收光谱的简单加合,不会出现新的吸收峰。结 果表明, Pb^{2+} 与 AA 混合后, 在紫外吸收光谱图中长波长方 向出现了新的吸收峰, 说明 Pb²⁺ 与 AA 之间发生了配位作 用。这可能是因为 Pb²⁺ 存在空的电子轨道, 而 AA 的氧原子 电负性强并有孤对电子, 电子云密度大, 两者可通过配位键 相互作用,从而使得 AA 中双键的电子云密度减弱,采用紫 外光照射时只需更低的能量即可使电子发生跃迁产生吸收光 谱,因而在长波长方向出现配合物的新的特征吸收峰。

2 2 共聚物红外光谱表征

图 2 和图 3 为 Pb(II)-IIPs 和 NIPs 的红外光谱图、图 3 中1 704 cm⁻¹ 为羧酸中 ─C=O 的吸收峰: 1 602. 1 493. 1 453 cm⁻¹ 处的吸收峰为苯环的骨架振动峰; 3 083, 3 061, 3027 cm^{-1} 处的峰为苯环中C_{so}_TH的伸缩振动峰;在758和 698 cm⁻¹处的两个吸收峰表明一元取代苯;图中没有出现苯 乙烯中 — C == C — 在 1 630 cm⁻¹ 的特征吸收峰, Pb(II)-IIPs 洗脱 Pb²⁺ 后的红外光谱图与 NIPs 的红外光谱图基本相 (U).由上述分析可确认该化合物为丙烯酸-co-苯乙烯。从图 2 可知. 洗脱前 Pb(II)-IIPs 的红外图谱和洗脱后 Pb(II)-IIPs 的有很多相似之处;但与洗脱前 Pb(II)-IIPs 相比,洗脱后 Pb(II)-IIPs 在1 541 cm⁻¹处(COO⁻)₂•Pb²⁺配合物的特征 吸收峰已消失^[14,15]。结合洗脱后 Pb(II)-IIPs 中羧基的羰基 红外吸收峰稍微向高波数偏移进一步证实印迹过程的发生。

Fig 2 Infrared spectra of unleached Pb(II)-IIPs

2 3 共聚物扫描电镜分析

Pb(II)-IIPs 洗脱前后的扫描电镜如图 4 所示。由图可 知,洗脱前印迹聚合物图 4(a) 的表面比较平坦光滑,洗脱后 图 4(b) 表面变得粗糙、凹凸不平, 这是因为模板离子洗脱 后, 留下了很多印迹空穴而致。先印迹聚合后洗脱印迹离子 使 Pb(II)-IIPs 表面变得粗糙,不仅增大了吸附表面积,而 且结合位点分布也很稠密,这有利干增大其吸附容量,提高 Pb(II)-IIPs 对 Pb²⁺ 的吸附和识别能力。

2 4 酸度对聚合物吸附率的影响

配制 pH 分别为 1, 2, 3, 4, 5, 6 和 7, 浓度相同 Pb²⁺ 溶 液,考察了溶液酸度对 Pb(II)-IIPs 吸附 Pb^{2+} 的影响,结果 见图 5。起始 Pb(II)-IIPs 对 Pb²⁺ 的吸附率随 pH 值的增大

© 1994-2012 (Juna Academic function 而迅速提高; 当₁pH 为 6 时,吸附率达到 96%;其后吸 附率 rnal Electronic Publis

逐渐降低。在强酸性条件下,因聚合物大分子链上的羧基氧 原子多处于质子化状态,失去其对 Pb²⁺ 的螯合能力,吸附率 较低; pH> 6 时,因铅的水解,吸附率也低;结果表明,Pb (II)–IIPs 对 Pb²⁺ 的最佳吸附率在偏酸性条件下出现;综合 考虑本实验选择 pH 为 6。

Fig 4 SEM micrographs of (a) unleached and (b) leached Pb(II)-IIPs

2.5 静态吸附过程的动力学特征

在 pH 为 6的最佳酸度下,不改变其他条件,分别考察 了不同的吸附时间 Pb(II)-IIPs 对 Pb²⁺ 吸附率的影响。聚合 物的静态动力学曲线如图 6 所示。结果表示,起始时吸附率 的增加较高,吸附时间为 2 5 h 时,吸附基本达到平衡,吸 附率可达到 96%,然后随着吸附时间的延长吸附率趋于稳 定。根据聚合物的静态吸附动力学曲线,本文将 2 5 h 选为 静态吸附时间。

2.6 吸附等温线和最大吸附量

于一系列 10 mL 比色管中分别加入不同浓度的 Pb²⁺ 标 准溶液,在室温下按实验方法处理后测定其吸附前后 Pb²⁺ 的浓度,计算 Pb(II)-IIPs 及 NIPs 对 Pb²⁺ 的吸附量,绘制 吸附等温线如图7.所示。结果表明: 随着 Pb²⁺F浓度的增加, 吸附量不断增加,当Pb²⁺ 浓度大于0.250 g・L⁻¹时,吸附量 就开始达到饱和了,而后趋于稳定。此时 Pb(II)-IIPs及 NIPs 对 Pb²⁺ 的平衡吸附量分别达到 40.2及 20.5 mg・g⁻¹, 且其吸附曲线趋势基本与 Langmuir 吸附等温线一致。Pb (II)-IIPs 和 NIPs 相比较, Pb(II)-IIPs 对 Pb²⁺ 的吸附量为 NIPs 对 Pb²⁺ 的吸附量的 2 倍左右,表现出较好的离子印迹 效果。

Fig 7 Adsortion isotherm of the Pb(II)-IIPs and NIPs

Table 1 Effect of different desorption solvent on the recovery of Pb(II)

Desorption solvent	Co/(mol• L-1)	Recovery/%				
H Cl	1	89.0				
	2	93 3				
	3	99.6				
$\mathrm{H}\mathrm{N}\mathrm{O}_3$	1	65 2				
	2	71.2				
	3	89.3				
H_2SO_4	1	75 1				
	2	75 8				
	3	76 4				

27 解吸剂的选择

物前加口 Ib 50吸附量,绘制 按实验方法,分别用不同浓度的 H Cl, H N O₃, H₂SO₄ 50吸附量,绘制 对含 Pb(Ⅱ)–ⅢPs 进行解吸,分别考察了不同浓度的不同解 24. 浓度的增加 对含 Pb(Ⅱ)–ⅢPs 进行解吸,分别考察了不同浓度的不同解 Electronic Publishing House. All rights reserved. http://www.cnki.net 吸搅对 Pb²⁺ 解吸率的影响,结果见表 1。在室温下 3 mol• L⁻¹的 HCI 溶液对 Pb²⁺ 的解吸效果最好,所以本实验选择 3 mol•L⁻¹ HCI 为解吸剂。

2.8 选择性实验

选用一组与 Pb²⁺ 相同价态并性质相近的 Cd²⁺, M n²⁺, Cu²⁺ 和 Zn²⁺,调节 pH 为 6,固定各种离子浓度为 10 mg• L⁻¹,采用静态吸附实验测得 Pb(II)-IIPs 和 NIPs 对各种离 子的吸附量,由 $\Delta Q = Q_{Pb(II)-IIPs} - Q_{NIPs}, D = (Co - Ce)V/CeW, <math>\alpha_{Pb/M} = D_{Pb}/D_M \Delta k' = \alpha_{Pl(II)-IIPs}/\alpha_{NIPs}$ 式分别计 算出特异吸附量⁽¹⁶⁾(ΔQ)、分配系数(D)、共存离子条件下对 Pb²⁺的选择性系数(a)和相对选择性系数(k'),考察了 Pb (II)-IIPs 对模板离子的选择性。结果见表 2。

Table 2	Distribution of	coefficient,	selecti vity	and relative	selectivity	coefficient of	Pb(II)	-IIPs and NIPs
---------	-----------------	--------------	--------------	--------------	-------------	----------------	--------	----------------

M et al ion	Con. /	$Q_{\mathrm{Pb(II)}-\mathrm{IIps}}$	$Q_{ m NIPs}$	${}^{\Delta Q}$	Pb(II)–IIPs		NIPs		ť
	(mg• L- 1)	/(mg• L-1)	$/(m g \bullet L^{-1})$	/ (mg • L ^{- 1})	D	α _{Pb/ M}	D	$\alpha_{\rm Pb/M}$	- к
Pb ²⁺	10	1. 223	0. 378	0 845	0 315	-	0 047	-	_
Cd^{2+}	10	0 350	0. 319	0 031	0 042	7.5	0 038	1. 2	6 25
Cu 2+	10	0 260	0. 248	0 012	0 030	10 5	0 028	1.7	6 18
M n $^{2+}$	10	0 129	0. 120	0 009	0 014	22 5	0 013	36	6 25
Zn ²⁺	10	0 175	0. 162	0 013	0 019	16 6	0 018	2 6	6 38

从表 2 可知, 在相同条件下, Pb²⁺ 在 Pb(II)-IIPs 中的 分配明显高于在 NIPs 中的分配。虽然这些竞争离子和 Pb²⁺ 的电荷相同、大小相近, 和丙烯酸中的 氧原子也有较高的亲 和力, 但 Pb(II)-IIPs 对 Pb²⁺ 仍然呈现了较高的选择性, 其 相对选择性系数大于 6 18。这是因为 Pb(II)-IIPs 经洗脱 后,留下功能基团和立体结构与模板离子 Pb²⁺ 相匹配的空 穴,此空穴对 Pb²⁺ 具有特异的识别能力,由于功能基团和特 定孔穴的同时作用, Pb(II)-IIPs 表现出特异的选择性。

References

- [1] YANG Ke-di(杨克敌). Trace Elements and Health(微量元素与健康). Beijing: Science Press(北京:科学出版社), 2003. 40.
- [2] JIANG Zhongyi, YU Yingxia, WU Hong(姜忠义,喻应霞,吴 洪). J. Membr. Sci.(膜科学与技术), 2006, 26(1): 78.
- [3] YANG Lü-wen, LIU Han-mao, QU He-mi, et al(杨律文, 刘含茂, 屈贺幂, 等). Chinese J. Appl. Chem. (应用化学), 2008, 25(2):
 137.
- [4] CAO Xi-min, LIAO Ling, DU Li-ming(曹玺珉, 廖 玲, 杜黎明). Chinese J. Appl. Chem. (应用化学), 2008, 25(1): 43.
- [5] HUI Yong-qing, ZHONG Zhi-jing, HE Xiao-bo, et al(辉永庆, 钟志京, 何小波, 等). Chinese J. Appl. Chem. (应用化学), 2009, 26 (6): 721.
- [6] Praveen R S, Daniel S, Prasada R. Talanta, 2005, 66: 513.
- [7] Andac M, Mirel S, Senel S, et al. Int. J. Biol. Macromol., 2007, 40 (2): 159.
- [8] Otero R J, Moreda P A, Bermejo B P, et al. Anal. Chim. Acta, 2008, 630(1, 7): 1.
- [9] Sham sipur M, Fasihi J, Khanchi A, et al. Anal. Chim. Acta, 2007, 599(2): 294.
- [10] Candan N, Ttizmen N, Andac M, et al. Mater. Sci. Eng. C, 2008, 29(1, 1[F8]): 144.
- [11] Metilda P, Prasad K, Kala R, et al. Anal. Chim. Acta, 2007, 582(1): 147.
- [12] Sobhi D, Prahhakara Rao P, Prasada Rao T. Anal. Chim. Acta, 2005, 536(12): 197.
- [13] PENG Hong-yun, YANG Xiao-e(彭红云、杨肖娥). Chinese J. Anal. Chem. (分析化学), 2006, 34(8): 1190.
- [14] Pouchert C J. The Aldrich Library of Infrared Spectra Ed. 3, Aldrich, Wisconsin, 1981.
- [15] Kanekiyo Y, Inoue K, Ono Y, et al. Tetrahedron Letters, 1998, 39: 8821.
- [16] Feas X, Seijas J A, Vazquez Tato M P, et al. Anal. Chim. Acta, 2009, 63(2, 12): 237.

Preparation of Pb²⁺ Imprinted Acrylic Acid *co*-Styrene and Analysis of Its Adsorption Properties by FAAS

Shawket Abliz, Abdiryim Supahun, WANG Ji-de, Ismayil Nurulla^{*} College of Chemistry and Engineering, Xinjiang University, Urumqi 830046, China

Abstract With lead ion template, acrylic acid as functional monomer, potassium persulfate as initiator, strytrene as framework monomer, lead ion imprinted polymers(Pb(II)-IIPs) were prepared using free emulsion polymerization method. The structure and morphology of the polymers were analyzed by UV-spectra, FTIR and scanning electron microscopy. The adsorption/ desorption and selectivity for Pb²⁺ were investigated by flame atomic absorption spectrometry (FAAS) as the detection means. The results show that compared with non-imprinted polymers(NIPs), the Pb(II)-IIPs had higher specific adsorption properties and selective recognition ability for Pb(II). The relative selectivity coefficient of Pb(II)-IIPs for Pb(II) was 6 25, 6 18, 6 25 and 6 38 in the presence of Cd(II), Cu(II), Mn(II) and Zn(II) interferences, respectively. The absorption rate was the best at the pH of adsorbent solution of 6, Adsorption rate reached 96% during the 2 5 h static adsorption time. Using 3 0 mol· L⁻¹ HCl as the best desorption solvent to desorb the adsorbents, the desorbtion rate reached 98%. Under the best adsorption conditions, the adsorption capacity of Pb(II)-IIPs for Pb(II) was found to be 40 mg • g.⁻¹

Keywords Leadion; Ion imprinted polymer; Acrylic acid; Adsorption

(Received Sep. 15, 2010; accepted Dec. 10, 2010)

* Corresponding author