May , 2 0 0 6

Chinese Journal of Spectroscopy Laboratory

2-羟基-N-甲基乙酰苯胺的合成和表征

郑灵芝^① 周忠诚 舒万艮 (中南大学粉末冶金国家重点实验室 长沙市 410083)

摘 要 以 N-甲基苯胺、氯乙酰氯、无水醋酸钠、甲醇等为原料,经乙酰化,酯化及酯交换反应合成了 2-羟基-N-甲基乙 酰苯 胺,三 步总 收率为 88.0%。N-甲基苯胺、氯 乙酰 氯在三 乙胺 的催 化下,按 $n(C_6H_5NHCH_3):n[ClCH_2C(O)Cl]:n[N(C_2H_5)_3]=1:1.05:1$,经乙酰化反应得到 2-氯代-N-甲基乙酰苯胺(I),收率为 93.8%;(I)与无水醋酸钠在相转移催化剂四丁基溴化铵的存在下,按 n(I):n(NaOAc)=1:1.2,经酯化反应合成了 2-乙酰氧基-N-甲基乙酰苯胺(II),收率为 97.3%;(II)与甲醇按 $n(II):n(CH_3OH)=1:10$,在氢氧化钾的催化下,进行了酯交换反应得到 2-羟基-N-甲基乙酰苯胺(III),收率为 96.4%。并利用红外、质谱和元素分析,对各产物进行了表征,确认了分子结构。

关键词 2-羟基-N-甲基乙酰苯胺, 2-乙酰氧基-N-甲基乙酰苯胺, 2-氯代-N-甲基乙酰苯胺, 合成。 中图分类号: 0.657. 33: 0.657. 63 文献标识码: A 文章编号: 1.004-81.38(2006) 0.3-0.533-0.6

1 引言

- 2-羟基-N-甲基乙酰苯胺(III) 是除草剂苯噻草胺的重要中间体, 其合成是苯噻草胺的合成的关键技术之一。根据起始原料的不同, 其合成方法主要有两种:
 - (1) 以羟乙酸和乙酰氯为起始原料,经三步反应制得[1-4]

$$HO$$
— CH_2 — C — OH + CH_3 — C — CI $\xrightarrow{SOCl_2}$ CH_3COOCH_2C — CI (收率 70%)

 CH_3C — OCH_2C — N — OCH_2C — N — OCH_2C — OC

这是最初合成中间体Ⅲ的方法, 其缺点主要是收率偏低, 三步总收率只有44.5%。

(2) 以氯乙酰氯和 N-甲基苯胺为起始原料,经二步或三步反应制得[5-9]

① 联系人, 电话: (0731) 8836664; E-mail: zk 8877553@163. com

作者简介: 郑灵芝(1967一), 女, 湖南省宁乡县人, 硕士, 工程师, 主要从事有机化学研究。

收稿目期。2005-120 接常日期。2006-01-19 ournal Electronic Publishing House. All rights reserved. http://www.c

这是目前国内^[9] 外研究较多的方法,其突出的优点是收率较高,但是,所用的原料都是化学纯或分析纯的,也没有见到对产物及中间体的红外、质谱的文献报道。考虑到工业化的要求,作者选用大部分工业纯试剂和少量化学纯试剂,以氯乙酰氯和 N -甲基苯胺为起始原料,经乙酰化,酯化及酯交换反应,成功地合成了 2-羟基-N-甲基乙酰苯胺^[10],并对各中间体及目标物进行了红外、色谱-质谱联用及元素分析分析。

2 实验部分

2.1 试剂与仪器

N-甲基苯胺(工业纯), 氯乙酰氯(工业纯), 氢氧化钠(化学纯), 氢氧化钾(化学纯), 甲苯(工业纯), 三乙胺(工业纯), 无水醋酸钠(化学纯), 甲醇(工业纯)。IR 测试仪器为美国 Analect 公司产 AQS-20 型傅里叶变换红外光谱仪, KBr 压片。GC-MS 联用的测定仪器为日本岛津公司产 GC17A型气相色谱仪, QP5000 型质谱仪。Perkin Elemer 240型元素分析仪(美国热电公司)。

2.2 合成

2.2.1 2-氯代-N-甲基乙酰苯胺(I)的合成

在 500mL 三口烧瓶中加入 32. 8g(0. 3mol) N —甲基苯胺, 32g(0. 3mol) 三乙胺, 以及 300mL 甲苯, 开动搅拌器搅拌, 滴加 36. 3g(0. 315mol) 氯乙酰氯, 滴完后升温回流 $4h(115-120^{\circ})$, 反应完全后, 冷却, 过滤, 滤液用水洗至中性, 分层, 水层用甲苯萃取, 合并有机层, 用无水 M_gSO_4 干燥过夜, 然后蒸馏回收甲苯, 粗产物在甲苯中结晶, 51. 7g, 收率 93. 8%, mp: 71—72°。 $IR(KBr, cm^{-1})$: 3055, 2955. 7, 1687, 1594. 5, 1496. 8, 1404. 2, 1388. 8, 786. 9, 704. 6, 555。 $M_S(m/Z)$: 185(M+2), 183(M), 148, 134, 106, 77, 51, 43。

2.2.2 2-乙酰氧基-N-甲基乙酰苯胺(II)的合成

© 1994-2010 China Academic Journal Electronic Publishing House. All rights reserved. http://www.c

在 $250_{\rm mL}$ 三口烧瓶中加入 $36.8_{\rm g}(0.2_{\rm mol})$ 2-氯代-N-甲基乙酰苯胺(I)、 $20_{\rm g}(0.24_{\rm mol})$ 无水醋酸钠、 $1_{\rm g}$ 相转移催化剂四丁基溴化铵、 $100_{\rm mL}$ 甲苯,搅拌升温,在 114—118 $^{\circ}$ 回流 $4_{\rm h}$,反应完全后,冷却,过滤固体,蒸馏回收甲苯,粗产物在甲苯中结晶, $40.3_{\rm g}$,收率 97.3%, $_{\rm mp}$: 54—56 $^{\circ}$ $^{\circ$

2.2.3 2-羟基-N-甲基乙酰苯胺(Ⅲ)的合成

$$\begin{array}{c} O \\ O \\ O \\ C \\ CH_{3} \\ \end{array} \begin{array}{c} O \\ CH_{3} \\ CH_{3} \\ CH_{3} \\ \end{array} \begin{array}{c} O \\ CH_{3} \\ CH_{3} \\ CH_{3} \\ CH_{3} \\ \end{array} \begin{array}{c} O \\ CH_{3} \\ CH_{4} \\ CH_{$$

在 $250_{\rm mL}$ 三口烧瓶中加入 $41.4_{\rm g}(0.2_{\rm mol})$ 2-乙酰氧基-N-甲基乙酰苯胺(II),67. $4_{\rm g}(2_{\rm mol})$ 甲醇, $1_{\rm g}$ 氢氧化钾,加热升温,回流 $3_{\rm h}$,反应完全后,冷却,过滤少量固体物,蒸发,粗产物在甲苯中结晶 $32_{\rm g}$,收率 96.4%,mp:52-53%。 IR(KBr, cm $^{-1}$):3420.6、3060.6、2926.8、1661.4、1594.5、1496.8、1368.2、1296.2、1095.6、771.5、699.5、571。 MS(m/Z):165(M)、134、106、77、51、43。

3 结果和讨论

3.1 合成条件的选择

(1) 在 2-氯代-N-甲基乙酰苯胺(I) 的合成中, 我们分别考察了催化剂、加料顺序、氯乙酰氯用量、反应温度和时间、氯乙酰氯滴加时间和温度、甲苯用量对反应的影响。我们发现本反应在碱性条件下容易进行, 而三乙胺更可取。

(2) 在 2-乙酰氧基-N-甲基乙酰苯 胺(II)的合成中,我们分别考察了催化剂、无水醋酸钠用量、反应时间、溶剂用量 对反应的影响。我们发现在这些影响因素中,其中催化剂对反应的影响最大。

催化剂对收率的影响见表 1。由表 1可知,四丁基溴化铵优于其他催化剂,其用量为每摩尔 2-氯--N-甲基乙酰替苯胺加入 5g 四丁基溴化铵。

(3) 在 2-羟基-N-甲基乙酰苯胺(III) 的合成中, 我们主要考察了催化剂、甲醇用量对反应的影响, 其结果见表 2 和表 3。从表 2 和表 3,可以看出在 Na₂ CO₃,

表 1 催化剂对收率的影响

2 复化		/出 //, 之山		
2-泉代	-N -甲基乙酰苯胺	催化剂		- 收率(%)
	用量(mol)	种类	用量(g)	W 1 (70)
	0. 2	苄基三乙基溴化铵	0. 5	83.9
	0. 2	四乙基溴化铵	0.5	81.2
	0. 2	十六烷基三甲基溴化铵	0.5	80.4
	0. 2	四丁基溴化铵	0.5	88.2
	0. 2	四丁基溴化铵	1.0	89.3
	0.2	四丁基 溴化 辖	1.5	89.5

表 2 催化剂对收率的影响

CH ₃ COOCH ₂ CON(Me)ph 用量	催化剂		收率(%)
(mol)	种类	用量(g)	以平(%)
0. 2	Na_2CO_3	1	86. 4
0. 2	N aO H	1	88. 5
0.2	VOII	1	90. 7

表 3 田醇用量对收率的影响

CH3COOH2CON(Me)ph 用量	KOH 用量	甲醇用量	收率
(mol)	(g)	(mol)	(%)
0. 2	1	0. 2	74. 6
0. 2	1	1	94. 2
0. 2	1	1.5	98. 3
0. 2	1	2. 0	98. 5
·			

NaOH, KOH 3 种催化剂甲,其中 KOH 的催化效果最好,而中醇为 2-乙酰氧基W中基乙酰苯W

胺(II)的10倍时,产物的收率已接近理论值。

3.2 产物的红外谱图解析

3.2.1 化合物 | 的 IR 谱图分析

```
3055cm<sup>-1</sup>
2955. 7cm<sup>-1</sup>
1687cm<sup>-1</sup>
1594. 5, 1496. 8cm<sup>-1</sup>
1404. 2cm<sup>-1</sup>
1388. 8cm<sup>-1</sup>
1301cm<sup>-1</sup>, 1260. 2cm<sup>-1</sup>
1121. 2cm<sup>-1</sup>, 1049. 3cm<sup>-1</sup>
786. 9cm<sup>-1</sup>, 704. 6cm<sup>-1</sup>
```

3.2.2 化合物 || 的 | R 谱图分析

 2947cm^{-1}

```
1748. 9cm<sup>-1</sup>
1682cm<sup>-1</sup>
1594c<sup>-1</sup>, 1496. 8cm<sup>-1</sup>
1393. 9cm<sup>-1</sup>
1283cm<sup>-1</sup>
1234. 5cm<sup>-1</sup>
1126cm<sup>-1</sup>, 1085cm<sup>-1</sup>, 1033. 9cm<sup>-1</sup>
776cm<sup>-1</sup>, 699cm<sup>-1</sup>
560cm<sup>-1</sup>
```

3. 2. 3 化合物Ⅲ的 IR 谱图分析

```
3420. 6cm<sup>-1</sup>
3060. 6cm<sup>-1</sup>
2926. 8cm<sup>-1</sup>
1661. 4cm<sup>-1</sup>
1594. 5cm<sup>-1</sup>, 1496. 8cm<sup>-1</sup>
1440cm<sup>-1</sup>
1368. 2cm<sup>-1</sup>
1296. 2cm<sup>-1</sup>
1095. 6cm<sup>-1</sup>, 1033. 9cm<sup>-1</sup>
771. 5, 699. 5cm<sup>-1</sup>
571cm<sup>-1</sup>
```

为苯环上 C—H 的伸缩振动 为—CH₂,—CH₃ 的 C—H 伸缩振动 为 **〈**C[—]O 的伸缩振动 为苯环骨架的伸缩振动 为 CH₃ 不对称弯曲振动 为 CH₂ 的对称弯曲振动 为 C—N 伸缩振动 为 E—N 伸缩振动 为单取代苯环上 C—H 的面内弯曲振动 为单取代苯环上 C—H 的面外弯曲振动 为单取代苯环的②—C—C 的振动

为 CH₂, CH₃ 的 C—H 伸缩振动 为酯键中 C=O 的伸缩振动 为酰胺键中 C=O 的伸缩振动 为苯环骨架的伸缩振动 为 CH₂ 的对称弯曲振动 为 C—N 的伸缩振动 为 C—O 的伸缩振动 为 E—O 的伸缩振动 为单取代苯环上 C—H 面内弯曲振动 为单取代苯环上 C—H 的面外弯曲振动 为单取代苯环②—C—C 振动

为 O—H 的伸缩振动 为苯环上 C—H 的伸缩振动 为 CH₃, CH₂ 的 C—H 伸缩振动 为 CC=O C=O 的伸缩振动 为苯环骨架的伸缩振动 为 CH₃ 不对称弯曲振动 为 CH₂ 的对称弯曲振动 为 CH₂ 的对称弯曲振动 为 C—N 伸缩振动 为单取代苯环 C—H 的面内弯曲振动 为单取代苯环上C—H 的面外弯曲振动 为单取代苯环上的②—C—C 振动

- (1) 从分子结构来看, 化合物 I、化合物 I、化合物 II、化合物 III的差别在于与亚甲基相连的基团不同, 分别为氯原子、乙酯基、羟基, 这种差别也反映在他们红外光谱的不同。
- (2) 在化合物 II 的 IR 谱图中,有两个 C \Longrightarrow O 的伸缩振动峰,分别为 1748.9 cm $^{-1}$ 和 1862 cm $^{-1}$ 。 1748.9 cm $^{-1}$ 是酯键上的 C \Longrightarrow O 的伸缩振动峰。而在化合物 II 和化合物 III 的 IR 谱图中只有一个 C \Longrightarrow O 的伸缩振动峰,分别为 1867 cm $^{-1}$ 和 1661.4 cm $^{-1}$ 。
 - ©(3)9在化台物III的1Ra管图中,有nal不羟基的伸缩振动峰,House 3421cm C这是化合物田的特W.

征峰, 化合物 I 和化合物 II 没有这样的峰。由于化合物 I 的 IR 谱图中 C-CI 键的伸缩振动频率处于指纹区, 不能完全确认有氯原子的存在。

3.3 产物的质谱谱图解析

3.3.1 化合物 I 的 MS 联用分析

3. 3. 2 化合物 || 的 MS 联用分析

3.3.3 化合物III的 MS 联用分析

在化合物 I 的质谱图中,分子离子峰 M^+ (m/Z=183) 的峰高约是[M+2]⁺ 的 3 倍,这种峰模式可以确认在化合物 I 中有一个氯原子。除此之外,还有 $m/Z=148[M-Cl]^+$, $m/Z=134[M-CH_2Cl]^+$, $m/Z=106[N-P基苯胺]^+$ 等碎片离子峰,以及 m/Z=77,51,50 为苯环的特征峰。

化合物II和化合物III质谱图的碎裂模式与化合物I相似,但是各个峰的相对强度不同。

3.4 产物的元素分析

产物的元素分析结果见表 4。 联系化合物 I、化合物 II、化合物 III的 IR 和 MS 谱图,可以确认所合成的产物就是目标物。

表 4 产物的元素分析结果(括号内为计算值)(%)

		,	
产物	С	Н	N
I	58. 78(58. 86)	5. 52(5. 45)	7. 54(7. 63)
II	63. 84(63. 77)	6. 32(6. 28)	6. 58(6. 76)
III	65. 52(65. 45)	7. 45(7. 33)	8. 32(8. 48)

4 结论

- (1) 以氯乙酰氯和 N -甲基苯胺为起始原料成功地合成了 2-羟基-N -甲基乙酰苯胺,该工艺合成反应条件温和,对设备无特殊要求,在我国具有工业化前景。
 - (2) 三步总收率达到88.0%,比以氯乙酸为起始原料的合成路线¹¹(44.5%)有了显著的提高。
 - (3) 经元素分析、红外和质谱分析,确认了产物的分子结构。

参考文献

- [1] 李树人. 苯噻草胺的合成[J]. 农药, 1994, 33(6): 29-31.
- [2] Joachim D H. & Hydroxy Carboxylix Acid Amides and Intermediates in Their Manufacture [P]. DE: 3038598, 1980-10-13.
- [3] Heinz F. Substituted Carboxy lic Acid Amide and Their Use as Herbicides [P]. DE: 2822155, 1979–11–12.
- [4] Heinz F. Herbicidal Substituted Carboxylic Acid Amide P]. DE: 2903966, 1980-08-07.
- [5] Joachim D H. & Grand Carboxylic Acid Amides P]. DE: 2904490, 1979-02-07.
- [6] Andreas D, Theodor P, Siegfried P. Preparation of \(\omega(Acylox y)\) Carbox ylic Anilides P]. EP: 726248, 1996-08-14.
- [7] Joachim D H. & Hydroxy Carboxyli: A cid Amide Compounds [P]. US: 4334073, 1982-01-08.
- [8] Toshio Y. Prepartion of Glycol A cetates as Intermediates for Herbicides [P]. JP: 0532096, 1993-12-03.
- [9] 庞怀林, 陈联红, 杨剑波等. 除草剂苯噻草胺的合成[]]. 湖南 化工, 1998, 28(6):5-6.
- [10] 周忠诚 除草剂-苯噻草胺的合成[D]. 长沙: 湖南大学, 1999. 1. [1994-2010 China Academic Journal Electronic Publishing House. All rights reserved. http://www.c

Synthesis and Characterization of 2-Hydroxy-N-Methyl Acetanilide

ZHENG Ling-Zhi ZHOU Zhong-Cheng SHU Wan-Yin (State Key Laboratory of Power Metallur gy, Central South University, Chang sha 410083, P. R. China)

Abstract The 2-hydroxy-*N*-methyl acetanilide was synthesized with total yield of 88.0% by three steps. *N*-Toluidine reacts with chloroacetyl chloride in Triethanolamine with ratio of 1:1.05:1, and gives product of 2-chloride-*N*-methyl acetanilide(I) with yield of 93.8%; (I) reacts with sodium acetate anhydrous in tetrobuthyl ammonium bromide at the ratio of 1:1.2, and gives the product of 2-oxydiacetyl-*N*-methyl acetanilide (II) with yield of 97.3%; (II) reacts with methanol at ratio of 1:10, in potassium hydroxide, and gives the final product of 2-hydroxy-*N*-methyl acetanilide (III) with yield of 96.4%. The product was characterized by IR, H-HMR and chemical analysis.

Key words 2-Hydroxy-N-Methyl Acetanilide, 2-Oxydia-cetyl-N-Methyl Acetanilide, 2-Chloride-N-Methyl Acetanilide, Synthesis.

本刊可上网查阅

由于本刊在 2001—2005 年被 **(中国核心期刊** (**遴选**) **数据库》**收录,全文上网,因此,读者、作者均可直接上网查阅。网址:

http://www.periodicals.net.cn http://www.wanfangdata.com.cn http://gpsys.periodicals.net.cn http://gpss.chinajournal.net.cn

(上接本刊 2004 年第2 期 376 页)

美国化学文摘(CA)选登本刊论文摘要的最近情况

序号	作者姓名	论 文 題 目	此谱实验室》发表的 年、卷(期)、页	CA 选登的 卷(期)、编号
219	李国平	荧光光谱法测定血中的三氟拉嗪	2004, 21 (1), 179–180	141(6): 81623k
220	雷春华 朱小娟 雷丽红	N-(反式-4-异丙基-环己烷羰基)-D-苯丙氨酸的红外 光谱和质谱解析	2004, 21 (1), 106–108	141 (5): 76896 _x
221	李俊芬董 川杨 频	两种丹参酮化合物分子的荧光特性及分析方法的研究	2003, 20 (6), 821–825	141 (5): 768877s
222	孙曙光 王 洋 高文涛 张淑芬 杨锦宗	紫外吸收光谱研究 4.4′-二硝基二苯乙烯-2.2′-二磺酸稀溶液的光致顺反异构	2003, 20 (6) , 930–932	141 (5) 71204k
223	林旭聪 谢增鸿 郭良治林 坚 陈国南	铟(III) -8-羟基喹啉-核酸三元荧光体系的研究与应用	2003, 20 (6) , 810–814	141 (5): 67565m
224	曹书霞 韩华云 鲍改玲	红外光谱法在癌症早期诊断的应用	2003, 20 (6), 924–926	141 (5): 67436 _v
225	戴 华 袁智能 李拥军高晓兰 易伟亮	发乳中多种尼泊金酯的测定方法	2004, 21 (1), 66-68	141 (4): 59166s
226	黄森科	阻抑高碘酸钠氧化依莱铬红 B 褪色光度法测定痕量 $Sn(\ II)$	2004, 21 , 109–111	141 (4): 59051a
227	周连文 刘彦钦 韩士田石 屹	、 加 / 4 田复甘苯甘、吡啉 / 1 火 火 度法 测点 痘具 织	2004, 21 (1), 24–26	141 (4): 59050z
228	李淮芬 谢成根	流动注射化学发光法测定邻苯二酚	2004, 21 (1), 13–15	141 (4): 59049f
229	杨红生 汪廷龙	铅火试金预富集——ICP-AES 测定铜阳极泥中的铂和钯	2004, 21 (1), 83–85	141 (4) 58789k
230	徐美奕 丁 航	绿茶和红茶中微量元素初级形态含量的研究	2004, 21 (1), 86–91	141 (4): 53259c
231 232	陈鹭平 吴抒怀	微波消化 ICP-AES 测定蕃茄粉中 8 种微量元素	2004, 21 (2), 352–354 2004, 21 (2), 343–345	141 (4): 53086u 141 (4): 53085t
233	戴 华 李拥军 袁智能 黄志强 高晓兰	猪饲料中甲硝唑二甲硝咪唑,药物含量的 HPLC 法测定	2004, 21 (2), 313–316	141 (4): 53084s
234	翟继英	催化光度法测定蔬菜中痕量亚硝酸根	2004, 21 (2), 306–308	141 (4): 53083r