SAC - 2000催化剂在丙烯腈装置的工业应用

王效斗

(中国石化齐鲁分公司腈纶厂, 山东淄博, 255068)

摘要 介绍 SAC - 2000型丙烯腈催化剂在中国石化齐鲁分公司腈纶厂 40 kt/a丙烯腈装置中应用的情况,装置综合水平达同行业较高水平。

关键词 丙烯腈 催化剂 工业应用

中图分类号: TQ426.94 文献标识码: B 文章编号: 1009-9859(2010)02-0100-04

中国石化齐鲁分公司腈纶厂丙烯腈装置 (简称丙烯腈装置)采用 BP公司专利技术,由中国石化兰州设计院设计,年产丙烯腈 25 k 1999年进行了国产化技术应用及扩能改造,成为国内第一套国产化技术示范装置。 2000年 5月,使用新型催化剂 MB - 98,产能提高到 40 k t/a。 2006年下半年,反应器丙烯腈单收下降为 77%,对企业效益产生了不利影响。公司决定更新催化剂,使用SAC - 2000催化剂。为确保该催化剂在装置上正常运行,2006年 10月整体更换,一次性装填 75 t开车一次成功,反应器丙烯腈单收大幅度提高,主要原料物耗大幅度下降,经济效益明显提高。

1 装置部分流程 (见图 1)概述

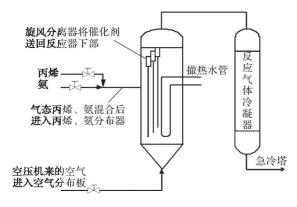


图 1 丙烯腈装置反应部分流程示意

如图 1所示, 气态丙烯、氨过热并混合后进入丙烯、氨分布器, 与经空气分布板的空气进行接触, 在 SAC - 2000催化剂的作用下, 生成丙

烯腈、乙腈、氢氰酸和少量杂质。反应是放热反应,产生的热量用撤热水带走,将反应温度维持在规定的范围内,反应气体夹带的大部分催化剂经旋风分离器被送回到反应器床层。其反应方程式如下:

$$CH_{2} = CHCH_{3} + NH_{3} + O_{2} \xrightarrow{\text{催化剂}}$$

$$CH_{2} = CHC = N + H_{2}O \qquad (1)$$

$$CH_{2} = CHCH_{3} + NH_{3} + O_{2} \xrightarrow{\text{催化剂}}$$

$$CH_{3}C = N + H_{2}O \qquad (2)$$

$$CH_{2} = CHCH_{3} + NH_{3} + O_{2} \xrightarrow{\text{催化剂}}$$

$$HC = N + H_{2}O \qquad (3)$$

2 SAC-2000催化剂更换准备工作及装填

2.1 丙烯、氨分布器及空气分布板的改造

1999年丙烯腈装置扩能改造时,反应器丙烯、氨分布器改为六重圆环结构,空气分布板喷嘴上方加了脊罩。通过对比国内多家丙烯腈装置反应器运行状况发现,目前的结构不适于 SAC-2000的使用。为确保催化剂性能,对反应器丙烯、氨分布器和空气分布板进行改造,去掉空气分布板上的脊罩,将丙烯、氨和空气混合方式改为对喷式。

2. 2 SAC-2000催化剂的装填过程 丙烯腈装置于2006年10月10日0:00停止

收稿日期: 2010- 01- 25. 修回日期: 2010- 03- 10。 作者简介: 王效斗, 高级工程师。 1989年北京化纤工学院毕业, 从事丙烯腈生产 20多年, 现为中国石化齐鲁分公司腈纶 厂副总工程师。电话: 0533- 3576800。 进料, 5: 00反应器内催化剂向催化剂贮槽输送完毕。11日 8 00开始对反应器空气分布板、料腿内催化剂进行抽出、清理。之后对反应器进行水冲洗,保证反应器内部施工顺利进行以及反应器内尽量不残留旧催化剂。12日 8 00反应器更换内构件施工开始;13日催化剂贮槽内旧催化剂全部卸出,开人孔对催化剂贮槽进行检查和彻底清扫;清理完毕开始抽入新催化剂;16日 18 00,75t 新催化剂抽装完毕。

3 反应器开工及工艺参数优化

3.1 反应器开工情况

2006年 10月 19日 2 10丙烯腈装置点开工炉,反应器升温; 5 20反应器温度达 250 ℃,系统热紧后开始向反应器内压催化剂。速度保持在不超过 3 t/h,以防止催化剂的跑损,同时每小时自急冷塔下段取样一次,观察催化剂的跑损情况。21日 8 40催化剂输送完毕,完全符合要求。反应器操作正常后催化剂显示藏量 66.7 t 床层高度为 7.5 m。21日 11:18反应器温度达 380 ℃,反应器烧氨; 12 36反应器温度达到 430 ℃左右,尾氧降至 7% (摩尔百分含量,下同),反应器投丙烯。22日 17:00成品塔侧线出料合格,同时急冷塔下段、大循环水质明显好于催化剂更换前。

3.2 反应器操作参数

3.2.1 催化剂投用初期的操作参数

根据 SAC – 2000催化剂的特点, 反应器操作条件初步设定为: 床层温度 $430 \sim 432$ °C; 顶压: 0.055MPa 氨比(摩尔比, 下同): 1.30, 空比(摩尔比, 下同): 10.0, 经取样分析, 丙烯腈单收达到了 82%。随后根据单收状况及催化剂的特性, 对

反应条件进行了多次调整。在反应器运行 1周后,反应器开始补加 SAC-2000催化剂,补加量严格按照生产 1 t丙烯腈加 0.4 kg催化剂; 2周内反应器氨比保持在 1.25左右; 3周内反应器空比保持在 9.6左右; 3周后催化剂初活性降低,空比降为 9.5 接触时间要求保持在 9.5 s。

3.2.2 工艺参数的优化

2007年 2月至 4月中旬,反应器丙烯腈单收 下降,杂质生成量增多,急冷塔上段 pH 计频繁处 理,过滤器每周清理两次,每次都清出较多聚合 物, 四效残液泵出口过滤器清理频次也加大, 硫铵 液中焦油增多,反应状况恶化。经分析,认为原因 有二: ①丙烯原料质量波动大, 乙烯等杂质含量远 远超过要求值,对反应状况影响较大:②催化剂达 到初活性后未适时优化反应工艺条件。3月中 旬,对一效进行了在线处理,清出大量焦状物,4 月中旬,对回收塔再沸器进行了处理。 4月中下 旬,原料质量大幅度提高,达到了要求,反应温度 也逐渐由 435 ℃提高到 440 ℃, 反应状况逐渐改 善,系统也变得较为清洁与稳定。但历时近一个 多月的恶化反应状况,带来了难以挽回的结果,反 应气体冷却器压差增大, 回收塔再沸器换热效果 变差, 四效蒸发量不足, 一效阻力降增大。实践证 明,原料中的部分杂质含量超标对反应器的反应 状况影响较大; 另外对 SAC - 2000催化剂来说, 在催化剂使用初期,因其活性好,在较低的反应温 度下就能获得较高的单收及比较清洁的生产系 统,运行一段时间后,所需的反应温度会越来越 高.相应提高反应温度.找到催化剂性能相对稳定 的适宜温度,就能保证反应活性及系统的清洁度。 反应器参数变化情况见表 1。

表 1 反应器参数变化情况

时间	氨比 /m ol· mol l	空比 /m ol• m ol ⁻¹	反应温度 /°C	反应线速 /m• s⁻1	尾氧 (摩尔分数),%	顶压 /kPa
2006 - 11	1. 204	9. 53	429. 8	0. 77	3. 21	50. 54
2006 - 12	1. 209	9. 55	431. 3	0. 79	3. 33	50. 55
2007 - 01	1. 207	9. 55	432. 5	0. 79	2. 18	50. 45
2007 - 02	1. 204	9. 52	434. 9	0. 78	2. 08	50. 89
2007 - 03	1. 225	9. 54	435. 4	0. 79	2. 14	51. 80
2007 - 04	1. 222	9. 57	438. 2	0. 80	2. 07	51. 87
2007 - 05	1. 220	9. 59	440. 4	0. 80	1. 86	50. 77
2007 - 06	1. 220	9. 60	440. 7	0. 79	1. 63	52. 24
2007 - 07	1. 220	9. 61	440. 8	0. 78	1. 56	53. 00
2007 - 08	1. 220	9. 60	441. 4	0. 78	1. 43	55. 10
2007 - 09	1. 210	9. 60	441. 3	0. 78	1.51	58. 00
2007 - 10	1. 200	9. 60	441. 6	0. 77	1. 76	59. 00

4 SAC-2000催化剂的使用效果

4.1 反应过程气体分析结果 (见表 **2**) 由表 2可见, SAC - 2000在 1 a的运行过程

中,催化剂在较高的生产强度下,表现出较好的反应性能,丙烯腈单收保持在 79% 以上,丙烯转化率保持在 98% 左右。

表 2 反应过程气体分析结果

摩尔分数,%

时间	丙烯腈	乙腈	丙烯醛	丙烯酸	氢氰酸	一氧化碳	二氧化碳	腈氰收率	未反应丙烯	未反应氨
2006 - 1	1 81. 73	2. 44	0. 23	1.06	4. 95	2. 49	5. 87	89. 12	1. 23	7. 99
2006 - 1	2 80. 64	2. 36	0. 19	0.97	5. 41	2. 55	6. 07	88.40	1.81	8. 58
2007 - 0	80. 43	2. 52	0. 25	0.92	5. 39	2. 52	5. 84	88. 33	2. 13	8. 58
2007 - 0	80. 39	2. 30	0. 34	0.99	5. 59	2. 54	5. 78	88. 27	2.07	9. 00
2007 - 0	80. 24	2. 32	0. 26	0.72	5. 60	2. 62	5. 94	88. 15	2.30	9. 47
2007 - 0	79. 75	2. 37	0. 32	1. 20	5. 70	2. 59	5. 89	87. 82	2.08	9. 90
2007 - 0	79. 87	2. 17	0. 39	1.00	5. 84	2. 64	6. 01	87. 88	2.08	10. 03
2007 - 0	79. 94	2. 00	0. 26	0.96	5. 98	2. 78	6. 22	87. 91	1.86	10. 11
2007 - 0	79. 34	2. 09	0. 23	0.99	6.06	2. 87	6. 53	87. 48	1. 89	10. 15
2007 - 0	79. 39	2. 13	0. 22	0.94	6. 16	2. 83	6. 47	87. 68	1.86	10. 87
2007 - 0	9 79. 26	2. 01	0. 20	0.87	6. 28	2. 87	6. 66	87. 55	1. 85	11. 70
2007 - 1	0 79. 50	1. 89	0. 23	0.36	6. 48	2. 90	6. 80	87. 89	1. 84	11. 79

4.2 产品质量情况 产品质量情况见表 3。

表 3的运行数据表明,产品质量各项指标均达到优级品标准(GB7717.1-94)。

表 3 产品质量情况

时间	水,%	总氰 /m g* kg ⁻¹	乙腈 /m g* kg ⁻¹	丙烯醛 /m g* kg ⁻¹	丙酮 /m g* kg ⁻¹	酸度	优级品率,%	备注
2006 - 11	0. 15	2	26	4	12	10.3	100	
2006 - 12	0. 18	2	22	4	16	10.4	100	
2007 - 01	0. 17	2	30	6	12	9. 0	100	
2007 - 02	0. 18	2	35	6	11	10.3	100	
2007 - 03	0. 23	2	30	5	17	10.7	100	产品
2007 - 04	0. 22	2	28	6	19	10.8	100	色度
2007 - 05	0. 27	2	19	4	21	12.6	100	均为
2007 - 06	0. 21	2	21	4	25	12. 1	100	5#
2007 - 07	0. 18	2	33	4	17	10.6	100	
2007 - 08	0. 19	2	33	4	19	10.6	100	
2007 - 09	0. 18	1	23	3	11	10.1	100	
2007 - 10	0. 20	2	28	4	13	9. 5	100	

4.3 物耗及精制回收率

换用 SAC - 2000催化剂后的物耗运行数据 见表 4。

表 4 物耗的运行数据 (月平均值) kg/t

时间	丙烯单耗	液氨单耗	时间	丙烯单耗	液氨单耗
2006 - 11	1 040. 50	498. 70	2007- 05	1 038. 43	503. 15
2006 - 12	1 040. 20	504. 40	2007- 06	1 038. 24	509. 82
2007 - 01	1 045. 06	503. 20	2007- 07 2007- 08 2007- 09	1 034. 25	504. 55
2007 - 02	1 045. 40	503. 00	2007- 08	1 037. 82	506. 24
2007 - 03	1 037. 60	507. 30	2007- 09	1 043. 75	501. 77
2007 - 04	1 040. 97	503. 80	2007- 10	1 042. 75	505. 12

注: 2006年、2007年丙烯腈行业产量加权平均值分别为: 丙烯 单耗 1 071 kg/t 1 071 kg/t 液氨单耗 511 kg/t 509 kg/t 由表 4可知,主要物耗指标达到同行业先进水平。 2007年 10月,在 SAC-2000运行 1 a后,对装置进行了连续 72 h的技术标定,标定结果: 丙烯腈收率为 79.66%,吨丙烯腈原料单耗 (折纯): 丙烯 1036.73 kg 氨 508.13 kg 装置精制回收率为 96.04%。

4.4 环保排放

四效排放情况见表 5.

由表 5可知,除上半年丙烯原料不合格期间 四效出水化学耗氧量较高外,其余时间污水排放 均符合环保排放标准 (工厂执行标准为: 总氰小 于 $10\mu_{\rm g}/_{\rm g}$ 化学耗氧量小于 $3000\mu_{\rm g}/_{\rm g}$ $\mu_{\rm g}$ $\mu_{\rm g}$ 7~9)。生产实践表明, 四效运行状况与反应状况关系密切, 反应状况好, 杂质生成量少, 系统干净, 四效出水指标稳定达标; 反应状况不佳, 四效出水难以达标。

表 5 四效排放情况 μg/g

	18 3		rg/g
时间	总氰	化学耗氧量	μH
2007 - 01	4. 22	2 929. 00	8. 72
2007 - 02	3. 89	2 909. 00	7. 86
2007 - 03	4. 64	3 199. 50	8. 20
2007 - 04	4. 66	2 706.00	8. 64
2007 - 05	3. 81	2 463. 00	8. 28
2007 - 06	4. 46	2 353. 00	8. 47
2007 - 07	4. 88	2 332 00	8. 73
2007 - 08	5. 34	2 520.00	8. 73
2007 - 09	3. 25	2 230. 00	8. 65
2007 - 10	3. 38	2 322 00	8. 70
均值	4. 25	2596. 35	8. 50

急冷塔下段污水排放情况见表 6

表 6 急冷塔下段污水排放情况

项目	废水外送量 / t• h⁻¹	重组分 含量,%	系统聚合物 量 /kg• h ⁻¹	————— 吨丙烯腈 聚合物量 /kg
设计值	4. 3	11. 5	494 5	98. 9
标定值	3. 7	6. 72	248. 65	49. 73

由表 6数据可知, 急冷塔下段外排污水量及 重组分量较设计值有明显下降。

5 结论

40 kt/a丙烯腈装置采用 SAC - 2000催化剂后,装置综合水平达到同行业较高水平; 丙烯腈产品质量稳定,达到国标优级品; 系统水质较为清洁,利于装置长周期运行; 装置排放污水综合合格率明显提高。

INDUSTRIAL APPLICATION OF SAC – 2000 CATALYST IN 40 kt/a ACRYLONITRILE UNIT

W ang X iaodou

(A cry lon itrile F iber P lant of Q ilu B ranch Ca, SINOPEC, Z iba, Shandong, 255068)

Abstract Application of SAC – 2000 acrylonitrile catalyst in 40kt/a acrylonitrile unit in Q ilu acrylonitrile fiber plant was described. Generally, comprehensive property of the acrylonitrile unit reaches higher level in the same trade.

Key words acry lonitrile, catalyst industrial application

硫磺采集系统综合脱气的新方法

W orleyParsons开发了称为 RSC- D^{TM} ,即 Rameshni硫采集及脱气新工艺,作为脱气工艺的一种可选择性技术。从工业废气中脱除的液硫含有溶解在其中的 H_2 S,以 H_2 S,与 H_2 S平衡的形式存在。未经脱气的硫磺会产生讨厌的气味,更为不利的是影响着硫磺的研磨和增加固体硫的脆性,在某些情况下甚至会造成爆炸和死亡事故的发生。

脱气后的硫磺 H_2S 含量减少,当然也就降低了潜在的危险。尽管许多国家(包括美国)还没有具体要求,但硫磺脱气后 H_2S 含量小于 10×10^{-6} 这 个结果得到工业普遍认可。

本方法中,液硫采用液体喷射泵或喷射器最终泵入储存罐。新发明排除了受重力自流约束的影响、精简了管道设备布局、降低了阻塞问题、允许液硫收集器位于地面之上并远离克劳斯单元。 脱气是在竖直的容器中完成的,未脱气的硫磺与余热干躁的空气在填料床中以 50~100 Pa的压力逆流接触。由特殊设计的分布器引入上升的空气流,提供给多硫化物分解所需的氧气。通过搅拌液硫去除自由的 H_2 So

(殷树青 译自 W orleyParsons公司资料)