$LaCu_x Zn_{1-x} Al_{11}O_{19-\delta}$ 六铝酸盐催化剂分解 N₂O的催化性能^{*}

董留涛^{1,2} 宋永吉^{2**} 李翠清² 王 虹² 李 敏^{1,2} 王军利^{1,2} (1 北京化工大学, 北京, 100029, 2 北京石油化工学院, 北京, 102617)

摘 要 采用共沉淀法制备 Cu和 Zn取代的六铝酸盐 (LaCu_xZn_{1-x}A l₁, O₁₉₋₀ x 为 0, 0.2, 0.4, 0.5, 0.6, 0.8, 1)催化剂,考察了催化剂对 N₂O的分解活性.结果表明,在 1200C 焙烧 4 h可以形成完整的六铝酸盐 晶型, Cu和 Zn能够取代 A f⁺ 很好地促进六铝酸盐晶体结构的形成; LaCu_xZn_{1-x}A l₁O₁₉₋₀催化剂对 N₂O分 解有很好的催化活性,其中 LaCu_{0.8}Zn_{0.2}A l₁O₁₉₋₀活性最好.在 LaCu_xZn_{1-x}A l₁O₁₉₋₀六铝酸盐中, Cu为 N₂O 催化分解的主要活性元素,Zn有助于提高催化剂的稳定性,但 Zn在催化剂中的作用很小. 关键词 N₂O,分解,六铝酸盐,催化剂.

目前,国内外用于 N_2O 直接分解的催化剂主要有稀土氧化物及相关氧化物、复合金属氧化物 (包括钙钛矿型、尖晶石型等)、阳离子交换沸石、水滑石热分解产物、活性炭及金属氧化物改性的活性炭等.这些催化剂对 N_2O 的催化分解具有较好的中低温活性,特别是 (CuZn)_xA $_{b}O_4$ (x为 0.95—1.1) 尖晶石系列催化剂已广泛应用到工业生产中^[1].最近有文献报道将六铝酸盐催化剂用于 N_2O 的催化 分解^[2-3];具有很高的热稳定性和催化活性,且具有高强度和高的抗热冲击能力等特点^[4].

本研究采用共沉淀法制备 Cu和 Zn掺杂的六铝酸镧的 LaCu, Zn_{1-x}A l₁O₁₉₋。系列六铝酸盐催化剂, 考察了不同组成的 LaCu, Zn_{1-x}A l₁O₁₉₋。六铝酸盐对 N₂O催化分解的活性.

1 实验部分

1.1 催化剂的制备和表征

按 La(NO₃)₃• 6H₂O: Cu(NO₃)₂• 3H₂O: Zn(NO₃)₂• 6H₂O: Al(NO₃)₃• 9H₂O 摩尔比为 1:*x*: (1*x*): 11(*x* 为 Q 0.2 0.4 0.5, 0.6 0.8 1)准确称量. 将 La(NO₃)₃• 6H₂O, Cu(NO₃)₂• 3H₂O和 Zn(NO₃)₂• 6H₂O溶于适量的去离子水中配制成混合溶液,用硝酸酸化至 pH≈ 1,再向混合溶液中加 入 Al(NO₃)₃• 9H₂O 溶液,加热至 60℃并恒温,在剧烈搅拌下迅速加入饱和(NH₄)₂CO₃溶液并控制 pH 值在 7.5-8之间. 恒温搅拌老化 3h 离心分离沉淀物并洗涤,除去残留硝酸盐和碳酸盐,在 110℃下干燥 12h 研磨后置于马弗炉中 500℃焙烧 2h,然后在 1200℃下焙烧 4h得样品.

用日本岛津公司的 XRD-7000 X 光衍射仪进行样品组成分析,采用 Cu 靶, K_a 辐射源,入射波长 0.15418 m, 管电压为 40 kV, 管电流为 30 mA, 扫描范围 20 为 10° — 80°, 扫描速度 6°• m in⁻¹.

样品的比表面积 (BET)用 AUTO SORB-1-M P型物理吸附仪测定. 以高纯 N_2 气 (99.99%)为吸 附气体, A r气为载气, 测量前催化剂先进行真空处理, 后在液氮温度下进行 N_2 吸附, 测得比表面积.

程序升温还原 (TPR)采用 CH EM BORB2750型脉冲化学吸附仪,催化剂用量 100mg 温度范围 50-1000℃,升温速率 10℃・m in⁻¹,反应气组成 (体积比): H₂: A r= 10: 90, 流速 20m ŀ m in⁻¹. 1.2 催化剂的活性评价

催化剂活性评价是在常压固定床石英管微型反应器中进行的.反应管内径为 8mm,采用电炉加 热,程序升温控制仪控制炉温.催化剂粒径为 20-40目,催化剂用量约为 400mg 体积约为 1 m l 反应气组成(体积浓度)为: 12% N₂O, 80% 空气,其余为平衡气 N₂.反应气总流量为 80m l• m in⁻¹,

© 1994-2012 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

²⁰⁰⁸年4月2日收稿.

^{*} 国家自然科学基金资助项目 (No 20476012, No 20676017) 及北京市属、市管高校人才强教计划资助项目 (BJW R 20051102, PHR 200907129). ** 联系人, Tel (010) 81292124 E-mail songyong i@ bipt edu cn

对应的空速为 4800h⁻¹. 反应气及尾气的组成用 GC-4020气相色谱仪 (北京分析仪器厂)在线检测,六 通阀进样,以 H₂作载气 (流量为 30m l• m in⁻¹),填充柱为 Porapak Q,热导检测,柱温 50℃,检测器 温度 80℃,桥电流为 100mA. 考察催化剂在 300℃-700℃下催化分解 N₂O 的活性.

2 结果与讨论

2.1 XRD的结果

图 1是 LaCu_x Zn_{1-x}A $l_1O_{P-\delta}$ 催化剂的 XRD 语 34. 12°, 36. 10°, 39. 204°, 42. 68°, 44. 94° 和 66. 98°处出现了六铝酸盐的特征峰,说明在焙烧温 度为 1200℃下,基本可形成完整的六铝酸盐晶相. 当 x = 0时, Zn 能很好地进入六铝酸盐晶格结构中 取代 A I³⁺,形成了较强的六铝酸盐衍射峰. 当 x = 1时,图中出现了六铝酸盐和 CuO 的混合峰,有部分 Cu离子以 CuO 的形式存在,同时还有钙钛矿氧化 物 LaA D₃的特征峰,但六铝酸盐的特征峰较显著, 表明六铝酸盐晶格结构已经形成.

A rtizzu等^[5]发现 Cu²⁺主要存在于六铝酸盐中的 四面体上, Cu²⁺取代 A l^{+} 后,导致 M -O 键长,铜 离子具有很强的姜-泰勒效应,使它有很低的对称

图 1是 LaCu, Zn_{1-x}A h₁O₁₉₋₅催化剂的 XRD 谱图. 由图 1可以看出, 在 20为 18.82°, 32.04°,

239

图 1 LaCu_xZn_{1-x}A l₁O₁₉₋₅催化剂的 XRD 谱图 六铝酸盐,□ CuO,● LaA D₃

Fig. 1 The XRD patterns of the LaCu_x $Zn_{1-x} A \frac{1}{2} O_{19-\delta}$

性,导致四面体沿着三个轴线方向发生形变产生 C_3 ,对称性,因而 Cu^{2+} 只能少量取代 Al^{+} .部分 Cu离子会以 CuO 的形式存在.当 x为 0.2, 0.4, 0.5, 0.6和 0.8时, Cu和 Zn同时取代 Al^{+} ,形成了 较均一的六铝酸盐衍射峰,但衍射峰强度较弱.随着 x值的增大衍射峰的强度变化不大,表明 Cu和 Zn同时取代 Al^{+} 时可以促进六铝酸盐的形成.

2.2 BET的结果

由文献 [6]可知, A $_{1}$ O₃经 1200℃焙烧 3h后比表面积为 3m²・g⁻¹, 而 LaCu_x Zn_{1-x}A $_{11}$ O₁₉₋₆系列催 化剂 1200℃焙烧 4h后, 其比表面积明显大于 A $_{1}$ O₃,表现出较好高温稳定性. 其中 LaZnA $_{11}$ O₁₉₋₆具 有较大比表面积为 27.32m²・g⁻¹, 而 LaCuA $_{11}$ O₁₉₆的比表面较小只有 7.26m²・g⁻¹这是因为 Cu和 Zn 同时取代 A $_{1}^{3+}$,有部分 Cu离子以 CuO 的形式存在使其抗烧结能力减弱. 当 x 为 0.2, 0.4, 0.5和 0.6时,催化剂的比表面积分别为: 13.52m²・g⁻¹, 14.20m²・g⁻¹, 15.02m²・g⁻¹和 15.34m²・g⁻¹; 而当 x = 0.8时, LaCu_{0.8}Zn_{0.2}A $_{11}$ O₁₉₆的比表面积变化较大为 31.65m²・g⁻¹.

2.3 LaCu_x Zn_{1-x} A l₁O₁₉₋ 的程序升温还原(TPR)

利用程序升温还原 (TPR)来考察六铝酸盐催化剂 LaCu, Zn_{1-x} A l₁O_{19- δ} (x 为 Q 0. 5, 0. 8, 1)结构

图 2 LaCu_x Zn_{1-x}A $l_{11}O_{19-3}$ 的 TPR 图谱 Fig 2 The TPR spectra for LaCu_x Zn_{1-x}A $l_{11}O_{19-3}$ 中 *Cu*离子的可还原性. 图 2为 LaCu_k Zn_{1-x} A l_1 O₁₉₋₆ (x为 Q, 0.5, 0.8, 1)的程序升温 H₂还原(TPR) 图谱. 由图 2可知, 当 x = 0时, Zn取代六铝酸盐 LaZnA l_1 O₁₉₋₆在温度 380℃时出现在 ZnO 还原峰, 说明有部分 Zn离子以 ZnO的形式存在;在 600℃以 后呈现一基本平缓的曲线,没有出现明显还原峰, 说明 Zn在六铝酸盐晶格与相邻其它原子有较强的 键合能力,较难还原. 当 x = 1时, Cu取代六铝酸 盐 LaCuA l_1 O₁₉₋₆在 182℃和 260℃时,出现了 CuO 的还原峰. 表明样品中可还原的 CuO 以两种形式存 在,一种较易还原,而另一种较难还原. 低温还原

峰应归属为非晶态或者高分散的 CuO 物种; 高温还原峰一般为体相的 CuO^[7]. 在 900℃后出现还原 © 1994-2012 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net 峰, 六铝酸盐晶格中的 Cu^{2+} 被还原. 当 x为 0.5, 0.8时, Cu和 Zn同时取代六铝酸盐, 由于六铝酸盐的特殊结构, Zn的加入使 CuO 的还原峰右移, 在 200—400℃之间出现还原峰; 在 900℃以后出现了明显的还原峰. 表明有部分 Cu离子进入了六铝酸盐晶格中, 为催化剂的主要活性组分. 2.4 催化剂的活性评价

由表 1可见, 催化剂起始反应温度较高 ($T_{10\%} > 600$ °C). 当 x = 0时, Zn单独取代 LaZnA l_1O_{19-5} 的活性比 LaA l_2O_{19-5} 有所降低, 表明 Zn在六铝酸盐中对 N₂O的催化分解没有活性作用.

表 1 LaCu_z Zn_{1-x} A 1₁O₁₉₋₅催化剂的催化活性

催化剂	<i>Т</i> _{10%} /°С	Т _{50%} /С	<i>Т_{9%}</i> /С
LaA l_{12} O _{19- δ}	603	684	
LaZnA l ₁₁ O _{19- δ}	618	708	
$LaCu_{0.2}Zn_{0.8}A \ l_{11}O_{19-\ \delta}$	572	648	
$LaCu_{0.\;4}Zn_{0.\;6}A\;l_{11}O_{19-\;\delta}$	513	598	686
$LaCu_{0.5}Zn_{0.5}Al_{11}O_{19-\delta}$	536	604	703
${\rm LaCu}_{0.6}{\rm Zn}_{0.4}{\rm A}l_{11}{\rm O}_{19-\delta}$	534	597	678
$LaCu_{0.\ 8}Zn_{0.\ 2}A\ l_{l1}O_{19-\ \delta}$	527	592	645
LaCuA $l_{11}O_{19-\delta}$	503	569	679

Table 1 C atalytic activity of catalysts LaCu Zn_{Lx} A l_1O_{1948}

图 3比较了不同的 Cu和 Zn取代量对 LaCu, Zn_{1-x}A l_1O_{19-8} 系列催化剂分解 N₂O的活性的影响. 从图 3中可以看出,LaA l_2O_{19-8} 对 N₂O的分解具有一定的活性,但活性较弱.

由图 3可知,当 x = 0.2时, LaCu_{0.2}Zn_{0.8}A $l_1 O_{19-6}$ 对 N₂O 分解的活性和起始反应温度 (T_{106} 为 572C) 明显提高.随着 x值的不断增大, Cu在催化剂中的含量增加,催化剂的活性不断提高,起始 反应的温度变化不大 (都在 500°C和 540°C之间).当 x = 0.8和 x = 1时,两者对 N₂O 的催化分解都表 现出了较高的活性,开始反应时 LaCuA $l_1 O_{19-6}$ 的活性较 LaCu_{0.8}Zn_{0.2}A $l_1 O_{19-6}$ 高,但当温度高于 600°C 时,LaCuA $l_1 O_{19-6}$ 的活性较 LaCu_{0.8}Zn_{0.2}A $l_1 O_{19-6}$ 高,但当温度高于 600°C 时,LaCuA $l_1 O_{19-6}$ 的活性或 LaCu_{0.8}Zn_{0.2}A $l_1 O_{19-6}$ 的活性变化不大.

总体来看 $laCu_{0.8} Zn_{0.2} A l_{11}O_{19-6}$ 从起始到完全反应的温度跨度较小 ($T_{10\%}$ 为 527℃, $T_{9\%}$ 为 645℃), 表现了更好的活性和稳定性. 由此可见, Cu在六铝酸盐中是 N_2O 催化分解中的主要活性元素. 在 (CuZn)_x A l_2O_4 系列催化剂中,在六铝酸盐中 Zn有助于提高催化剂的稳定性,但作用很小.

图 4是 A $1O_3$ 负载 CuZn复合金属氧化物 (CuO /ZnO /A $1O_3$)催化剂和工业用尖晶石 (CuZn)_xA $1O_4$ (x为 0.95—1.1) 催化剂对 N₂O分解的活性.

Fig. 3 Catalytic activity of N_2O decomposition over catalysts LaCu, $Zn_{1-x} A \downarrow_1 O_{19-\delta}$

图 4 $(Cuzn)_x A b O_4 m CuO / ZnO / A b O_2 m CuO / A b O_2 m CuO / A b O_2 m CuO / ZnO / A b O_2 m CUO / ZN$

从图 4可以看出, CuO /ZnO /A lo3经 800℃焙烧后, 对 N₂O 分解有很好的活性 (N₂O 完全反应的 温度小于 600℃); 工业用 (CuZn)_xA lo4催化剂对 N₂O 分解也具有较好的中低温活性, N₂O 完全反应 的温度也小于 600℃. 但经 1200℃焙烧后 (CuZn)_xA lo4和 CuZn /A lo3对 N₂O 分解的活性都很低, 在 700°C时 N_2O 的转化率小于 20%. 分析原因,可以认为在 1200°C的高温下 (CuZn)_{*} $A \downarrow O_4$ 和 CuO /ZnO / A $\downarrow O_3$ 发生烧结,从而使催化活性减小.因此,可以进一步确认六铝酸盐催化剂具有对 N_2O 分解高温活性和高温稳定性.

3 结论

Cu和 Zn取代的六铝酸盐催化剂,LaCu_x Zn_{1-x}A l_1O_{19-s} 六铝酸盐对 N₂O 催化分解具有活性作用且 有较好的稳定性、其中 LaCu_{0 8}Zn_{0 2}A l_1O_{19-s} 表现出了较好的活性 (T_{995} 为 645 $^{\circ}$).

另外,在 LaCu_xZn_{1-x}A l_uO_{p-8}六铝酸盐中, Cu为 N₂O 催化分解的主要活性元素, Zn有助于提高 催化剂的稳定性,但 Zn在催化剂中的作用很小.

参考文献

- [1] BaierM, FetzerT, HofstadtO et al., High-Tem perature Stabile Catalysts for Decom posing N₂O. EP 1124623, 2001
- [2] Ram rez J P, Santiago M, Steady State Formulation of FACTS Devices Based on ac/ac Converters [J]. Chem. Commun., 2007, 1 (4): 619-631
- [3] Zhu Shaom in, W ang Xiaodong W ang A iq in et al, Superior Performance of Ir-substituted H exaa lum in the Catalysts for N₂ O Decomposition [J]. Cataly sis T alay, 2008 131 (1-4): 339-346
- [4] Groppi G, Assandri F, The Crystal Structure of Ba-β-A lum in a Materia & for High-Tem perature Catalytic Combustion [J]. J. Solid State Cham., 1995, 114: 326-336
- [5] Paola Artizzi, Nolven, Guilhaum e et al, Catalytic Combustion of Methane on Copper Substituted Barium Hexaalum inates [J]. Catalysis Letters, 1998, 51: 69-75
- $\begin{bmatrix} 6 \end{bmatrix} Xu Jianguang Tian Zhijian, Xu Yunpeng et al., Reverse M icroemulsion Synthesis of Mn-Substituted Barium Hexaalum in a teoremulsion of M ethane [J] . Na tural Gas Conversion VII, 2004, 147 (7): 481-486$
- [7] G nterM M, ResslerT, Jentoft R E et al, Redox Behavior of Copper Oxide /Z inc Oxide Catalysts in the Steam Reform ing of Methanol Studied by in Situ X-Ray Diffraction and Absorption Spectroscopy [J]. J. Catal., 2001, 203 (1): 133-149

PREPARATION OF LaCu, $Zn_{Lx} A l_1 O_{19-\delta}$ HEXAALUM INATE CATALYSTS AND CATALYTIC ACTIVITY FOR N₂O DECOMPOSITION

DONG Liu-ta o^{1-2}

SONG Yong-ji² LI Cui-qing² WANG Hong² LIM in^{1/2} WANG Jun-li^{1/2} (1 Be ijing University of Chemical Technology, Beijing 100029, China

2 Be ijing Institute of Petrochemical Technology, Beijing 102617, China)

ABSTRACT

Cu Zn substituted hexaalum inates (LaCu_x Zn_{1x} A $l_1 O_{19-6}$, x = 0, 0.2, 0.4, 0.5, 0.6, 0.8, 1) was prepared with co-precipitation method. The structure and physico-chemical properties of the samples were characterized by means of XRD, BET and TPR technique. The activity of N₂ O decomposition over the prepared samples were measured in a miniature fixed bed reactor. The results showed that the catalyst prepared using (NH₄)₂CO₃ as precipitant could obtain good hexaalum inate phase under 1200°C calcinations for 4h. Cu Zn could be contribute to form the hexaalum inate lattice because of their good synergic. LaCu_{0.8} Zn_{0.2}A $l_{11}O_{19-6}$ possessed highest catalytic activity in all the samples for N₂O decomposition reaction. In the catalyst Cu is the active element for decomposition of N₂O and Zn maybe contribute to enhance the stability of the catalyst However, Zn itself had less effect on catalytic activity for N₂O decomposition reaction.

Keywords decomposition, N₂O, hexaalum in a tes catalyst