利用拉曼光谱研究⁶⁰Co Y射线对 EC9706 细胞的辐射损伤

齐 健, 郭郑元, 张广水, 吴电勇, 唐伟跃*

郑州大学物理工程学院,河南郑州 450052

摘 要 将 EC9706 细胞经不同剂量⁶⁰ Cov 射线辐照后继续培养 24 h。利用激光拉曼光谱分析 EC9706 细胞 内部蛋白质、核酸、脂类等生物大分子的构象和含量变化。分析结果发现, 各剂量组拉曼谱的峰强和频移与 空白对照组之间存在较大的差异, 主要表现是蛋白质酰胺 III带 1 244 cm⁻¹谱带在中等剂量组(4、5Gy)^β 折叠 结构向无规卷曲转化; 色氨酸残基的吲哚环振动谱带 1 341 cm⁻¹在各剂量组中出现不同程度的红移; 782 cm⁻¹谱带在大剂量组(7、8Gy) 红移 2~3 cm⁻¹, 说明大剂量 v 射线辐照导致 DNA 中的磷酸二酯(O-P-O) 基团的非氢键化程度增强。脂类的 CH₂和 CH₃ 弯曲振动谱带 1 446 cm⁻¹在 2、4Gy 组蓝移 4 cm⁻¹, 其他剂 量组频移不大, 这与⁶⁰ Cov 射线对 EC9706 细胞的生物膜造成一定损伤有关。拉曼特征峰在不同剂量组中的 变化, 为进一步研究⁶⁰ Cov 射线辐照损伤 EC9706 细胞的最佳剂量提供了一定实验依据。

关键词 ⁶⁰Cov射线;人食管癌细胞;拉曼光谱;剂量 中图分类号:0657.3 文献标识码:A **DOI**:10.3964/jissn 1000-0593(2009)07-1896-05

引 言

临床上对于食管癌的治疗,早期多采用手术切除方式, 再辅以放疗、化疗、热疗、磁疗等手段,⁶⁰CoY射线因其能量 高、穿透力强、防护皮肤、旁向散射小、经济可靠等优点,广 泛应用于医院肿瘤的放疗方面,并取得了较好的疗效^[14]。 光谱技术是用来分析物质结构的高灵敏度和高分辨率工具, 非常适于对生物分子和细胞状态进行研究^[5]。拉曼光谱近年 来在细胞的结构、功能及细胞凋亡等方面的研究取得了迅速 发展^[69],它能在一定程度上反映细胞内部蛋白质、核酸、脂 类以及碳水化合物的成分、构象和含量变化。本课题利用细 胞培养技术和现代光谱技术来研究不同放射剂量的⁶⁰CoY射 线对人食管癌细胞(EC9706)内部各成分的影响,从物理学 能级结构的角度来研究癌细胞受放射线损伤后的变化,这为 临床肿瘤治疗提供了一定的实验参考依据。

1 实验准备

1.1 实验材料及仪器 细胞:人食管癌细胞株(EC9706,购于上海细胞库)。

仪器: 37 ℃和 5% CO₂ 的细胞培养箱;小型台式离心机

收稿日期: 2008 05-08, 修订日期: 2008 08 12

基金项目: 河南省科技攻关项目(0624410052)资助

作者简介:齐健,女,1983年生,郑州大学光学专业硕士研究生

T GL-16C(由河南省生物工程重点实验室提供); FCC-8000 型同中心回转式⁶⁰Co治疗机(由郑州大学第一附属医院光子 刀中心提供);英国 Renishaw 激光共焦显微拉曼光谱仪(由 郑州大学材料物理重点实验室提供)。

12 实验方法

样品制备:分别取相同数量的处于指数生长期的 EC9706 细胞,分成6个剂量组(1,2,4,5,7,8 Gy)和1个 空白对照组(对照组除不受⁶⁰Cox射线辐照外,所处环境条件 和其他各组完全一样),对各剂量组进行⁶⁰Cox射线照射后, 置于37℃、5% CO2 的细胞恒温培养箱中继续培养24 h,使 用激光共焦显微拉曼光谱仪采集各剂量组细胞的拉曼光谱。

仪器参数设置: FCC 8000 型同中心回转式⁶⁰Co治疗机 参数设定: 源皮距 100 cm, 布野面积 10 cm× 10 cm, 剂量率 1 Gy・min⁻¹。

激光共焦显微拉曼光谱仪参数设定:激发波长 514 nm, 光谱扫描范围 500~ 2 000 cm⁻¹,扫描时间 20 s,采集次数 1 次。

2 实验结果

EC9706 细胞经不同剂量的⁶⁰Cov 射线照射后,由于各剂 量组拉曼谱的荧光背景较强,为了便于分析谱线的频移和强

e mail: qijianwdy@163 com

度变化,使用 Origin 7.5 软件进行基于 Positive peak algor rithm 算法的 Baseline 处理,得到各剂量组的拉曼光谱,如 图 1所示,其中水平线为基线。图 1 各剂量组的拉曼谱线重 叠较严重,不便于分析特征峰的频移情况。因此,如图 2 所 示,以图 1 中空白对照组拉曼谱为参照,随着剂量的逐渐增 大,依次将各剂量组对应谱线强度上调 1 000 a u 。

8 Gy 组谱线变化更为明显,一方面是由于不同剂量的⁶⁰ Co ¥ 射线作用于细胞,引起细胞内部各物质成分的变化,另一方 面是由各剂量组样品制备和测试条件的差异性引起的。因 此,为了尽量排除后者的干扰因素,采用相对强度分析各剂 量组拉曼谱线的强度。如图3 所示,以各剂量组谱线中1004 cm⁻¹峰强为基准,作其他各峰相对于1004 cm⁻¹的相对峰强 比。

3 分析讨论

由图 2 可以看到, 各剂量组谱线强度变化很大, 尤其是

由光谱图 1和图 2可以看出, 各剂量组的谱图同空白对 照组相比, 无论是峰形还是峰强, 都具有一定的相似性, 不 同之处在于某些谱线的峰位和峰强出现了变化, 这与采用不 同剂量的⁶⁰Co Y 射线辐照有一定的关联性。

© 1994-2010 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

3.1 蛋白质谱带分析

3.1.1 主链构象

蛋白质的酰胺 I 和酰胺 III两个特征谱带的频移和强度与 肽键骨架的二级结构有关, 是研究蛋白质二级结构的灵敏探 针。在空白对照组拉曼谱中, 1 244 cm⁻¹ 谱带源于酰胺 III带 的^β 折叠结构, 1 653~ 1 673 cm⁻¹段谱带存在 3~ 6 个尖峰, 源于酰胺 I 带的 α 螺旋和反平行 β 折叠结构¹⁰。

对于 1 244 cm⁻¹谱带, 辐照⁶⁰ Co Y射线后, 小剂量组(1、 2Gy)和大剂量组(7、8Gy) 基本上没有频移, 中等剂量组(4、 5Gy) 蓝移了约 3 cm⁻¹, 由于 1 245~1 260 cm⁻¹对应酰胺 III 带二级结构中的无规卷曲构象, 所以酰胺 III带的 β 折叠结构 在中等剂量射线作用下, 一部分转化成了无规卷曲结构。由 图 3 中该峰对 1 004 cm⁻¹谱带的相对峰强比 $I_{1.244/1004}$ 可以看 到, 1 Gy 组 1244 谱带的相对强度大幅增大, 这表明酰胺 III 带的 β 折叠结构的含量明显增多, 而 4 和 5Gy 组相对强度略 有减小, 这可能与 β 折叠结构有一小部分转化成了无规卷曲 结构有关。

与酰胺 I 带对应的 1 653~ 1 673 cm⁻¹段谱带,在空白对 照组和各剂量组中呈现出多个复杂的尖峰,且各尖峰强度差 别不大,这充分说明了蛋白质酰胺 I 带二级结构的无序性和 复杂性。选取各剂量组光谱的 1 658 cm⁻¹谱带,作相对于 1 004 cm⁻¹的相对峰强比,如图 3 中 $I_{1658/1004}$,与对照组比 较,发现 2 Gy 组 1 658 cm⁻¹相对强度增大,7 和 8Gy 组减 小,其他剂量组基本没有变化,作者认为主要是因为 2 Gy 剂 量⁶⁰ Co Y 射线恰能提供各种二级结构形成所需的能量,而辐 照剂量太大时,如 7 和 8Gy,则引起蛋白质肽链的电离,造 成肽键的断裂⁽¹¹⁾,从而使酰胺含量减少。

3.1.2 侧链构象

拉曼光谱也反映了蛋白质分子侧链氨基酸残基的变化。 空白对照组拉曼谱中,1341和1584 cm⁻¹谱带归属于色氨 酸残基的吲哚环振动^[12],1004 cm⁻¹谱带归属于苯丙氨酸的 单基取代苯基环振动^[13](见表1)。

	Table 1	Raman	spectrum	attri bution	of	EC97	/0	6
--	---------	-------	----------	--------------	----	------	----	---

谱线位置/ cm ⁻¹	振动模式初步指认
749	核酸中 B 型 DNA 胸腺嘧啶
782	$\mathcal{V}_{s}(\operatorname{PO}_{\overline{2}})$
1 004	Phe单基取代苯基环振动
1 083	DNA 骨架中 PO2 对称伸缩振动
1 128	脂类的 C-C 反式伸缩
1 244	Amide III ^β 折叠
1 314	C-H 弯曲振动(碳水化合物)
1 341, 1, 584	T rp 的吲哚环
1 446	δ(CH 2, CH 3)
1 658	AmideI a helix
1 661, 1 665	Amide I 反平行 ^B 折叠

 $\dot{\Xi}$: \mathcal{V} stretching vibration); \mathcal{V}_{s} (symmetrical stretching vibration); δ (bending vibration); δ_{s} (symmetrical bending vibration)

同空白对照组1341 cm⁻¹谱带相比较, 各剂量组普遍红

了变化,原因可能是,色氨酸残基在 525 nm 激发光激发下, 产生1 341 cm⁻¹散射光的分子振转能级结构对外来能量微扰 十分灵敏,当对 EC9706 细胞辐照不同剂量的⁶⁰ Co Y 射线后, 破坏了该振转能级结构。各剂量组中的1 584 cm⁻¹谱带频移 不明显,表明产生1 584 cm⁻¹散射光的分子振转能级结构对 ⁶⁰ Co Y 射线的辐照不敏感,这也说明了1 341 和1 584 cm⁻¹ 谱带尽管都归属于色氨酸残基的吲哚环振动,但产生散射的 分子振转能级结构是不同的。

表征苯丙氨酸单基取代苯基环振动谱带的1004 cm⁻¹在 各剂量组中峰形尖锐,半宽很小,基本上没有发生频移,这 说明苯丙氨酸的单基取代苯基环对⁶⁰CoY射线表现出构象不 灵敏的特性,可以作为内标使用。由图1和图2发现,1004 cm⁻¹谱带的强度在各剂量组(除8Gy外)基本上变化不大, 而8Gy组明显增大,但是,大量实验和文献证明,该谱带在 蛋白质没有共价键断裂的情况下,频移和强度基本上不出现 变化,鉴于各剂量组样品的制备和测试条件存在不可测的差 异性,导致各组样品的拉曼光谱的荧光背景出现差异,谱线 强度出现变化,因此在这里不考虑1004 cm⁻¹谱带的强度变 化,而仍然以该谱带的强度作为基准,作其他特征峰相对于 该峰的相对峰强比,以便来表征其他特征峰的相对强度变 化。

32 核酸谱带分析

DNA 是公认的射线作用靶, 无论是射线直接还是间接 作用都能造成细胞中 DNA 结构的损伤, 如碱基脱落、碱基 破坏、嘧啶二聚体形成、单链双链的断裂、DNA 链内交联和 链间交联、DNA 蛋白质交联等。在各剂量组的拉曼光谱中, 表征核酸特征谱带的峰主要有 749, 782, 1 083 cm⁻¹, 其中 749 cm⁻¹归属于核酸中 B 型 DNA 胸腺嘧啶谱带, 782 和 1 083 cm⁻¹源于双螺旋 DNA 的 2 个磷酸骨架峰, 782 cm⁻¹ 对应于磷酸二酯键(O = P = O)的弯曲对称伸缩振动¹⁴¹。

同对照组相比,各剂量组749 cm⁻¹谱带频移不明显,表明⁶⁰ Co Y射线作用没有改变 B型DNA 胸腺嘧啶的构象。但 是,从相对强度来看,图3中 $I_{749/1.004}$ 在小剂量组(1和2 Gy) 变小,而在中大剂量组(4~8 Gy)显著变大,说明了 B型 DNA 胸腺嘧啶含量有所变化。作者认为,原因在于小剂量射 线可能抑制了嘧啶二聚体形成,而中大剂量的射线则诱使 DNA 中嘧啶二聚体大量形成。

782 cm⁻¹ 谱带在各剂量组中频移较小,仅在大剂量组(7 和 8 Gy) 红移了 2~3 cm⁻¹,说明大剂量射线作用使磷酸二 酯(O-P-O) 基团的非氢键化程度有所增强。而相对峰强 *I*₇₈₂₁₀₀₄(见图 3) 表现出与射线剂量不成比例,在 2 和 7Gy 时 强度高于对照组,其他剂量组则明显低于对照组。强度的无 规律变化可能与 O-P-O 键结合能和电离能有关,如果 ⁶⁰Co Y 射线恰能提供 O-P-O 键结合能和电离能,就会使 O-P-O键断裂,进而引丘 DNA 双股螺旋发生单链或双链 断裂。1 083 cm⁻¹谱带在各剂量组中表现出杂乱的尖峰,反 映出核酸中磷酸二酯键(O=P=O)的弯曲伸缩振动构象的 复杂性。

移了 3-3-5-1 这表明色氨酸残基的吲哚环振动构象发生。3.3、脂类谱带分析。

除 DNA 外, 细胞膜是另一个重要的射线靶。细胞膜的 外周膜(质膜)和内膜系统统称为"生物膜", 生物膜主要有蛋 白质(包括酶)、脂质(主要是磷脂)和糖类(糖蛋白和糖脂)组 成。图1和图2中的1128和1447 cm⁻¹均源于脂类的振动 谱带。

归属于脂类 C − C 反式伸缩振动谱带的 1 128 cm⁻¹,在 各剂量组中频移不明显,说明⁴⁰ Co Y 射线并没有破坏 C − C 反式伸缩振动的构象。图 3 中 *I*_{1128/1004}反映出各剂量组该谱 带的相对强度显著增大,说明脂类的 C − C 反式伸缩振动的 含量明显增多。

归属于脂类 CH_2 和 CH_3 弯曲振动谱带的 1 446 cm⁻¹, 在 2 和 4 Gy 组蓝移了 4 cm⁻¹,其他剂量组频移不大,这可 能与细胞膜脂中的酰基链骨架发生构象变化有关。 $I_{1446/1004}$ 显示出 1 和 4 Gy 组该谱带强度增大,而其他剂量组则略微 减小。表明细胞膜脂中 CH_2 和 CH_3 弯曲振动的含量变化并 不与射线的照射剂量成比例变化。

3.4 碳水化合物谱带分析

在各剂量组的拉曼光谱中还存在一个特殊的谱带 1 314 cm⁻¹,它源于细胞内部碳水化合物中 C-H 弯曲振动,在中 大剂量组中略微红移 3 cm⁻¹,说明中大剂量的[®]CoV 射线可 能破坏了 C-H 键的弯曲振动构象;由图 3 中的 *I*_{1 314/1 004} 可 以发现各辐照组该谱带的强度均比对照组要高,但是随着剂 量逐渐增大,相对强度反而减小,最终与对照组相近。

4 小 结

通过以上对 EC9706 细胞经不同剂量的⁶⁰ Cov 射线辐照、 继续培养 24 h 后的拉曼光谱分析,发现⁶⁰ Cov 射线对 EC9706 细胞内部的 DNA、蛋白质、脂类以及碳水化合物等 生物大分子造成了一定程度的辐射损伤,损伤程度并不与辐 照剂量成正比,而是存在某些剂量对特定的生物分子结构损 伤效果较明显。主要表现如下。

(1)1244 cm⁻¹谱带源于蛋白质酰胺Ⅲ带的^β折叠结构, 在中等剂量(4和5Gy)[∞]Cox射线作用下,部分转化成了无 规卷曲结构;表征色氨酸残基的吲哚环振动谱带1341 cm⁻¹ 在各剂量组中均出现不同程度的红移,说明[∞]Cox射线辐照 导致其构象发生了变化。

(2) 782 cm⁻¹谱带在大剂量组(7 和 8 Gy) 红移了 2~3 cm⁻¹, 说明大剂量 ¥射线辐照导致 DNA 中的磷酸二酯(0-P-O) 基团的非氢键化程度有所增强。

(3) 归属于脂类的 CH_2 和 CH_3 弯曲振动谱带的 1 446 cm^{-1} , 在 2 和 4 Gy 组蓝移了 4 cm^{-1} , 其他剂量组频移不大, 这可能与 ^{60}Cor 射线对 EC9706 细胞的生物膜造成一定损伤 有关。

参考 文献

- [1] Morita A, Coffey R J, Foote R L, et al. Journal of Neurosurgery, 1999, 90: 42.
- [2] TANG Yi, LIU Werr li, ZHOU Jian feng, et al(汤 屹, 刘文励, 周剑锋, 等). Chinese Journal of Radiological Medicine and Protection (中华放射医学与防护杂志), 2003, 23(6): 418.
- [3] Stock R G, Cahlon O, Cesaretti J A, et al. International Journal of Radiation Oncol. Biol. Phys., 2004, 59(5): 1352.
- [4] Ong G L, Elsamra S E, Goldenberg D M, et al. Clinical Cancer Res., 2001, 7(1): 192.
- [5] WANG Le xin, ZHAO Zhimin, YAO Hong bing, et al (王乐新,赵志敏,姚红兵,等). Spectros copy and Spectral Analysis(光谱学与光谱分析), 2002, 22(6): 980.
- [6] Frank C J, McCreery R L, Redd D C B. Anal. Chem., 1995, 67: 777.
- [7] Redd D C B, Feng Z C, Yue K T, et al. Appl. Spectrosc., 1993, 47: 787.
- [8] Rigas B, Morgello S, Goldman I S, et al. Proc. Natl. Acad. Sci. USA, 1990, 87: 8140.
- [9] Liu C H, Das B B, Glassman W L S, et al. J. Photochem. Photobiol. B: Biol., 1992, 16: 187.
- [10] Hawi Sharon R, Campbell William B, Kajdacs y Balla Andre, et al. Cancer Letters, 1996, 110: 35.
- [11] WU Det chang(吴德昌). Radiation Medicine(放射医学). Beijing: Military Medical Science Press(北京: 军事医学科学出版社), 2001.
 29.
- [12] XU Yirming(许以明). Raman Spectrum in the Application of Structure Biology(拉曼光谱在结构生物学中的应用). Beijing: Chemical Industry Press(北京:化学工业出版社), 2005. 13.
- [13] Barettino D, Vivanco Ruiz M, Stunnenberg H G. EMBO Journal, 1994, 13(13): 3039.
- [14] Gao Xiaoling, Butler Ian S, Kremer Richard. Spectrochimica Acta Part A. 2005, 61: 27.

Raman Spectra Study on Radiation Damage in EC9706 Cells by ⁶⁰Co Y-Rays

QI Jian, GUO Zheng yuan, ZHANG Guang shui, WU Diar yong, TANG Wei yue^{*} College of Physics and Engineering, Zhengzhou University, Zhengzhou 450052, China

Abstract Raman spectrum was used to study the structure and content of protein, nucleic acid and fat, while EC9706 cells irrar diated by ⁶⁰Co \checkmark ray were cultivated for 24 h. The results showed that for spectrum intensity and frequency deviation, there were big differences between each exposure group and control group. For the 1 244 cm⁻¹ peak of amide III, β folder changed to disordered conformations in the middle dose (4, 5Gy) groups. The 1 341 cm⁻¹ peak of V (the indole ring of Trp) was red shifted in every dose group. There was a 2.3 cm⁻¹ red shift at the 782 cm⁻¹ peak in the big dose groups (7, 8Gy). It was showed that the non hydrogenation of $V_s(PO_2^-)$ was strengthened due to big dose \succ rays radiation. There was a 4 cm⁻¹ blue shift at the 1 446 cm⁻¹ peak of δ (CH₂, CH₃). It maybe resulted from ⁶⁰Co \checkmark rays' damage to the film of EC9706 cells. The preferable dose of ⁶⁰Co \checkmark rays may be found by analyzing the variety of the above mentioned peaks in some dose groups.

Keywords ⁶⁰Co ⊁ rays; EC9706 œlls; Raman spectrum; Dose

* Corresponding author

(Received May 8, 2008; accepted Aug. 12, 2008)

(上接1875页)

April 2009

9-11 7th China International Scientific Instrument and Laboratory Equipment Exhibition (CISILE 2009),

Beijing, China;

Contact: CISILE Exhibition Office, B2-804 Room No. 1 Building Wudongdalou No. 9, Yard Chegongzhuang Street, Beijing 100044, China; Tel. 86 10 88395128, Fax: 86 10 88395130;

E mail: chenwei@cisile.com.cn

Web site: http://www.cisile.com.cn/

13-17 2009 Materials Research Society Spring Meeting,

San Francisco, CA;

Contact: Materials Research Society, 506 Keystone Drive, Warrendale, PA 15086-7573; Tel. (724) 779-3003, Fax: (724) 779-8313;

E mail: info@ mrs. org

Web site: http://www.mrs.org/s_mrs/index.asp

13-17 SPIE Defense, Security, and Sensing 2009,

Orlando, FL;

Contact: SPIE, P.O. Box 10, Bellingham, WA 98227-0010; Tel. (360) 676-3290, or (888) 504-8171, Fax: (360) 647-1445; E-mail: meetinginfo@ SPIE.org

Web site: http://spie.org/defense security sensing.xml

1923 Third International Congress on Operando Spectroscopy (Operando III): Recent Developments and Future Perspectives in Spectroscopy of Working Catalysts,

Rostock Warnemünde, Germany;

Contact: Secretariat: Operando III, Leibniz Institut für Katalyse, an der Universitat Rostock, Albert Einstein Stra e 29 a, D 18059 Rostock, Germany; Tel. 49 (0) 381 1281 169, Fax: 49 (0) 381 1281 51169; E mail: operando@catalysis.de

Web sites http://www.catalysis. de/ operando Electronic Publishing House. All rights reserved. http://www.cnRi.net