DOI: 10.3724/SP. J. 1096.2011.01088

胞外高聚物分离富集*-*火焰原子吸收法测定水样中镍

毛艳丽 肖晓存² 潘建明¹ 欧红香¹ 闫永胜^{*1}

¹(江苏大学化学化工学院, .4[江 212013)²(河南城建学院环境与市政工程系, 平顶山 467036)

摘 要 以胞外高聚物 PF-2 作为镍的分离富集新材料 利用扫描电镜(SEM)、X 射线能量色散分析仪(EDX) 和傅里叶变换红外光谱(FTIR) 对其进行表征。以火焰原子吸收法为检测手段,研究了胞外高聚物 PF-2 对水中 Ni(II)的吸附性能。结果表明:在 pH 5.0 ,此吸附剂对水中的 Ni(II)具有很强的吸附能力。高聚物 PF-2 对 Ni (II)的吸附较易进行 吸附等温线能较好地用 Langmuir 模型来描述,最大吸附容量为 33.5 mg/g。被吸附的 Ni (II)可用 0.5 mol/L HCl 定量洗脱。本方法线性范围 0.05~2.0 mg/L;检出限为 48 μ g/L;对 80 mg/L Ni(II) 溶液 平行测定 9 次, RSD 为 2.6%。本方法已成功地应用于环境样品中痕量镍的测定。

关键词 胞外高聚物;分离富集;火焰原子吸收法;镍

1 引 言

胞外高聚物是由微生物产生的生物高分子物质,主要成分有糖蛋白、胞外多糖、蛋白质、纤维素和核酸^[1]。因其在环境中易于降解且对人体无害等优点,受到广泛重视,近年来已有关于用胞外高聚物作为生物吸附剂吸附重金属的报道^[1~4]。胞外高聚物中存在着大量阴离子基团(羧基、羟基和氨基等), 对不同类型金属离子表现出强烈的亲和性^[5],对一些金属离子有很强的吸附力,是痕量金属离子理想 的分离富集材料。镍在自然环境中多数以微量形式存在,不易直接测定,通常需要进行预分离/富集。 目前分离/富集方法主要有共沉淀法^[6]、离子交换树脂法^[7]和有机溶剂萃取法^[8]等。本实验利用自制 的胞外高聚物作为分离富集材料,用火焰原子吸收法(FAAS)作为检测手段,测定了环境样品中痕量镍 的含量。本方法具有灵敏度高,重现性好,线性范围宽等特点,为检测环境水样和食品中的痕量镍提供 了新的方法。

2 实验部分

2.1 仪器与试剂

TAS-986 型原子吸收分光光度计(北京普析通用仪器有限责任公司); WQF-400N 傅立叶变换近红 外光谱仪(热电公司); S-4800 场发射扫描电子显微镜(Hitachi High Japan); X 射线能量色散分析仪 (EDX, USA); pHS-3C 型酸度计(上海理达仪器厂); 高速冷冻离心机(Eppendorf)。

Ni(II)标准储备溶液由 $Ni(NO_3)_2 \cdot 6H_2O$ 配制 标准溶液系列由 1.0 g/L 的储备溶液逐级稀释而成, 各种干扰离子溶液均按常规方法配制。

2.2 仪器工作条件

分析线波长: 232.0 nm; 灯电流: 4.0 mA; 燃烧器高度: 5.0 mm; 光谱带宽: 0.2 nm; 燃气流量: 1500 mL/min,燃烧器位置: 2.0 mm。

2.3 实验方法

2.3.1 胞外高聚物的制备 将细菌 *Pseudomonas fluorescens* C-2^[9] 接种到产胞外高聚物培养基(葡萄糖 2% 酵母膏 0.05% ,尿素 0.05% ,NaCl 0.01% ,K₂HPO₄ 0.5% ,KH₂PO₄ 0.2% ,(NH₄)₂SO₄ 0.02% , MgSO₄ • 7H₂O 0.02% ,pH 7.0 ~ 8.0) 中 30 ℃振荡培养 60 h ,以 10000 r/min 离心去除菌体 2 倍体积无 水乙醇抽提离心后发酵液得到胞外高聚物 80 ℃烘干得到胞外高聚物 PF-2。

本文系国家自然科学基金(No. 30970309)、国家教育部博士学科点专项基金(No. 20093227110015)、河南省科技攻关项目 (No. 082102220009)和河南省教育厅科技攻关项目(No. 2009A610001)资助

* E-mail: myanliao@ 163. com

²⁰¹⁰⁻¹⁰⁻²⁵ 收稿; 2011-03-17 接受

2.3.2 吸附与解吸实验 于 50 mL 比色管中加入适量 Ni(II)标准溶液,以 HCl 和 NH₄OH 溶液调节至 pH 5.0 以水定容至刻度。称取 0.25 g 胞外高聚物 PF-2 加入其中 25 ℃振荡 1 h 静置 2 h 后,以转速 5000 r/min 离心 5 min 移取上层清液用 FAAS 测定 Ni(II)的含量,计算胞外高聚物 PF-2 对 Ni(II)的吸附率。 取上述 Ni(II)吸附完全并离心后的沉淀,溶于蒸馏水中,加入 10 mL 0.5 mol/L HCl ,定容至与沉淀前液体 相同的体积 25 ℃振荡 1 h 静置 2 h 后离心 移取上层清液用 FAAS 测定 Ni(II)含量,计算解脱回收率。

3 结果和讨论

3.1 胞外高聚物 PF-2 的表征

3.1.1 SEM-EDX 分析 图 1 为胞外高聚物 PF-2 吸附 Ni(II)前后的扫描电镜图。由图 1a 可见, PF-2 表面不平整,可使众多功能团能与吸附质相接触。而吸附 Ni(II)后(图 1b),高聚物间结合力减弱,故比吸附前显得分散,在其颗粒周围有大量的片状物质存在,外表面还粘附一些絮状或团状物,说明 Ni(II)在高聚物表面形成了金属沉积物。

图 1 胞外高聚物 PF-2 吸附镍前后的扫描电镜图

Fig. 1 SEM of exopolymers PF-2(a) unadsorbed and (b) Ni(II)-PF-2

本实验采用 EDX 技术对吸附镍前后的胞外高聚物 PF-2 进行了元素半定量分析(图 2)。由图 2a 可见 ,PF-2 中 C, O, Na, P和 K 的重量比分别为 13.2%, 25.1%, 19.3%, 30.0%和 12.0%。当高聚 物与 Ni(II)作用后 原高聚物中 K和 Na 元素峰减弱,同时在 7.5和 8.25 keV 处出现了 Ni 元素峰,这表明 Ni(II)与高聚物中 K⁺和 Na⁺之间存在离子交换作用。

图 2 胞外高聚物 PF-2 吸附镍前后能谱图

Fig. 2 Energy dispersive X-ray spectra of exopolymers PF-2(a) and Ni(II)-PF-2(b)

3.1.2 FTIR 分析 胞外高聚物 PF-2 吸附镍前后的红外谱图如图 3 所示。3315 cm⁻¹附近的强宽谱峰为 缔合的来自 O—H 的伸缩振动 是 O—H 和 N—H 键伸展振动吸收。2926 cm⁻¹处的峰为 CH₂ 的碳氢 反对称伸缩振动峰^[10]。1732 cm⁻¹处吸收峰为羧酸脂类化合物及酮类化合物中羰基的 C—O 伸缩振动。1440 cm⁻¹处是羧酸根离子(COO⁻) 的特征吸收峰 是由于羧酸中 C—O 伸缩振动引起的^[11]。

由图 3b 可见,胞外高聚物 PF-2 吸附 Ni(II)后,3315 cm⁻¹处的 N—H 吸收峰稍有减弱,移至 3296 cm⁻¹处。这可能是因为 Ni(II)-PF-2 在合成过程中产生 N—Ni 配位键,使得 N—H 吸收峰有所减 弱。吸附 Ni(II)后,2926 cm⁻¹处的吸收峰向低波数偏移 10 cm⁻¹,且峰强明显降低;1732 cm⁻¹处的 C—O 伸缩振动峰向低波数漂移 10 cm⁻¹;高聚物 PF-2 吸附 Ni(II)后,羧基的 C—O 伸缩振动峰发生位 移,由 1440 cm⁻¹移至 1432 cm⁻¹ 强度明显减弱。分析结果表明, PF-2 在吸附 Ni(II)时,氨基和羧基是参 与吸附作用的主要官能团。通过电位滴定实验确定了 PF-2 中参与 Ni(II)吸附的官能团中羟基、氨基、羧基的含 量分别为 0.5,0.9 和 2.4 mmol/g。

3.2 酸度对胞外高聚物 PF-2 吸附率的影响

于 50 mL 比色管中加入 0.15 mg Ni(II) 固定 PF-2 用 量为 0.25 g,分别考察了 pH 1.0~8.0 不同酸度条件下 Ni(II)在 PF-2 上的吸附率。PF-2 对 Ni(II)的吸附率随 pH 值的增加而增大, pH 5.0 时,吸附率达到最大。当溶液 pH 值较低时,位于高聚物表面的官能团活性位点(如羧 基、氨基等)质子化程度较高^[12],即水合氢离子与高聚物 表面的活性位点结合,阻止了 Ni(II)与吸附活性位点的接 触 因此对 Ni(II)吸附量较小;随着 pH 值升高 高聚物表面

图 3 胞外高聚物 PF-2 吸附镍前后红外光谱图 Fig. 3 FTIR spectral characteristics of PF-2 (a) unadsorbed and(b) Ni(II)-PF-2

官能团逐渐脱质子化 信能团的负电荷逐渐暴露出来。因此 Ni(II)与活性位点结合量随之增加。当溶液 pH 值过高时 在溶液中大量 Ni(II)会发生水解而影响吸附 ,所以选择最佳酸度为 pH = 5.0。

3.3 吸附等温线

在一系列 50 mL 比色管中分别加入浓度为 5 ~ 500 mg/L 的 Ni(II) 分别在 25 ,35 和 45 ℃下进行吸附 实验 ,计算其吸附容量 q(mg/g)。

$$q = \frac{(C_0 - C_e) V}{m}$$
(1)

对于固液体系的吸附行为,常用 Langmuir, Freundlich 和 Dubinin-Radushkevich(D-R)吸附等温方程式来描述^[13]。 3 种吸附等温方程式的线性形式分别为:

$$\frac{C_{\rm e}}{q_{\rm e}} = \frac{1}{(q_{\rm m}K_{\rm L})} + \frac{C_{\rm e}}{q_{\rm m}}$$
(2)
$$\ln q_{\rm e} = 1/n(\ln C_{\rm e}) + \ln K_{\rm f}$$
(3)
$$\ln q_{\rm e} = \ln q_{\rm m} - K_{\rm e}^{2}$$
(4)

 q_e 平衡吸附容量(mg/g), C_e 是吸附达平衡后 Ni(II)的平衡 浓度(mg/L) q_m 饱和吸附容量(mg/g), K_L , K_f , n 和 K 均 为常数。 q_m 和 K_L 值可以由 $1/q_{eq} \dashv / C_{eq}$ 图的拟合直线方程 得到; 系数 n 和 K_f 可以由 $\ln q_{eq} \dashv n C_{eq}$ 图的拟合直线方程得

图 4 不同温度下镍离子吸附等温曲线

到; D-R 等温式中 q_m 和 K 由 $\ln q_e e^2$ 图的拟合直线方程得到 ,其中 $E = (2K)^{-1/2}$ 。根据图 4 中数据 ,分别 用方程式拟合所得参数见表 1。由表 1 可看出 ,Langmuir 模型拟合的 R^2 分别大于 0.99。据此推断 ,PF-2 对Ni(II)的吸附平衡能较好地用 Langmuir 模型来描述 ,计算得到的最大单分子层吸附量为 33.50 mg/g。 由 Freundlich 模型拟合得到的 n 值大于 1 ,说明在研究范围内均为选择性吸附过程^[14]。由表 1 可知 , PF-2 对 Ni(II)的吸附自由能大于 8.0 kJ/mol ,故 PF-2 对 Ni(II)的吸附属于化学吸附^[15]。

表1 不同温度下 PF-2 吸附 Ni(II)的等温线参数

Table 1 Comparison of Langmuir , Freundlich and Dubinin-Radushkevich adsorption constants obtained from adsorption iso-therms of Ni([]) ions at different temperatures

Temperature (℃)	Langmuir constants				Freundlich constants			Dubinin-Radushkevich constants			
	$q_{ m m\ exp}$	$q_{ m m\ cal}$ ($ m mg/g$)	К _L (L/mg)	R^2	K _f	n	R^2	q _{m ,cal} (mg/g)	$\frac{K \times 10^4}{(\text{ mol}^2 \text{ kJ}^2)}$	E (kJ/mol)	R^2
25	31.83	33.50	0.015	0.994	0.8081	1.59	0.962	31.85	7.0	26.72	0.967
35	28.18	29.78	0.011	0.999	0.8740	2.88	0.914	27.54	9.0	23.81	0.987
45	23.23	24.99	0.009	0.999	0.9882	2.95	0.947	24.41	12.0	20.42	0.961

第7期

3.4 解脱实验

从酸度对吸附率影响可以看出,强酸条件下有利于 Ni(II)的解脱。选择 HCl 作为解脱剂,按实验方法进行吸附和解脱实验,在25 ℃ 250 mL 容量瓶中进行解吸实验,分别考察不同体积的0.5 mol/L HCl 对 Ni(II)回收率的影响。结果表明:当 HCl 的体积达到 10 mL 时 Ni(II)的回收率达到 98.5% 本实验选择 10 mL 0.5 mol/L HCl 作为解脱剂,预富集因子为 25。

3.5 共存离子的影响

固定 PF-2 用量 0.25 g 在 50 mL 溶液中 3000 µg 的 K⁺ Na⁺; 1000 µg 的 Mg²⁺ Ca²⁺ "HPO₂⁻ SiO₃²⁻; 300 µg 的 Co²⁺ "Ag⁺; 200 µg 的 Zn²⁺ "Hg²⁺; 100 µg 的 Pb²⁺; 50 µg 的 Al³⁺; 30 µg 的 Fe³⁺对 1.0 mg/L Ni Ш)的回收率无影响。

3.6 工作曲线、方法的检出限和精密度

经考察 Ni(II)的浓度在 0.05 ~ 2.0 mg/L 范围内线性良好 ,线性方程为 Y = 0.0519X(mg/L) + 0.0175 相关系数 r = 0.9998。根据 IUPAC 定义 ,测得本法的检出限为 48 μ g/L ,相对标准偏差为 2.6% (0.08 mg/L Ni(II) n = 9)。

3.7 样品分析

取自来水和河水按常规方法预处理,取土壤样品采用微波消解法进行前处理,按照实验方法进行吸附和解吸实验,同时做空白实验和加标回收实验,用火焰原子吸收法测定解吸液中 Ni(II)的浓度,结果见表2 回收率满意。

表 2 环境样品中 Ni(II)的测定及加标回收实验

Table 2 Determination of Ni(II) in environment samples and spiked recovery

样品 Sample	测得值 Found (µg/L)	RSD (%)	加标量 Added (µg/L)	测得总量 Total found (µg/L)	回收率 Recovery (%)
自来水	3.27	1.6	2	5.25	96.6
Tapwater		1.0	5	8.31	98.5
河水	5.65	2.5	2	7.64	97.0
River water		2.5	5	10.69	102.5
土壤 Soil	6.23	1.5	2	8.21	98.8
		1.5	5	11.25	101.1

References

- 1 Stephen Inbaraj B , Wang J S , Lu J F , Siao F Y , Chen B H. Bioresour. Technol. , 2009 , 100(1): 200 ~ 207
- 2 Moon S H , Park C S , Kim Y J , Park Y I l. Proc. Biochem. , 2006 , 41(2): 312 ~ 316
- 3 Zhang Y, Fang X L, Ye Z L, Li Y H, Cai W M. J. Environ. Sci., 2008, 20(11): 1288 ~ 1293
- 4 Zhou W Z , Wang J , Shen B L , Hou W G , Zhang Y Z. Colloids and Surfaces B , 2009 , 72(2): 295 ~ 302
- 5 KANG Chun-Li, SU Chun-Yan, GUO Ping(康春莉,苏春彦,郭平). Chem. J. Chinese Universities(高等学校化学学报), 2006, 27(7): 1245~1246
- 6 ZHAO Liang, ZHU Xia-Shi, FENG Ke, WU Jun(赵亮, 朱霞石, 封克, 吴俊). Chinese J. Anal. Chem. (分析化学), 2006, 34(2): 223~226
- 7 WANG Qi-Lian, ZHAO Zhi-Qi, LIU Cong-Qiang, LING Hong-Wen(汪齐连,赵志琦,刘丛强,凌宏文). Chinese J. A-nal. Chem. (分析化学), 2006, 34(6): 764~768
- 8 WANG Liang, YAN Yong-Sheng, ZHU Wen-Shuai, LI Hua-Ming(王良, 闫永胜, 朱文帅, 李华明). Chinese J. Anal. Chem. (分析化学), 2009, 37(1): 72~76
- 9 MAO Yan-Li, YAN Yong-Sheng, WANG Yao-Qing(毛艳丽, 闫永胜, 汪尧清). Environmental Science & Technology (环 境科学与技术), 2009, 32(6): 25~29
- 10 LU Yong-Quan, DENG Zhen-Hua(卢涌泉, 邓振华). The Analysis of Practical Infrared Spectra(实用红外光谱解析). Beijing (北京): Electronics Industry Press(电子工业出版社), 1989: 21~32
- 11 LI Xing, LIU Peng, ZHANG Zhi-Xiang(李星,刘鹏,张志祥). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2009, 29(14): 945~949

- 12 Maurya N S , Mittal A K , Cornel P. Bioresour. Technol. , 2006 , 97: 512 ~ 521
- 13 Tuzen M , Sarı A , Mendil D , Uluozlu O D , Soylak M , Dogan M. J. Hazard. Mater. , 2009 , 165(1-3): 566 ~ 572
- 14 ZHANG Dong, ZHANG Wen-Jie, GUAN Xin, GAO Hong, HE Hong-Bo(张东,张文杰,关欣,高虹,何红波). Spectroscopy and Spectral Analysis (光谱学与光谱分析), 2009, 29(13): 824~828
- 15 Bayramoğlu G , Arıca M Y. Bioresour. Technol. , 2009 , 100: 186 ~ 193
- 16 Yahaya Y A , Don M M , Bhatia S. J. Hazard. Mater. , 2009 , 161(1): 189 ~ 195
- 17 Mall I D , Srivastava V C , AgarwalN K. Chemosphere , 2005 , 61: 492 ~ 501
- 18 Nuhoglu Y, Malkoc E. Bioresour. Technol. , 2009, 100(8): 2375 ~ 2380
- 19 Özer A , Akkaya G , Turabik M. J. Hazard. Mater. , 2006 , 135: 355 ~ 364

Determination of Nickel in Water by Flame Atomic Absorption Spectrometry after Separation/Preconcentration with Exopolymers

MAO Yan-Li¹², XIAO Xiao-Cun², PAN Jian-Ming¹, OU Hong-Xiang¹, YAN Yong-Sheng^{*1}

¹ (College of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013) ² (Environmental and Municipal Engineering Department, Henan University of Urban Construction, Pingdingshan 467036)

Abstract A new exopolymers PF-2 was prepared for separation-preconcentration of trace nickel , and characterized using scanning electron microscope (SEM) , energy dispersive X-ray spectrometry(EDX) and Fourier transform infrared spectrophotometry (FTIR). By means of the determination of flame atomic absorption spectrometry (FAAS) , the adsorption behavior of exopolymers PF-2 for nickel ions was investigated. The results showed that at the optimum pH 5.0 , the Langmuir isotherm fitted well with the experimental equilibrium data , and maximum monolayer adsorption capacity was 33.50 mg/g. The adsorption kinetics data fitted very well to pseudo second-order model. The adsorbed Ni(II) could be quantitatively eluted using 0.5 mol/L HCl. A linear response of nickel was obtained in the range of 0.05 - 2.0 mg/L with a detection limit of 48 µg/L. Under optimum conditions , the relative standard deviation (RSD) was 2.6% (n = 9, c = 0.08 mg/L). The proposed method has been applied to determine trace nickel in environmental samples with satisfactory results.

Keywords Exopolymers; Separation-preconcentration; Flame atomic adsorption spectrometry; Nickel (Received 25 October 2010; accepted 17 March 2011)