Agilent 1290 Infinity 现场培训教材

安捷伦科技有限公司 生命科学与化学分析仪器部

一、 培训目的:

基本了解 1290Infinity 硬件操作。

掌握化学工作站的开机,关机,参数设定,学会数据采集,数据分析的基本操作

二、 培训准备:

- 1. 仪器设备: 1290 Infinity
- 2. 色谱柱:
- 3. 溶剂准备:
- 色谱级纯或优级纯乙腈或甲醇。
- 二次蒸馏水

三、 操作步骤

(一) 开机

- 1. 打开计算机,进入 Windows XP 画面。(
- 2. 打开 1200 1290INFINITY HPLC 各模块电源。
- 3. 待各模块自检完成后,双击"Instrument 1 Online"图标,化学工作站自动与 12001290INFINITY HPLC 通讯,进入的工作站画面如下所示。

🦉 仪置 📋 (联机); 方法和运行	
文件(2)运行控制(2) 仪器(2) ;	方法(1) 序列(2) 視图(2) 中断(4) 帮助(2)
🚾 🧯 方法 🖓 🛃 关机)	M 🛛 🖌 AFML 🏤 🛃 DEF_LC.S 🔹 🔄 🔜 🗠 🖂 🧶
未就绪	
方法和运行控制	2法协造行控制
B C (0HBM32)1)SEQUENCE	化器控制 國車序列 序列起为 菌車序列设置 日本 市内 市内 市内 市内 和 和 和 和 和 和 和
- 20100506.S 	6 754 @ 118 @ ## 🔰 XEM
AFCDELAY.S	🔖 1290 Infinity ALS 🔄 🖀 🛔 1290 Infinity BinPump 🔄 📝 1290 Infinity TCC 📃 🖀 💎 1290 Infinity DAD 🔤 🖬 🏠 FLD 🔤 🖉 🔥
BATCH.S	
DGNOISE.S	4 - 8.8 I M M 4
INSTPERF.S	
- ROBUST.S	
ROUTINE.S	
SEQSUM.S	36.85 °C 37.00 °C
STATIST.S	192168.254.11 0.00 / 0.00 (2000) (200
	S (FM) 💫 D0F (CS
	▲ · · · · · · · · · · · · · · · · · · ·
	C\data\
序列模板 方法	
J 方法和运行控制	
🔄 数据分析	
🛃 报告版面设计	
🟠 认证(OQ/PV)	
*	
欢迎使用 ChemStation for LC 30	systems. *** 依慕 1 🔤 和/

4. 从"View"菜单中选择"方法和运行控制"画面,点击"视图"菜单中的"样品视图"系统视

图",,使其命令前有"√"标志,来调用所需的界面。

5. 点击泵下面的瓶图标,选择'瓶填充'如下图所示,输入溶剂的实际体积和瓶体积。也可输入停泵的体积。点击"Ok"。

万瓶填充		
溶剂瓶		
埴充		
	实际体积	总体积
A1	0.00 ; 升	0.00 🛟 升
A2	0.00 🔶 升	0.00 🕂 升
B1	0.00 🔶 升	0.00 🕂 升
B2	0.00 🛟 升	0.00 ; 升
操作		
 	降到水平之下时停止分析 I用完时关闭泵	ft ; 00.0
废液瓶		
填充		
	实际体积	总体积
废液荆	和:: 0.00 计 升	0.00 1 升
操作		
 级别 当废 	併到水平之上时停止分析 滚容积达到上限时关闭泵	0.00 ; 升
		· 确定 取消(C)

 从菜单"视图"中,选中"在线信号",选中"信号窗口 1",然后点击"改变…"钮, 将所要绘图的信号移到右边的框中,点击"确定"。(如同时检测二个信号,则重复,,选中 "信号窗口 2"。)

(二) 排气

- 1. 首先在方法编辑中,泵的参数设置部分,选好需要排空的通道(保证是开的)
- 2. 点击仪器状态视图中泵的图标,选择控制,出现如下图

夢 控制	
泵	
	◎ 打开
	◎ 关闭
	◎ 待机
· 泵密封垫清洗组件	
· ***7	
	按码时间 0.0 、 分钟
● 定朔	
	打开的时 0.0 . 分钟
自动开启	
□ 并自时间	2010年5月6日 11:00:00 1 -
吹扫	
◎打开	持续时间 5.00 🛟 分钟
◎关闭	流量 10.000 🗧 mL/min
	成份 A 50.00 🔅 % B 50.00 🛟 %
预备	
◎打开	
●关闭	
	· · · · · · · · · · · · · · · · · · ·

- 3. 勾上**吹扫**,并且输入流速,时间,比例就可以 purge 泵头。排空的时候阀会自动切换, 无需人为介入。
- 4. 当我们发现泵头里面有气泡出不来的时候,选择预备---开。然后点击确定。此时泵会用 很强烈的方式朝外泵液体,并持续 20 次自动停止。

(三) 编辑数据采集方法

1. 开始编辑完整方法:

从"方法"菜单中选择"编辑完整方法···"项,如下图所示选中除"数据分析"外的三项,点击"确定",进入下一画面。

编辑方法: 仪器 1
方法编辑选项
 ✓ 方法信息 (@) ✓ 仪器/采集 (1) □ 数据分析 (0) ✓ 运行时选项表 (B)
确定 取消 帮助 (1)

2. 方法信息:

在"方法注释"中加入方法的信息(如: This is for test!)。 点击 "确定", 进入下一画面。

3. 进样方式选择

根据自动进样器的类型,选择合适的进样方式

选择进样源/位置	X
→选择进样源 (፩): 手动 HipAls	确定 取消
-选择进样器位置 Œ): ● HipAls	

4. 泵参数设定:

● 在"**流速**"处输入流量,如1.5m1/min,停止时间:10 min。在"**溶剂** B"处输入 70.0, (A=100-B),也可"**插入**"一行"**时间表**",编辑梯度。在"**压 力限**"处输入柱子的最大耐高压,以保护柱子。

设置方法			X
🚔 1290 Infinity BinPump 🔷 1290 Infinity ALS 🕸 1290 Infinity ALS	5 进祥程序 🗬 1290 Infinity TCC	🧳 FLD 💗 1290 Infinity DAD 🔀 仪器曲线	
		1290 Infinity BinPump (G4220A)
流量	• 高级		
0.400 📜 mL/min	➡ 时间表		*
	时间 🔺 函数	参数	
A313 A: 0.0 : 2 2 1 00.0 % Water V.01 マ 2 100.0 % Water V.01 マ B: マ 100.0 : 2 2 100.0 % Methanol V.02 マ B: マ 100.0 : 2 2 100.0 % Acetonitrile V.01 マ 停止时间 后运行时间 ● 与进祥器一致 先限制 ● 关闭			
压力限值 最小值: 0.00 : bar 最大值: 1,000.00 : bar			
	添加(A) 移除(B) 清朝 朝 朝	除全部	
			*
	<u></u>		
			帮助
	Guardiana		A

5. 自动进样器参数设定:

● 选择合适的进样方式,如图所示,进样体积 1.0ul,**标准进** 样"----只能输入进样体积,此方式无洗针功能。"洗针进样"----可以输入进样体积和洗瓶位置,此方式针从样品瓶抽完样品后,会在 针座旁边中洗针。

6. 柱温箱参数设定:

在"温度"下面的空白方框内输入所需温度,如:40度。并选中它,点击"更 多信息>>"键,如图所示,选中"与左侧相同",使柱温箱的温度左右一致。

设置方法					
🚆 1290 Infinity BinPump 👒 1290 Infinity ALS 🧇 1290 Infinity AL	S 进样程序 💕 1290 Infin	ity TCC 🧳 FLD	😻 1290 Infinity	DAD 🔀 仪器曲线	
			1290 Infini	ty TCC (G1316	c)
温度 左側: 右側: ○ 不控制 不控制 ○ 400 : 'C ○ 400 : 'C ○ 与检测器池一致 ● 与左侧相同	 ▲ 高級 总用分析 ✓ 前门打开 左級 ● 在任何温度 ● 当温度在加 	时 』: 下 下苑围内时	0	右側: 在任何温度下 当温度在如下范围内	184
● 与家.供祥器一致 ● 关闭 ● 100 1 分钟 ● 100 1 分钟		0.8 <u>·</u> · C			" "C
	• 时间表				· •
□ 显示时间表					
		确定	应用	取消	帮助

7. DAD 检测器参数设定:

检测波长: 254nm, 带宽=4nm, 参比波长=360nm, 带宽=100nm;

检测波长:一般选择最大吸收处的波长。样品带宽:一般选择最大吸收 值一半处的整个宽度。参比波长:一般选择在靠近样品信号的无吸收或低吸收区 域。参比带宽:至少要与样品信号的带宽相等,许多情况下用100nm作为缺省值。 峰宽(响应时间):其值尽可能接近要测的窄峰峰宽。狭缝-狭缝窄,光谱分辨率 高; 宽时,噪音低。同时可以输入采集光谱方式,步长,范围,阈值。选中所用 的灯。

可以开启光学单元温度控制;可以设定8通道信号等。

8. FLD 检测器参数设定:

色谱条件:

响应时间=4s. 停止时间: 4min。
 激发波长:200-700nm,步长为 1nm,或零级。
 发射波长: 280-900nm,步长为 1nm,或零级。
 PMT:多数应用适当的设定值为 10,若高浓度样品峰被切平头,则减少 PMT 值。
 "峰宽": 大多数应用设为 4s,只有快速分析采用小的设定值。
 多波长及光谱(激发)。 多波长及光谱(发射)。
 同时可以输入范围、步长、采集光谱。
 点击"确定"进入下一画面。

设置方法						
💾 1290 Infinity BinPump 🚳 1290 Infin	nity ALS 💊 1290 Infinity ALS 进	样程序 🧬 1290 Infi	nity TCC 🙋 FLD	😻 1290 Infinity D	AD 🔀 仪器曲线	
					FLD (G1321/	4)
信号	•	高级				*
激发	发射	拟输出				
 ● 零排序 	零排序	输出	31:		输出 2:	
● 230 ; nm ●	460 📜 nm	零偏移量:	5 📜 %	零偏移	建: 5	: %
		衰减: 10	D 👻 LU	衰	國家: 100	👻 LU
峰宽	3	波长				
> 0.2分钟 (4秒响应时间)	(2.31 Hz) 👻					
停止时间 后运	行时间		多激发 🔘 多注	ઇ 射		
					0 ; nm	
● 与泵 进祥器一致	 关闭 		0 🗌 0 零級		0 📜 nm	
◎ 分钟	◎ 1.00 〕分钟		· □ O 零级		0 📜 nm	
PMT 協益	采	集光谱				
10			无	扫描范围:	0 : nm	
			顶点		0 ; nm	
			峰的全部信息	步长:	0 : nm	
			全部	阈值:	0.000 t LU	
			在光谱范围内	数据速率:		
		特殊设定值				*
		时间表				
□ 显示时间表			C			
			确定	应用	取消	帮助

9. 运行时选项表

运行时选项表: 仪器 1		×
方法运行选项————————————————————————————————————		1
□运行前命令/宏(P)		
☑ 数据采集 (鱼)		
☑ 标准数据分析 @)		
自定义的数据分析宏(C)		
□保存 GLP 数据 (S)		
□运行后命令/宏 (图)		
□将方法和数据保存在一起(W) 确定	取消 帮助	J

在"运行时选项表"中,选中"数据采集",点击"确定"。

10.保存方法

从"方法"菜单,选中"方法另存为...",输入一方法名,如"测试",点击"确定。

方法另存为:仪器 1		? 🔀
名称 (2): 则词, M	文件夹 (E): c:\chem32\1\methods 	<u>确定</u>
BATCH. M DEF_LC. M DEMOCAL1. M DEMOCAL2. M DGALSTST. M	C:\ → chem32 → 1 methods	
DECALAS.M DECALQ1.M DECALQ2.M 类型(1):	● BATCH. M ▲ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	
万法(*. //)	e:	

(四) 单次样品运行

从"运行控制"菜单中,选择"样品信息"选项,如下图所示,输入操作者名称,如"安装 工程师";在"数据文件"中选择"手动"或"前缀/计数器"。

样品信息: 仪器 1						×
操作者姓名 @):						
┌数据文件(@)						
路径 C:\Chem32\1\DA	ATA\	~	子目录(B):	20100505	5	
 ○ 手动 (@) ⊙ 前缀/计数器 (₽) 		前缀 100505			计数器: 000016	
┌样品参数 (≦) ─────						
	样品位置	:(C):		(诺未输入	定义字段 @) 则运行空白)]
样品名称(M): RRLC	TEST standard	4	昰 ID(E):			
样品量 (<u>A</u>): 0		Ē	陳积因子(L):	1		
内标量(I): 0		ŧ	ቾ释因子(Ų):	1		
注释 (፲):					×	
运行方法 (2)		确定	ı T	消	帮助伙	

点击"确定",从"系统视图 菜单启动系统。

等仪器准备好,基线平稳,从"运行控制"菜单中选择"运行方法",进样。(若无自动 进样器,则基线平稳后,进样并搬动手动进样阀,启动运行。)

(五) 面积百分比数据处理

1. 选择界面

从"视图"菜单中,点击"数据分析"进入数据分析画面。

2. 调用信号

从"**文件**"菜单选择"**调用信号**",选中您的数据文件名,如下图所示。点击"**确定**",则 数据被调出。

调用信号:仪器 1		×
文件名 (M): 005-0101.D	文件夹 (?): c:\\demo	确定
005-0101. D 005-0102. D 005-0103. D 005-0104. D 005-0104. D		wi Q 目 Q Q 時 帮助 ensure
005-0106. D 006-0201. D 007-0301. D	DEMO_SEQUENCE -2006-02-24-1 ▼ 4 4 4 4 5 5 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5	Metwor Ink on make certair make sure
文件信息(I)	c:本地磁盘 ▼	ascertain 隐藏细节 (S)、(
□ 按照信号细节的规定调用	信号细节	仪器曲线(C)
光谱: [DAD1: 31 光谱	信号: DAD1 A, Sig=254,4 Ref=550,100 DAD1 B, Sig=230,4 Ref=550,100	
☑ 调用后进行积分 ☑ 调用后进行积分并打印报告	DAD1 C, Sig=280, 4 Ref=550, 100	

3. 做谱图优化:

从"图形"菜单中选择"信号选项",如下图所示。从"范围" 中选择"满量程" 或"自动量程" 及合适的时间范围或选择"自定义量程" 调整。反复进行,直到图的比例合适为止。点击"确定"。

信号选项:仪器1	×
「包含	_
☑ 坐标轴(A) □ 化合物名称(C) ☑ 保留时间(B)	
✓ 基线(B) ✓ 峰起止符(T) 「非重叠峰标注	
字体名 Arial 字体大 8	
┌范围	
 ● 満量程 (F) 最小值 最大值 	
○ 自定义量程 (U) 时间范围:	
○ 自动量程(S) 「「□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□	
多个色谱图	
版面: 分别显示 💌 量程: 各自满量程 💌	
厂 单独缩放	
福定 取消 帮助	

4. 积分优化:

从"积分"菜单中选择"积分事件"选项,如下图所示。选择合适的"斜率灵 敏度","峰宽","最小峰面积","最小峰高"。

- 从"积分"菜单中选择"积分"选项,则数据被积分。
- 如积分结果不理想,则修改相应的积分参数,直到满意为止。
- 点击左边"√"图标,将积分参数存入方法。

- 5. 打印报告:
 - 从"报告"菜单中选择"设定报告"选项,进入如下图所示画面。
 - 点击"**定量结果**"框中"**计算**"右侧的黑三角,选中"**面积百分比**", 其它选项不变。
 - 点击"确定"。

· 设定报告: 仪器 1	
定量结果 定量: 外标法 🗸 基于: 峰面积 🗸 排列方式: 信号 🗸	计算因子 使用样品数据
内标修正 ② 对内标使用乘积因子和稀释因子	含量 0.0000 I# 化合物 内标量 乘积因子 1.0000
	稀释因子 1.0000 · · · · · · · · · · · · · · · · ·
□ 叶和指常型动化母 □ 0 0 m 加速力 液化和初化 □ 添加色谱图输出 (A) □ 添加色谱峰加和表 □ 添加样品自定义字段到 □ 添加化合物自定义字段 样品信息 +校正峰的报告格式	 色谱图输出 尺寸 ① 纵向 仮 竹印比例 时间: 100 重 响应: 40 重
 ● 单独报告 ● 与校正峰→起报告 ● 不报告 → かけ辺里 	1 ■页 信号选项 (2)
□打印机(2) ☑ 屏幕(2) □ 文件(2) 文件(3) 文件(4) 文件前缀 Report ☑ 专有 pdf 文件名	✓. TXT (T) . CSV (C) . EMF (E) . DIF (D) ✓. PDF . XLS (X) . HTM (H)
确定 取消	帮助

●从"报告"菜单中选择"打印报告",则报告结果将打印到屏幕上,如想输出到打印机上,则点击"报告" 底部的"打印"钮。

(六) 关机

关机前,先关灯,用相应的溶剂充分冲洗系统。 退出化学工作站,依提示关泵,及其它窗口,关闭计算机(用 shut down 关)。 关闭 Agilent 1290 各模块电源开关。

(七) 定量数据处理

 1、 点击"方法"菜单,选择"调用方法L..",在方法目录中选择要进行定量设定的方法, 该方法是经过积分和谱图优化过的方法。点击"确定",则选择的方法被调出。

调用方法:仪器 1		? 🔀
名称(U): 	文件夹 (2): c:\chem32\1\methods	确定 取消
DEF_LC. M DEMOCAL1. M DEMOCAL2. M DGALSTST. M DGCALAS. M DGCALOQ1. M	C c. \ C chem32 C 1 P methods DEMO	
DGCALOQ2.M 类型 (I): 方法 (*.M)	▲ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	▶ 网络 (凿)

2、从"文件"菜单中选择"调用信号..."选项,选中标样的数据文件名,点击"确定",则数据被调出。检查确认积分和谱图优化的参数是否合适

调用信号 : 仪器 1		
文件名 (2): SIG1000002. D SIG1000001. D SIG1000002. D ↓ 文件信息 (1) ↓ 按照信号细节的规定调F 信号信息	文件夹 @): c:\	 确定 取消 帮助 (£) 网络 隐藏细节 (\$) < 汶器曲线 (€)
 ✓ 调用后进行积分 □ 调用后进行积分并打印报告 	信号: FLD1 A, Ex=230, Em=460	

3、 从"校正"菜单中选择,"新建校正表"按钮,进入以下画面,确认选项在"自动设定"; 级别为"1",点击"确定"。若要信号单独计算,则选择前面的空白框。

校正: 仪器 1
新建校正表
┌校正表
⊙手动设定
○ 自动设定 级别 1
缺省含量 1.000
□ 每个信号单独计算
确定 取消 帮助

4、在覆盖现有校准表中对话框中,选择"是(Y)"。若方法中没有旧的校准表,无 此项。

5、则所有积过分的峰,其保留时间、峰面积按序显示在校准表中。如图所示,依

次输入化合物的名称、含量,校准曲线显示在右下方。可以设定参考峰等。若用内标方法定量,还须选择内标,点击"内标"下的区域,选择那个峰作为内标峰,指定每个色谱峰以那个内标为参比。点击"确定"。

6、在删除含量为零的行对话框中选择"是(Y)"。则校准表中未输入含量的峰从表中删除。

7、点击"校准"菜单,选择"校准设置"按钮,进入以下画面,输入单位:如"%";其它项不变。 点击"确定"。

🔲 校正设置: 仪	審 1				×
标题					
一缺省保留时间窗	0 		- 缺省校)	E曲线	
	भाष्य	*	类型	线性	*
芬 光峰	0.00 + 5	6.00	原点	包含	~
其它峰	0.00 5	5.00	权重	均等	~
含量单位 п	g/ul				
一计算未校正峰——					
信号:	DAD1 A, Sig	z=235,10	Ref=550	,60	*
 종 					
🔘 使用化合物	无				~
○ 响应因子	0.0	100			
使用内标	无				•
─ 如果峰偏移 ───					
🗌 修正全部保留	附间	🗹 🚮	分校正		
确定	(取消		常助	

8、打印报告:

从"报告"菜单中选择"指定报告..."选项,进入如下画面。

设定报告: 仪器 1	×
定量结果 定量: 外标法 V基于: 峰面积 V 排列方式: 信号 V	计算因子 使用样品数据
内标修正 ② 对内标使用乘积因子和稀释因子	含量 0.0000 I# 化合物 内标量 郵款因子 1.0000
类型 报告格式: 简短报告 ✔	稀释因子 1.0000 输入
 □ 样品信息显示在每一页 (□ 添加/留分表格和标记 □ 添加色谱图输出 (k) □ 添加化合物自定义字段 □ 添加化合物自定义字段 □ 添加化合物自定义字段 □ 未校正峰的报告格式 	 ● ● ● (動向) (2) ○ (満向) (2) (前向) (2) (前向) (3) (前向) (40) (40)
○单独报告 ◎ 与校正峰一起报告 ○ 不报告	
文件设置 文件での マートーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー	▼.TXT (Ţ) .CSV (Ē) .EMF (Ē) .DIF (Ē) ▼.PDF .XLS (<u>X</u>) .HTM (<u>H</u>)
确定 取消	帮助

点击"定量结果"框中"定量"右侧的黑三角,选中"外标法",其它选项不变。点击

"确定"。----若是用内标法定量,则选"内标法"。

从"报告"菜单中选择"打印报告",则报告结果将打印到屏幕上,如想输出到打印 机上,则点击"报告"底部的"打印"钮。---可以选择打印到文件中,如PDF格式。 9、若有多个浓度标样,则依次调出校准数据,调出每一个校准数据后,点击"校准" 菜单,选择"添加级别",第2级数入"2",类推。在校准表中输入每级的组份浓度。

10、在方法菜单中,选择"运行时选项表",确认"数据分析选项"也被选中, 点击"确定"。点击"保存"按钮,存储修改的方法。此方法包含校准表,建立完毕。