Vol. 24, No. 3

May . 2 0 0 7

ICP-AES测定锰矿中二氧化硅含量

焦立为 李海涛①

(新疆分析测试中心 乌鲁木齐市北京南路 40 号附 2 号 830011)

摘 要 试样经氢氧化钠和过氧化钠混合熔剂碱熔,再用酸浸提,干过滤后定容。采用 ICP-AFS 测定锰矿 中二氧化硅含量。本法测定锰矿标样(治金部标准样品505)中二氧化硅含量,其测定结果的相对标准偏差 RSD 为 1.08%, 测定平均值为 33.93%(标样推荐值 为 33.58%)。

关键词 电感耦合等离子体-原子发射光谱法, 锰精矿, 碱熔, 二氢化硅。

中图分类号: 0.657, 31

文献标识码: R

文章编号: 1004-8138(2007)03-0360-03

前言 1

锰是钢铁工业不可缺少的原料,在钢中加入少量的锰,就能增加硬度、延展性、韧性和抗磨能 力。锰钢、锰铁以及锰与铜、镍、铝和钴等制成的各种合金和锰的化合物,在工业上用途极大。锰矿 石常含有二氧化硅、磷、硫、铁、铝、钡、钙、镁、钾和钠等杂质, 二氧化硅、硫、磷和砷都是有害杂质。锰 矿石中二氢化硅含量的高低是评价锰矿石的一个重要指标 快速准确地测定二氢化硅显得尤为重

锰矿石基体成分较为复杂,需分析的元素较多,常规化学法二氧化硅测定主要有氟硅酸钾容量 法、动物胶凝聚重量法、聚环氧乙烷凝聚重量法、硅钼黄分光光度法[1]。它们又存在试样前处理相对 烦琐,速度慢,使用的有毒试剂还会污染环境,测试结果精密度不高等缺点。本方法采用 ICP-AES. 称样量仅为 0. 1g, 试样经混合溶剂碱熔, 再用酸浸提后干过滤, 除去大部分干扰元素后, 定容于 250mL 容量瓶中, 即可上机测定, 分析时间只需 3—4h, 所测锰矿标样(冶金部标准样品 505) 中二 氧化硅含量, 其测定结果的相对标准偏差 RSD 为 1,08%, 测定平均值为 33,93%(标样推荐值为 33.58%)。

2 实验部分

2.1 仪器及工作条件

ICPO-1000型光量计(日本岛津公司),入 射功率 1.2kw, 反射功率 < 5w; 冷却气流量 11L/min, 辅助气流量 1. 2L/min, 载气流量 1. 0L/min: 观察高度: 负载线圈上 15mm: 积分 时间 20s, 玻璃气动雾化器及双筒雾室: 光栅刻 线 1920 条/mm^[2]。

2.2 试剂与标准溶液

硅的标准工作溶液由 500μg/ mL 国标母液

表 1 国家钢铁材料测试中心(国家标准溶液)

 元素	编号	浓度	 介质		
Si	GSB G 62007-90	500μg/ mL	1% Na ₂ CO ₃		

表 2 Si元素的波长及检测范围

元素	波长(nm)	检测范围(μg/ mL)
Si	288. 16	0.3—1000

① 联系人, 电话: (0991) 3835921

作者简介: 李海涛(1977一), 男, 新疆伊宁县人, 助理实验师, 主要从事等离子体原子发射光谱、红外光谱及常规分析。

收稿目期。2006年12124 接常日期。2007年1129 ournal Electronic Publishing House. All rights reserved. http://www.c

逐级稀释配制。详见表 1.表 2。

试剂为氢氧化钾(优级纯)、过氧化钠(优级纯)、硝酸(优级纯),实验用水为二次去离子水。锰矿标准物质(冶金部标准样品 505)。

2.3 样品溶液的制备

- (1) 试样在 105℃±5℃的干燥箱中烘 6h, 以去除试样中的水分, 烘干后放入盛有硅胶的干燥器中保存, 冷却至室温后进行称量。
- (2) 准确称取 0. 1g(精确至 0. 0002g) 试样(过 100 目筛)于 30mL 镍坩埚中,加入 2. 0g 氢氧化钾和 0. 5g 过氧化钠,搅匀。于低温电热板上,摇动坩埚,使其烘干失水。再将镍坩埚置于 600℃熔融 20m in(将坩埚摇动 2 次),取下放冷,用 15% 硝酸溶液提取后,再加入 10. 0mL HN 03 放到电热板上温热溶解残渣,冷却后,过滤并转移至 250mL 容量瓶中,定容。
- (3)测定:按照仪器使用说明书调节仪器至最佳工作条件,测试待测液的浓度。再用去离子水代替试样,采用和(2)相同的步骤和试剂,制备全程序空白溶液。并按步骤进行测定。每批样品至少制备2个以上的空白溶液。

3 结果与讨论

3.1 氟硅酸钾容量法

实验中产生干扰的因素较多: 矿石中钠离子与铝离子的存在会产生氟铝酸钠沉淀, 同样会水解产生氢氟酸, 使结果偏高; 沉淀氟硅酸钾时, 酸度的控制难于掌握, 又往往使结果有时偏高有时偏低, 在沉淀体积过大时又使结果偏低, 而且在滴定终点的判断上存在人为误差。此方法在实验操作过程中步骤较烦琐, 一次实验往往需一天时间。并且在实验过程中有氢氟酸存在, 对人体易造成危害。

3.2 动物胶凝聚重量法

该方法结果会偏低,在精确分析中往往需要校正。过滤完的沉淀在烘干,低温灰化后,要反复灼烧才能恒重,之后又要用到硫酸、氢氟酸处理残渣并再次反复灼烧至恒重。这使得该方法既耗时又不环保。

3.3 聚环氧乙烷凝聚重量法

该方法与3.2同样存在结果偏低,实验所需时间过长等缺点。

3.4 硅钼黄分光光度法

该方法在测定过程中硅酸会部分转化,不与钼酸铵反应,使实验结果偏低。方法对时间的限定也过于严格,误差较大。

3. 5 **ICP-AES**

使用混合溶剂碱熔后,再用 15% HNO3 浸提后干过滤,以除去大部金属元素的干扰,定容后即可用 ICP-AES 测定,在考虑二氧化硅的检出限时,合理称取试样,保证在最佳测定范围内测定;测定范围: 0.1% —50% 二氧化硅量。本方法既能保证试验安全,又使数据准确可靠。

氟硅酸钾容量法测定结果见表 3,本方法测定结果见表 4。

表 3 氟硅酸钾容量法所得结果

样品名称	SiO ₂ 推荐值(%)	1	2	3	4	5	6	X	RSD(%)	
505 锰矿(冶金部标样)	33.58	34. 53	33. 73	35. 74	35.74	33. 43	33.38	34. 43	3. 19	
© 1994-2012 Chi	ma Acadenne Jo	ournal El	ectronic	Publisi	ing Hoi	ise. Ali	rights r	eserved.	nttp://wv	/W.(

≢ ₁	TOD A	EC	所得结果	
7 5 4	1 ('P-A	H.C.	四倍结果	

样品名称	SiO ₂ 推荐值(%)	1	2	3	4	5	6	X	RSD(%)
505 锰矿(冶金部标样)	33. 58	33. 95	33. 95	34. 53	33. 73	34. 01	33. 42	33. 93	1. 08

4 结论

本方法采用 ICP-AES, 称样量仅需 0. 1g, 经混合熔剂碱熔后, 再用酸浸提并干过滤定容, 即可上机测定。经过常规氟硅酸钾容量法与 ICP-AES 法的对比实验: 本方法具有快速、简捷、安全及分析准确度和精密度高等优点。方法适用于锰矿中 SiO2 含量的快速测定, 具有一定的推广应用价值。

参考文献

- [1] 岩石矿物分析编写小组. 岩石矿物分析[M]. 北京: 地质出版社, 1991. 255-259.
- [2] 李海涛, 焦立为, 阿力甫・阿布都. ICP-AES 測定大豆粉中钙、铁和锌的含量[I]. 光谱实验室, 2006, 23(5): 959-961.

Determination of SiO₂ in the Manganese ore by ICP-AES

JIAO Li-Wei LI Hai-Tao

(Xinjiang Analytical and Testing Center, No. 40. Beijingnanlu, Urumuqi 830011, P. R. China)

Abstract The swatch was melt with the sodium hydroxide and the sodium peroxide mix melting agent, lixiviated with acid, dryly filtered, prepared into solution in a volume. The silicon dioxide content in the manganese ore was determined by ICP-AES. The standard sample (metallurgy department standard sample 505) was measured by this method with the RSD of 1.08% and the mean content value of 33.93% (recommendation value of standard sample is 33.58%).

Key words ICP-AES, Manganese Ore, Alkali Melt, SiO₂.

关干赠送作者样刊和发放稿酬的通知

各有关作者:

从 2007 年第 1 期起, 本刊赠送作者发表自己论文的当期刊物(样刊), 均按篇赠送 2 本样刊, 用普通印刷品邮寄给作者联系人, 遗失不补(因系赠品)。若遗失或作者另有需要, 请在发表之日起 2 个月之内汇款购买(第 1 期 70 元/本: 其余 40 元/本, 免收挂号邮寄费), 逾期不再办理。

由于普通印刷品邮寄的送达时间不稳定, 若作者急需, 请预交特快专递费(30元/件)。

给作者发放的稿酬均邮寄给联系人,请各位联系人接到邮局通知后,务必及时到邮局领取。若2个月未领,被邮局退回,本刊不再补发。

特此通知

光谱实验室》编辑部

汇款购买地址: 北京市 81 信箱 66 分箱 刘建林, 邮编: 100095