DOI:10 3969/j issn 2095-1035 2011 03 0008

辉光放电发射光谱法测定硅钢薄板中微量硼元素

邓军华1 曹新全2 李化2

(1 鞍钢股份有限公司技术中心,辽宁 鞍山 114001;2 鞍钢股份有限公司质检中心,辽宁 鞍山 114009)

摘 要 通过对辉光放电发射光谱参数的优化,以铁元素为内标来消除基体效应,建立了测定硅钢薄板 中微量硼元素的方法。优化的实验参数为:放电电压1200 V,放电电流 50 mA,预溅射时间 40 s,积分时 间 10 s。校准曲线硼元素含量范围 0 0001%~0 022%,相关系数大于 0 999,测量结果与认定值一致, 相对标准偏差小于 10%。完全能够满足日常分析测试的要求。 关键词 辉光放电光谱法;硼;硅钢薄板 中图分类号:0657.31;TH744 11*2 文献标识码:A 文章编号:2095-1035(2011)03-0039-04

Determination of Trace Boron Element in Silicon Steel Sheets by Glow Discharge Optical Emission Spectrometry (GD-OES)

DEN G Junhua¹, CAO Xinquan², LI H ua²

(1 Techology Center of Angang Steel Co., Ltd., Anshan, Liaoning 114001, China;
2 Quality Inspection Centre of AnSteel Co., Ltd., Anshan, Liaoning 114009, China)

Abstract A glow discharge optical emission spectrom etry (GD-OES) method for determining trace boron element in silicon steel sheets were established through optimization of instrumental parameters and using Fe element as an internal standard to eliminate the matrix effect. The optimized instrumental parameters included discharge voltage, discharge current, pre-sputtering time and integration time, which are 1200 V, 50 mA, 40 s, and 10 s, respectively. The content of boron element that can be determined from the calibration curve ranges from 0. 0001% to 0. 022% and the linear correlation coefficient is more than 0. 999. The testing results are consistent with the certified values and the relative standard deviations are below 10%.

Keywords direct curren glow discharge spectrometry; boron; silicon steel sheets

1 前言

硅钢薄板是电力、电讯和仪表工业中不可缺少 的重要磁性材料,具有广阔的应用前景^[1]。而硼和 氮、氧等元素有很强的亲和力,在Y相中与氮优先形 成 BN,防止热轧时 A IN 的析出。硅钢中加入硼,可 提高硅钢片的磁性能,减轻磁时效、降低铁损以及提 高表面质量等^[2]。微量硼的测定方法有分光光度 法、电化学分析法、分子荧光光谱法、电感耦合等离 子体原子发射光谱法、石墨炉原子吸收光谱法 等^[3-6]。在科研生产过程进行硼元素含量检测来监 控 B/N 的比例是否满足要求。而薄板试样钻屑加 工困难,湿法分析操作繁琐,快速准确测定微量硼含 量已成为难题。辉光放电光谱技术目前在冶金分析 领域正得到快速的发展^[7-12],具有基体效应小,光谱 干扰少,分析速度快,精密度好等特点。通过优化光 源参数对硅钢薄板中微量硼元素进行测定,试样加 工简单,准确度高。

收稿日期: 2011-05-19 修回日期: 2011-06-28

作者简介: 邓军华, 男, 工程师, 从事辉光光谱在冶金分析的应用研究。E-mail: den voll@163. com © 1994-2012 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

2 实验部分

21 仪器和试剂

GDS-850A(dc 光源,美国 Leco):铜阳极直径 4 mm, 波长范围为 119~600 nm。

高纯氩气,乙醇(AR级)。

2.2 仪器条件

恒定电压/电流光源模式,激发电压 1200 V,激 发电流 50 mA,预溅射时间 40 s,积分时间 10 s,分 析气压 275 8 kPa, B 元素波长 208 959 nm。

23 实验方法

样品制备约 30 mm × 30 mm(长×宽)板状(标 准物质表面处理用磨床或铣床加工),然后用乙醇清 洗表面,干后在 2.2 实验条件下激发,通过 I-C曲 线计算含量。

3 结果与讨论

3.1 光电倍增管电压的影响

设定放电电压 700 V,放电电流 20 mA, PMT 电压 600 V 增至 1000 V。试验表明每增加 100 V, 硼元素的响应强度增幅比率 R₁ 从 3 减到 2,说明 PMT 电压越高,硼元素的响应强度的增加幅度越来 越小。随 PMT 电压在 800~ 1000 V 之间变化时, 信噪比增幅比率 R_{SNR} 已无多大提高,为获得合理的 强度响应值和信噪比值,选择 PMT 为 950 V。硼元 素的响应强度增幅比率 R₁、信噪比增幅比率 R_{SNR} 与 PMT 电压关系见图 1。

32 放电电压的影响

设定放电电流 20 mA, PMT 为 950 V, 预燃时间

45 s, 积分时间 10 s, 放电电压从 600 V 增至 1300 V。 © 1994-2012 China Academic Journal Electronic P 试验表明每增加 100 V 放电电压, 硼元素的响应强度 增幅比率 R₁ 是逐渐减小, 幅度约为 10%。 信噪比增 幅比率 R_{SNR}在 1000~ 1200 V 时较稳定, 当放电电压 加到一定程度时, 其信噪比的增幅效率降低。 因硅 钢薄板厚度较薄, 在大功率激发能量下阴极溅射时 会产生大量的热能无法及时被带走, 将导致试样会 随着激发过程延长逐渐温度增高, 温度增高产生的 热效应作用会影响分析原子激发态的稳定性导致分 析结果波动, 综合考虑以上因素, 选择放电电压 1200 V。硼元素的响应强度增幅比率 R₁、信噪比增 幅比率 R_{SNR}与放电电压的关系见图 2。

33 放电电流的影响

设定激发电压为 1200 V,预燃时间 45 s,积分 时间 10 s,放电电流从 20 mA 增至 60 mA。试验表 明硼元素的响应强度增幅比率 R_I 在 50 mA 处出现 极高值,而信噪比增幅比率 R_{SNR}在 40 mA 和 50 mA 处都出现极高值(虽然二者相比低电流的增幅比率 值要小,但低电流对应的硼元素响应强度也越小,信 噪比低)。为获得较高的强度响应值和高的信噪比, 选择放电电流为 50 mA。通过试验得到,在 950 V 的 PMT 负载电压,1200 V 的放电电压,50 mA 放 电电流下,对于 0 0001% 硼含量,其信噪比约为 20, 完全能满足试验的分析要求。硼元素的响应强度增 幅比率 R_I、信噪比增幅比率 R_{SNR}与放电电流的关系 见图 3。

3 4 预溅射时间与积分时间的影响

通过 QDP 程序分析含硼试样,试验谱图见图 4。图4表明当预溅射时间达到40s后硼元素激发 强度趋于稳定,结合硅钢试样的特点,为最大限度地 降低高电压/电流模式下试样的热效应影响,选择短

图 3 强度比率、信噪比比率与放电电流的关系

Figure 3 Relationship between the discharge current with the intensity ratio and with the signal to noise ratio

预溅射时间和积分时间是比较适宜的。试验选择预 溅射时间 40 s 和积分时间 10 s^[10]。

图 4 预溅射时间与强度的关系 Figure 4 Relationship between the pre-sputtering time and the intensity

3 5 检出限和校准曲线

在优化参数条件下,用硼元素含量不同的标准物 质激发得到各自硼元素的响应强度校正值和低标硼元 素的响应强度标准偏差 $S = 0\ 00006$ 。计算得到 $\Delta I =$ 0 0035, $\Delta c = 0\ 0009\%$,检出限 DL 为 4 6 × 10⁻⁷ µg/g。 因硅钢光谱 CRM 标准物质硼元素含量范围无法满足 分析要求,试验加入低合金钢光谱标准物质来拓展曲 线的检测下限。采用 GBW01385-GBW01400 系列标 准物质等 18 个光谱标准物质在优化参数条件下以基 体铁元素为内标建立校准曲线。试验表明: 当 Mo 元素 质量百分含量小于 0 8%时,对硼元素的影响可忽略不 计。校准曲线含量范围: 0 0001%~0 0220%,线性相 关非常显著,硼元素校准曲线见图 5。

图 5 硼元素校准曲线

3 6 精密度和准确度试验

选择含硼元素的标准物质和硅钢薄板试样在校 准曲线上进行精密度和准确度试验,实验数据表明 硼元素测量数据的相对标准偏差值小于10%,准确 度满足现有相关方法要求,数据见表1。

w/ 0%

表1 精密度和准确度试验(*n*=6) Table 1 Test for precision and accuracy

Table 1 Test for precision and accuracy									WI 70
试验序号	认定值	测定值 (×10 ⁻³)						均值	RS D/ %
(BS 74E)	0 0001	0 078	0 085	0 070	0 080	0 088	0 090	0 00008	9.0
YSBS13220	0 0012	1. 26	1. 25	1. 28	1.17	1.15	1. 28	0 0012	4 6
YSBS11275-99	0 0016	1.68	1.70	1.55	1. 65	1.56	1.55	0 0016	4 3
G BW 01327a	0 0005	0 58	0 55	0 53	0 51	0 54	0 51	0 0005	4 9
BS LAS- 9	0 0006	0 61	0 63	0 58	0 57	0 58	0 64	0 0006	4.8
YSBS13223	0 0038	3 70	3 73	3 75	3 98	3 70	3 94	0 0038	3 3
样品 1#	/	0 25	0 23	0 21	0 21	0 22	0 25	0 0002	8 2
样品 2#	/	0 33	0 31	0 35	0 33	0 31	0 33	0 0003	66

结论 4

目前硅钢光谱标准物质中低含量硼的标准物质 较少,而硅钢薄板中硼元素含量非常低,试验引入低 合金钢标准物质来补充校准曲线的分析能力.利用 直流辉光放电发射光谱法基体效应小的优点,实现 硅钢薄板中微量硼元素含量测定。通过对标准样品 的分析比对,该方法可用于分析硅钢薄板中硼元素, 准确度满足要求,可作为一种理想的快速分析方法 应用于硅钢薄板中低含量硼的测定。

参考文献

- [1] 陈军. 硅钢的生产技术及其发展[J]. 鞍钢技术, 2001 (2): 28-30.
- [2] Kim Y W. Microstructural Evolution and Mechanical Properties of Forged Gamma Titanium Aluminide Alloy [J]. A cta M etall M ater, 1992, 40(6): 1121.
- [3] 闫春燕, 伊文涛, 马培华, 等. 微量硼的测定方法研究进 展[]].理化检验:化学分册,2008,44(2):197-201.
- [4] GB/T 4336-2002 碳素钢和中低合金钢火花源原子发射光 谱分析方法(常规法) [S].北京:中国标准出版社,2002.

(上接第34页)

参考文献

- [1] 康文通,陈仲祥,李小云.低品位铜矿制备活性氯化亚铜 [J]. 矿业研究与开发, 2005, 25(3): 44-46.
- [2] 黄凌涛, 刘定富, 曾祥钦, 等. 从含铜废水制备氯化亚铜 的研究[J]. 无机盐工业, 2008, 40(4): 46-48.
- [3] 李晓光,赵宏伟,李岩.现代氯化亚铜合成工艺[]].吉林 化工学院学报,2006,6(3):22-24.
- [4] 李博, 刘述平. 含铜废水的处理技术及研究进展[J]. 矿 产综合利用,2008,5:33-37.
- [5] Amanda Black, Dave Craw. Arsemic Copper and zinc occurrence at the Wangaba coal mine[J]. International Journal of Coal Geology, 2001, 45: 181-193.
- [6] 彭济时, 范兴永, 一种联合法生产氯化亚铜的工艺; 中国 专利,94105209.5[P]. 1998-12-20.
- [7] Forster H U. Hat je Investigations on the solid-state ion exchange of and ions into zeolite Y using EXAFS techniques[J]. Solid State Ionics, 1997(101):425-430.
- [8] Atsushi Itadani, Ryotaro Kumashiro, Yasushige Kuroda, et al. Calorimetric study of N2 adsorption oncopperion-exchanged ZSM-5 zeolite[J]. Thermochimica Acta, 2004(416):99-104.
- [9] Fu Fenglian, Zeng Haiyan, Cai Qinhong, et al. Effee-

- [5] GB/T 20125-2006 低合金钢 多元素含量的测定 电感 耦合等离子体原子发射光谱法[S].北京:中国标准出 版社.2006.
- [6] 鞍钢钢铁研究所, 沈阳钢铁研究所, 实用冶金分析- 方 法与基础[M]. 沈阳: 辽宁科学技术出版社, 1990.
- [7] ISO 14707- 2000 Surface Chemical Analysis Glow Discharge Optical Emission Spectrometry (GDOES)-Introduction to use [S].
- [8] ISO 25138- 2010 Surface chemical analysis Analysis of metal oxide films by glow-discharge optical-emission spectrometry [S].
- [9] ISO 16962- 2005 Surface Chemical Analysis. Determination of Thickness and Chemical Composition of Zn and/or Al Based Metallic Coatings by Glow Discharge Optical Emission Spectrometry [S].
- [10] 邓军华, 于媛君, 戚淑芳, 等. 直流辉光原子发射光谱法 测定合金钢中 16 种元素含量 []]. 理化检验: 化学分 册,2010,46(8):943-945.
- [11] 张伯超, 杭纬, 黄本立, 无机质谱法在固体直接分析中 的应用[J].中国无机分析化学,2011,1(1):13-23.
- [12] 余兴. 辉光放电光谱法在深度分析上的应用现状[J]. 中国无机分析化学, 2011, 1(1):53-60.

sing a new dithiocarbamate-type supramolecular heavy metal precipitant[J]. Chemosphere, In Press, Corrected Proof, Available online, 2007(7):12.

- [10] Xie J Z, Chang H L, Kilbane J J. Removal and recovery of metal ions from wastewater using biosorbents and chemically modified biosorbents [J]. Bioresource Technology, 1996(57): 127-136.
- [11] Feng Xiao, Wu Zucheng, Chen Xuefen. Removal of metal ions from electroplating effluent by EDI process and recycle of purified water[J]. Separation and Purification Technology, 2007(57) : 257-263.
- [12] Wang Ying, Wang Bo, Ma Hongzhu. Electrochemical catalytic treatment of wastewater by metal ion supported on cation exchange resin[J]. Journal of Hazardous, Materials, 2006(137): 1853-1858.
- [13] 朱屯编. 萃取与离子交换[M]. 北京:冶金工业出版社, 2005.
- [14] 邓勃.印迹技术在痕量金属分离和富集中的应用进展 [J].中国无机分析化学,2011,1(1):1-6.
- [15] 武汉大学等编. 分析化学(第四版) [M]. 北京: 高等教 育出版社, 2000.
- [16] 陆为林,杨春生,氯化亚铜中亚铜及高价铜盐含量的示 波滴定[J].分析化学,1998(1):17.

ctive semaval 20 Emina Academic Found Hetertronic Publishing House. All rights reserved. http://www.cnki.net