提高结肠早癌诊断率的荧光光谱小波特征 提取与神经网络分类方法研究

夏代林1,孟红霞2,张阳德3,何继善4

1. 华中科技大学教育部生物医学光子学重点实验室, 湖北 武汉 430074

2. 武汉大学动力与机械学院自动化系, 湖北 武汉 430072

3. 中南大学卫生部肝胆肠外科研究中心, 湖南 长沙 410083

4. 中南大学信息物理工程学院,湖南长沙 410083

摘 要 提出了一种新的荧光光谱特征提取与模式分类方法以提高激光诱导 5 ALA-PpIX 荧光光谱对早期 结肠癌的诊断准确率。利用小波多尺度分析法提取荧光光谱特征量,对提取的特征量采用基于 Rprop 算法 的 BP 神经网络进行模式分类。对 20 只 D M H 诱导的 SD 大鼠, 12 只诱导鼠的第二代鼠, 8 只正常 SD 大鼠, 按 25 mg•kg⁻¹体重剂量尾静脉注射 5 ALA 溶液, 150 min 后利用波长为 370 nm 的钛宝石激光进行活体检 测。对预处理后的 504 条荧光光谱,利用小波多尺度分析法提取 12 个特征量, BP 神经网络将其分为正常组 与非正常组(非典型增生、早癌和进展期癌),分类敏感性与特异性分别为 98 91% 和 97 2%,非典型增生、 早癌及进展期癌对正常组织的识别准确率分别为 91 3%, 98 85% 及 98 79%。结果表明此方法不仅对早期 结肠癌具有较高的诊断率,且更利于临床实时诊断。

主题词 荧光光谱;小波特征提取;神经网络;结肠早癌 中图分类号:R318 文献标识码:A 文章编号:1000-0593(2006)1+2076-04

引 言

肿瘤的早发现早诊断早治疗是提高癌症治愈率和患者存 活率的关键。激光诱导组织自体荧光^[1,2]和药物荧光^[3]是当 前荧光光谱与图像诊断各类早癌研究领域的两大方法。在荧 光光谱早癌诊断方法中,实现对不同病理阶段肿瘤的准确识 别与分类,不仅取决于所激发的荧光强度,而且与所采用的 分类处理方法密切相关。

目前,利用荧光光谱对组织分类算法主要有基于典型荧 光峰值的比率算法,如归一化荧光差值(DNF)指标^[4]、基于 局部荧光强度比值的概率分布分析法(I_{460} + I_{680}/I_{600})^[5]和 两波长或三波长荧光强度比值法(2 WR/3 WR)^[6]等,和基 于完整荧光谱信息的多变量统计分类方法,如逐步多变量线 性回归法(SMVLR)^[7]、主成分分析(PCA) + Logistic 回归分 析法(PCA+ LR)^[8,9]、偏最小二乘(PLS) + Logistic 回归分 析法(PLS+ LR)^[10]、偏最小二乘判别分析法(PLS DA)^[10] 等。前者只利用了少数波长点的信息,生物组织的多样性和 复杂性决定这种方法不具有普遍的适用性。 在完整荧光谱信息的处理方法中,光谱特征量的提取及 利用特征量进行分类的处理方法决定分类的最终效果。在之 前的文章[1]中,对同一试验数据采用了基于统计分析的多 变量分类方法,将正常组织、早癌及进展期癌组织的荧光光 谱两两组合,建立了3组回归分类模型,虽然最后各组的诊 断敏感性和特异性均较高,但这种处理方法比较烦琐,不利 于临床应用。

本文旨在设计一种新颖的荧光光谱特征提取与分类方法,以 SD 大鼠为模型,通过化学诱导法培养结肠正常、非典型增生、早癌及进展期癌病理组织模型,采用小波多尺度分析方法提取激光诱导 5 A LA- Pp IX荧光光谱特征量,并用基于 Rprop 算法的 BP 网络进行模式分类,以提高对早期结肠癌的诊断率。

1 材料与方法

11 动物模型和材料

在之前的研究^[11, 12] 中详细介绍了动物模型的建立方法 及所需的实验材料及试剂。简述如下: 取化学致癌试剂 1, 2

基金项目: 国家"十五" 重大科技攻关项目(2001BA706B15) 资助

作者简介:夏代林,1972年生,华中科技大学生命科学与技术学院生物医学工程博士后

© 1994-2010 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

收稿日期: 2005-08-10, 修订日期: 2005-11-16

二甲肼(1, 2 DMH)诱导鼠 20 只, 第二代鼠 12 只(未注射 DMH 溶液), 正常鼠 8 只(实验前 1 周购买), 进行定时(150 min) 定剂量(25 mg•kg⁻¹体重) 5 ALA 药物荧光在体实验。 在进行荧光检测的同时, 取测点处组织切片作病理诊断, 共 取切片结肠正常组织 183 个, 非典型增生 69 个, 早癌及原位 癌 87 个, 进展期癌 165 个。激光激发与荧光采集系统为波长 370 nm 的调 Q 式钛宝石激光器, 光电转换部件为 1024 阵列 增强型光电二极管, 7 芯同轴光纤直径 \emptyset 200 μ m, 0 22 NA, 中间 1 根为激发光纤, 周围 6 根为采集光纤。实验前利用 632 8 nm 的氦氖激光和 532 nm 的绿光进行波长校准, 采集

背景光。

1.2 小波多尺度特征提取

1.2.1 小波变换

连续小波变换定义为

$$C W_{a,b}(f) = \int_{-\infty}^{+\infty} \Psi_{a,b}(x) f(x) dx$$

其中 $\Psi_{a,b}(x)$ 为小波基函数 $\Psi(x)$ 与尺度伸缩因子 a 和时间 平移因子 b 构成的小波函数系

$$\Psi_{a,b}(x) = |a|^{\frac{1}{2}} \Psi\left(\frac{x-b}{a}\right)$$

对尺度伸缩因子及时间平移因子进行离散化

 $a = a_0^m \qquad a_0 > 1$ $b = nb_0 a_0^m \qquad b_0 \in R, (m, n) \in z$

可得离散小波基函数系

 $\Psi_{m, n}(x) = \bar{a_0}^{\frac{m}{2}} \Psi(\bar{a_0}^{m}x - nb_0)$

小波在相平面的信息单元(分辨率) 随尺度伸缩因子 *a* 的 变化而改变, 当 *a* 较小时, 频域分辨率低而时域分辨率高, 当 *a* 增加时, 频域分辨率增加而时域分辨率减小。小波分辨 率的这种变化规律使得小波变换具有良好的局域性和非正则 过零特性。图 1 为小波基及其在相平面中分辨率。

and the distribution in phase plane

1.2.2 小波多尺度分解

信号的小波多尺度分解过程如图 2 所示。在分解的每个 阶段都包含 2 个数字滤波器和 2 次欠采样。原信号或近似信 号与高通数字滤波器作卷积并经欠采样后得细节信号,与低 通滤波器作卷积并经欠采样后得近似信号。这样一层一层的 分解,直到所需要的尺度,得到 *n* 个细节信号和 1 个近似信 号,即 *n* 个对应于不同频带的高频分量和 1 个低频分量。 1.2 3 荧光光谱信号的小波特征提取

荧光光谱信号的预处理过程与文献[11,12]中的预处理 方法相似,即对原始信号作低通滤波初步剔除高频噪声;截 取 450~690-nm,范围内的谱线;对该范围内的光谱面积进行 积分,积分值对光谱长度平均,该谱各波长点的荧光强度除 以积分平均值,即得归一化荧光谱。

Fig 2 Diagram of the procedur of multiresolution decomposition with DWT

在小波多尺度分解过程中,根据光谱信号的特性并比较 不同小波基及不同尺度下信号分解的效果来确定合适的小波 基及小波尺度。其标准是突出原始光谱中的4个特征峰,并 选取平滑性好的小波基。经对 Haar, Daubechies, Mexicon hat, Meyer, Morlet 及 Symlets 等小波基分解结果对比,最 后选取 Symlets2 小波基,小波尺度选 5。

图 3 为进展期癌组织预处理后荧光光谱及其小波多尺度 分解结果,图中 d1~ d5 为分解后的细节信号,频带由高到 低。从图中可以看处,经预处理后的光谱及其小波多尺度分 解结果能有效地反应光谱中特征信息。

Fig 3 The result of multiresorution decomposition of preprocessed fluorescence spectra with DWT

在图 3 中,细节信号 d1, d2 几乎全为高频干扰信号。而 d5, d4 及 d3 细节信号对 谱变化比较敏感,对原始谱中的 4 个特征峰反应强烈。为此取这 3 个尺度的细节信号作为特征 变量提取空间。特征变量定义为原始谱 4 个特征谱带在这 3 个细节信号中能量积分的平均。图 4 为细节信号中特征区间 的划分示意图。每个细节信号选取 4 个特征区间,对应于原 shing House. All rights reserved. http://www.cnki.net

h(n) is the high pass filter; g(n) is the low pass filter; $\downarrow 2$ indicates downsample by 2

始谱中4个特征峰,特征变量为每个特征区间的能量积分的 平均值。这样,每条谱线3个细节信号,共12个特征变量。 为了加快 BP 网络的收敛及保证网络的稳定性,全部样本特 征变量提取后,应进行去均值及归一化处理,以确保网络输 入值在[-1,1]之间。

Fig 4 Division of feature region of detail signal after wavelet multiresorution decomposition, the entire spectrum was divided into 4 feature regions

1.3 BP 神经网络模式分类

BP 基本算法虽然很简单,但梯度下降算法的本质决定 其并非最优。神经元联接权值的更新与学习率和误差曲面内 的权值偏导数有关,固定的学习率限制了网络的收敛速率, 而偏导数的方向及大小使网络的学习过程可能陷入局部最小 或跳过全局最优点。Rprop^[13]算法消除了标准 BP 算法中不 确定的偏导数值对权值迭代步长的不利影响,偏导数只用来 决定权值迭代的方向,而权值迭代的步长则由权值步长因子 另外确定。

在 Rprop 法中, 需要确定的变量有 4 个:初始权值步长 Δ_0 ,最大权值步长 Δ_{max} ,权值步长增长率度及权值步长衰减 率度。通过理论分析及大量实验验证,两个权值步长因子可 固定为度 = 1 2, β = 0 5,初始权值步长 Δ_0 可任意设置,因 为其在随后的迭代过程中自适应调整,通常 Δ_0 = 0 1,最大 权值步长通常为 Δ_{max} = 50 0,虽然收敛过程对这一参数并不 十分敏感,但为了防止在局部极小值点收敛过快而出现抖 动, Δ_{max} 不易选得过大。

1.3.1 期望输出编码

对于二分类网络,将全部 504 条荧光光谱分为两类:正常组与非正常组(非典型增生、早癌及进展期癌),网络输出 层为1个节点,对应的网络输出编码为1或0。

1.3.2 网络隐层节点数的确定

由于目前尚无成熟的理论方法来确定合适的 BP 网络隐 层节点数,在此采用经验公式与实验方法相结合来搜索最佳 的网络隐层节点数。设网络的隐层节点数为 h,输入层节点 数为 I,输出层节点数为 O,则根据经验公式

$$h = \begin{cases} I + 0 & 618 \times (I - 0) & I > 0 \\ 0 - 0 & 618 \times (0 - I) & I < 0 \end{cases}$$

初步计算网络隐层节点数为 10 个。在此基础上,增加或减少 节点数,对网络进行训练及预测,观察比较预测结果的变 化,取预测结果精度最高时的隐层节点数作为最佳节点数。 1.3.3 网络训练均方误差阈值的确定

对一给定的神经网络模型,分别测试均方误差阈值为 样本个体的小波分析法则对样本量没有限制。 0.05,001,005,0005,0001时网络的分类预测性能,取预测 blishing(2)对新加样本的适应能力。由于主成分分析法是根据

率最高时的均方误差阈 值作为该网络模型的最终均方误差阈 值。

2 BP 神经网络分类结果

利用单输出二分类 BP 神经网络,以 12 个小波特征量作 为网络输入,通过对网络不同隐层神经元数及均方误差阈值 对比分析,最后取网络隐层神经元数目为 20, BP 网络层结 构分别 12 20 1,即 12 个小波特征量输入节点,20 个隐层节 点,1个输出节点。网络均方误差阈值设为 0.005,网络训练 学习 1659 回合达到误差阈值。

表1为12个小波特征量输入的 BP 神经网络二分类敏 感性与特异性,表2为三类非正常组织对正常组织的识别准 确率。训练组中预测敏感性及特异性均为100%,所有的正 常组织被判为正常组织,所有的非典型增生、早癌及进展期 癌均被判为非正常组织;测试组中54例正常组织有52例正 确判为正常组织,2例被误判为非正常组织,正常组织预测 特异性为963%,非正常组织中769%的非典型增生、 976%的早癌及976%的进展期癌组织被正确判为非正常 组织,预测敏感性为940%,正常组织与非正常组织分类准 确率为946%。

 Table 1
 Specificity and sensitivity of BP nettwork

 classification with 12 feature variants

	训练组	测试组	总体样本
特异性/ %	100	96 3	98 9
敏感性/%	100	94 0	97. 2

 Table 2
 Detail results of discrimination of normal from three styles of abnormal tissues

	工资组织			
	正吊组织	非典型增生	早癌	进展期癌
训练组	100	100	100	100
测试组	96 3	76.9	97.6	97.6
总体样本	98 9	91. 3	98 9	98 6

3 讨论与结论

在利用完整荧光光谱信息的诊断分类算法中,对荧光光 谱特征量的提取是一个非常重要的环节。素有"数学显微镜" 的小波分析以其特有的对信号多精度分析能力在信号分析与 特征提取中发挥着越来越重要作用。与目前常用的主成分荧 光光谱特征提取方法相比,小波分析法具有以下优点。

(1)对样本量的要求。基于统计分析的主成分特征提取 法所需样本量至少要大于信号维数。因此为了满足样本量的 要求,在利用主成分分析法提取荧光光谱特征量时,都要在 预处理过程中对光谱进行重采样,以降低信号的维数。基于 样本个体的小波分析法则对样本量没有限制。 总体样本统计规律来提取信号的特征量,若要提取单个新样本的特征量,只能根据已提取的特征量与光谱波长之间的拟 合关系进行近似计算,这就要求新样本与原样本集具有相似 的特性。而小波分析法直接对样本个体信号进行分解并分割 特征区间,从而直接提取特征量,因此对新样本具有更强的 适应能力。

对同样的数据,两种特征提取方法提取的特征量经相同的 BP 网络二分类结果显示,两种方法具有相似的收敛性能,

小波分析特征量的识别准确率略高于主成分特征量。

非典型增生处在正常组织到早癌的过渡期,若进一步发 展就可能转化为早癌,因此其病理特性与正常组织和早癌组 织均很接近,荧光光谱特性也相似。在之前文献[11]的研究 中,多变量分析法对非典型增生的识别率极低,因此未作讨 论。小波特征量与 BP 网络结合,不仅可以同时对四类组织 光谱进行分类识别,而且识别的特异性和敏感性均高于两两 组合的多变量统计分类法。

- [1] ZHANG Yang de, LIU Weit dong(张阳德, 刘蔚东). China Journal of Endoscopy(中国内镜杂志), 2000, 6(5): 1.
- [2] LUO Qing ming, GONG Hui, LIU Xiar de, et al(骆清铭, 龚 辉, 刘贤德, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 1997, 17(3): 105.

文

献

≠

- $[\ 3\,]$ Mess man n H . Gastrointest En doscopy Clin. N . Am . , 2000, 10(3): 497.
- [4] Vo-Dinh T, Panjehpour M, Overholt B F, et al. Lasers Surg. Med., 1995, 16: 41.
- [5] Cothern R M, Sivak M V, Dam J V, et al. Gastrointest Endosc., 1996, 44(2): 168.
- [6] Jianan Y, Wing P, Zhijian H, et al. Lasers Surg. Med., 2000, 26: 432.
- [7] Kapadia C R, Cuteuzzila F W, O'Brien K M, et al. Gastroenter., 1990, 99: 150.
- [8] Schomacker K T, Frisoli J K, Compton C C, et al. Lasers Surg. Med., 1992, 12: 63.
- [9] Ramanujam N, Mitchell M F, Mahadevan A, et al. Lasers Surg. Med., 1996, 19: 46.
- [10] Eker C, Rydel R, Svanberg K, et al. Lasers Surg. Med., 2001, 28: 259.
- [11] XIA Dairlin, HE Jirshan, ZHANG Yang de, et al(夏代林,何继善,张阳德,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2005, 25(12): 2029.
- [12] XIA Dai lin, HE Ji shan, ZHANG Yang de(夏代林,何继善,张阳德). Journal of Huazhong University of Science and Technology(Nar ture Science Edition)(华中科技大学学报・自然科学版), 2005, 33(9: 120.
- [13] Riedmiller M, Braun H. In Ruspini, editor, Proceedings of the IEEE International Conference on Neural Networks (ICNN), San Francisso: IEEE Press, 1993, 586.

Study of the Methods of Wavelet Feature Extraction and Neural Network Classification of Fluorescence Spectra to Improve the Diagnostic Rate of Colonic Earlier Stage Cancer

XIA Dai lin¹, MENG Hong xia², ZHANG Yang de³, HE Ji shan⁴

- The Key Laboratory for Biomedical Photonics of Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
- 2. Department of Automatization of Collage of Power & Mechanical Engineering of Wuhan University, Wuhan 430072, China
- 3. National Hepatobiliary and Enteric Surgery Research Center, Central South University, Changsha 410083, China
- 4. School of Info physics and Geomatrics Engineering, Central South University, Changsha 410083, China

Abstract In order to improve the diagnostic rate of earlier stage colonic cancer with laser induced 5 ALA Pp IX fluorescence spectra, a novel method of extraction of fluorescence spectral feature using wavelet analysis and classification using artificial neur ral network trained with resilient back propagation algorithm (R-BPNN) was developed. 504 spectra were collected from 8 nor mal SD rats, and 20 1, 2 DMH- induced SD colon cancer models and 12 second generation rats of induced rats. 150 min later trail intravenous injections of 5 ALA dose of 25 mg • kg⁻¹ body weight (BW), and fluorescence spectra excited with 370 nm Ti laser were collected *in vivo*. After preprocessing, 12 feature variants were extracted with wavelet analysis. With R BPNN, all spectra were classified into two categories: normal or abnormal, which included dysplasia, early carcinoma (EC) and advanced carcinom ma (AC). The sensitivity and specificity were 98.91% and 97.2% respectively. The accuracy of discriminating dysplasia, early carcinoma, and advanced carcinoma from normal tissue were 91.3%, 98.9% and 98.8% respectively. The result indicated that this method could effectively and easily diagnoses earlier stage colonic carcinomas.

Keywords Fluorescence spectroscopy; Wavelet feature extraction; BP neural network; Colonic cancer

© 1994-2010 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net