July , 2 0 1 1

2011年7月

Chinese Journal of Spectroscopy Laboratory

动力学荧光法测定抗坏血酸

贾华丽① 任凯

(周口师范学院化学系 河南省周口市川汇区七一路东段 31 号 466000)

摘 要 在稀硫酸介质中, 抗坏血酸活化溴酸钾氧化孔雀绿的反应, 使其荧光增强, 建立了动力学荧光测定 抗坏血酸 的新方 法。在最佳条件下, 测定的线性范围为 $10-120\mu g/mL$, 方法的检出限为 $0.0158\mu g/mL$ 。对浓度为 $20\mu g/mL$ 的抗坏血酸进行 11 次平行测定相对标准偏差为 2.6%。此方法已用于药剂中抗坏血酸的测定, 结果满意。

关键词 动力学荧光法; 抗坏血酸; 孔雀绿; 溴酸钾

中图分类号: 0 657. 32 文献标识码: B 文章编号: 1004-81 38(2011) 04-1702-04

1 引言

抗坏血酸又名维生素 C, 广泛存在于各种食物、药品中, 是维持机体正常生理功能的重要维生素之一, 而人体不能自身合成, 只能从食物和药物中摄取, 因此, 食品、药物中抗坏血酸含量的测定, 对于食品、药物的研发和检验具有重要的意义。

目前抗坏血酸的测定方法主要有分光光度法^[1,2], 电化学法^[3], 高效液相色谱法^[4], 化学发光法等^[5]。荧光法测定抗坏血酸的研究并不很多, 经典的荧光法用活性炭将抗坏血酸(DasA) 还原为脱氢抗坏血酸(AsA), AsA 与邻苯二胺生成荧光物质, 进行测试。该法对酸洗活性炭的质量要求较高, 制备也较麻烦^[6,7]。虽然许多人对该法进行了改进^[8,9], 但灵敏度亦不够高。而且大多需加还原剂后, 方可测定。

本文基于在稀硫酸介质中, 抗坏血酸活化溴酸钾氧化孔雀绿的反应, 使其荧光增强, 建立了动力学荧光测定抗坏血酸的新方法。该法应用于药片中抗坏血酸的测定, 结果满意。

2 实验部分

2.1 仪器与试剂

FP-750 荧光光谱仪(日本分光公司); BS 210S 电子分析天平(北京赛多利斯天平有限公司)。 抗坏血酸标准溶液(分析纯,天津市福晨化学试剂厂): 准确称取 0. 2500g 抗坏血酸,用水稀释至 250mL,得 1. 0g/L 标准溶液,4℃冰箱保存;硫酸溶液: 0. 5moL/L; 溴酸钾: 0. 1moL/L; 孔雀绿溶液: 0. 5g/L。所用试剂均为分析纯,实验用水均为二次蒸馏水。

2.2 实验方法

在 25_mL 比色管中, 依次分别加入 1. 2_mL 硫酸溶液、3. 0_mL 孔雀绿溶液、2. 8_mL KBrO³ 溶液、

① 联系人, 电话: (0394) 8178253; 传真: (0394) 8178253; E-mail: zkjiahualiw hu@ 163. com

作者简介: 贾华丽(1979一), 女, 河南省沈丘县人, 讲师, 硕士, 主要从事分析化学的教学和科研工作。

收稿目期。2010-209-13 注意見期。2010-09-29 ournal Electronic Publishing House. All rights reserved. http://www.c

2mL 抗坏血酸溶液,用水定容,摇匀,立即放入 60℃水浴中加热,30min 后取出,迅速用冷水冷却, 同时制备试剂空白溶液。在激发波长为 360nm, 发射波长为 375nm 处, 光谱通带为 5nm, 于 1cm 比 色池中测定荧光强度 F(加入抗坏血酸) 及 $F_0($ 相同条件下试剂空白) 。计算 ΔF , $\Delta F = F - F_0$ 。

结果与讨论

3.1 荧光光谱

孔雀绿在硫酸介质中的荧光光谱如图 1 所 示,在最大激发波长360nm 时,孔雀绿-硫酸体系 在 375nm 处有明显的特征荧光峰, 溴酸钾能氧 化孔雀绿(曲线 2); 当抗坏血酸加入后, 反应速 度加快, 抗坏血酸的加入, 并不对孔雀绿的发射 波长产生影响, 仅使 375nm 处的荧光强度增强 (曲线 1),表明抗坏血酸对该催化反应具有活化 作用。

3.2 测定条件的优化

321 试剂加入顺序

按照实验方法操作, 在各试剂加入量相同的 情况下,实验了试剂的不同加入顺序对荧光强度 的影响。实验结果表明, 试剂的加入顺序仅对初 C_{KBrO_3} = 0.012mol/L, $C_{\mathrm{R$\hat{a}$}}$ = 0.06g/L, $C_{\mathrm{fi,finit}}$ = 0.08g/L. 始反应速率有影响,30min 后,各体系的荧光强 度相差不大。

3.2.2 酸度条件的选择

实验了反应在稀盐酸、稀硫酸、稀磷酸3种介 质中的反应结果,发现抗坏血酸在稀硫酸介质中与 孔雀绿作用体系荧光最强。硫酸用量对体系的荧光 强度有较大的影响,结果见图 2。当 0.5mol/L 与 H_2SO_4 溶液用量为 1. 2mL 时, ΔF 值达到最大且重 现性好,为增大测定灵敏度,实验选择0.5mol/L H2SO4 溶液用量为 1.2mL。

3.2.3 孔雀绿溶液用量

加入不同体积孔雀绿溶液,按实验方法,绘制 ΔF 与孔雀绿溶液体积的关系曲线,见图 3。随着孔 雀绿溶液体积的增加, ΔF 增大, 当孔雀绿的用量超

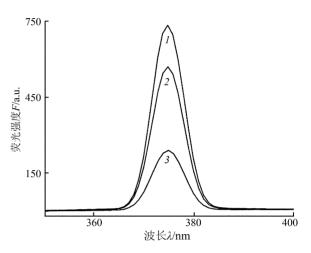
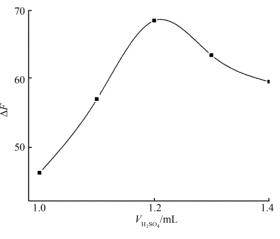
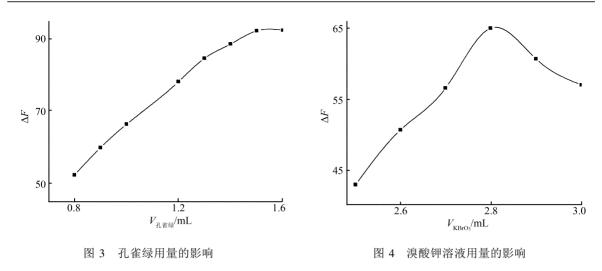


图 1 荧光光谱 I──H₂SO₄+ KBrO₃+ 孔雀绿+ 抗坏血酸; 2──H₂SO₄+ KBrO₃+ 孔雀绿; 3── H₂SO₄+ 孔雀绿; C_{H₂SO₄}= 0.03mol/L,




图 2 硫酸溶液用量的影响

过 1.5mL 时, ΔF 基本不再变化。本实验选择孔雀绿的用量为 1.5mL。

3. 2. 4 KBrO3 溶液用量的选择

按照实验方法, 固定其他条件不变, 仅改变 $KBrO_3$ 溶液的用量, 考察其用量对 ΔF 的变化趋势 (见图 4), 结果表明当 $KBrO_3$ 溶液用量为2. 8mL时, ΔF 最大, 故本实验选择 $KBrO_3$ 的用量为

2. 8mL 1994-2012 China Academic Journal Electronic Publishing House. All rights reserved. http://www.c

3.2.5 反应时间的影响

将体系放置不同的时间进行测定。当放置 30_{\min} 时, ΔF 达到最大值并趋于稳定, 并可以稳定 1h 以上, 反应时间超过 2h 后, ΔF 反而降低。故本实验选择的反应时间为 30_{\min} 。

3.2.6 分析方法的特性

在确定的最佳实验条件下制作校准曲线, 抗坏血酸的浓度在 10— $120\mu g/mL$ 的范围内与体系的荧光强度呈良好的线性关系。其线性回归方程为 ΔF = $0.8579 \rho(\mu g/mL)$ + 42.194, 相关系数 r= 0.9981, 方法的检出限, 由 $3S_b/K$ 经验公式计算为 $0.0158\mu g/mL$, 式中: S_b ——空白的标准偏差, K——线性方程斜率。对浓度为 $20\mu g/mL$ 的抗坏血酸进行 11 次平行测定相对标准偏差为 2.6%。

3.2.7 共存物质的影响

对含 20. 0μ g/ mL 的抗坏血酸溶液进行干扰实验, 当允许误差为±5% 时, 共存物(括号内为允许倍数): K^+ , Na^+ , Ca^{2+} , Cl^- , SO_2^{2-} , 酒石酸钠, 柠檬酸钠(1000); 葡萄糖(800); HAc(700); 草酸, Zn^{2+} , Mg^{2+} (500); 氨基磺酸, 苯甲酸(400); Ni(300); 甘氨酸(250); Al^{3+} , 苯丙氨酸(200); 维生素 E, 维生素 $B_2(100)$; I^- , Ba^{2+} (100), Fe^{3+} , Co^{2+} , Pb^{2+} (50); 表明方法有较好的选择性。

3.2.8 样品分析

将抗坏血酸注射液进行适当稀释后按上述实验方法进行测定,同时进行加标回收实验,结果见表 1。

		表 1 样品分析结果	:	(n= 6)
样品	原含量	加标量	测定值	回收率
	$(\mu g / mL)$	$(\mu g / mL)$	$(\mu g / mL)$	(%)
注射液	21. 60	20	40. 91	96. 6
		40	61. 03	98. 6

4 结论

通过实验,建立了动力学荧光法测定抗坏血酸的新方法,该法具有精密度高,选择性好等特点,已成功应用子药剂甲抗坏血酸的测定,结果满意nic Publishing House. All rights reserved. http://www.c

参考文献

- [1] 陈燕清, 陈桂生, 倪永年. 催化动力学光度法测定抗坏血酸的研究[1]. 食品科学, 2009, 30(8): 204-206.
- [2] 张建夫, 陈亚红, 田丰收等. 酶催化动力学光度法测定抗坏血酸[1]. 光谱实验室, 2010, 27(1): 213-216.
- [3] 白先群, 刘汉甫, 沈雪松. 电导法测定维生素 C 注射液的含量[J]. 分析科学学报, 2008, 24(5): 618-620.
- [4] 张云楚, 张新规. 高效液相色谱-示差折光检测法同时测定维生素 C 葡萄糖注射液中维生素 C 与葡萄糖的含量[J]. 中国药品标准,2008,9(6):421—424.
- [5] 封满良, 吕九如, 章竹君等. 铜-鲁米诺化学发光法测定抗坏血酸[J]. 分析化学, 1995, 23(1): 70-72.
- [6] 郑玉聪, 陈小萍, 林金腾等, 血浆维生素 C 荧光测定法[J], 中华预防医学杂志, 1997, 31(4): 241-242.
- [7] 冯宁川,徐伯兴,方禹之,动力学荧光法测定药物、水果、蔬菜中的维生素 C[I],分析测试学报, 1993, 12(4): 26—31,
- [8] 任小荣, 曾美云, 郝志红等. 荧光猝灭法测定饮料中的维生素 C[1]. 光谱实验室, 2008, 25(3): 323-327.
- [9] 孙振艳, 赵中一, 郭小慧等. 荧光分析法测定维生素 C[J]. 化学分析计量, 2006, 15(4): 18—20.

Determination of Ascorbic Acide by Kinetic-Fluorimetric Method

JIA Hua-Li REN Kai

(Department of Chemistry, Zhoukou Normal University, Zhoukou, Henan 466000, P. R. China)

Abstract Ascorbic acide can activate the reaction between malachite green and potassium bromate in dilute sulfuric acid medium, that increased fluorescence intensity of reaction. A new method for determination of ascorbic acide was developed by kinetic-fluorimetric method. Under optimal conditions, the linear range for determination of ascorbic acide was $10-120\,\mu\text{g/mL}$ with the detection limit of 0. $0158\,\mu\text{g/mL}$. The relative standard deviation was 2. 6% (n=11) at ascorbic acide concentration of $20\,\mu\text{g/mL}$. This method can be used for the determination of ascorbic acide in pharm aceuticals with satisfactory results.

Key words Kinetic-Fluorimetric Method: Ascorbic Acide: Malachite Green: Potassium Bromate

1980多种核心期刊从12400多种中文期刊中脱颖而出

北京高校图书馆期刊工作研究会最新评选结果汇编 北 京 大 学 图 书 馆 馆 长 朱 强 等 主 编 北 京 大 学 出 版 社 出 版

仲文核心期刊要目总览》(2008)

化学/晶体学类核心期刊一览表

序号	刊名	序号	刊名	序号	刊名
1	高等学校化学学报	10	分析测试学报	19	化学试剂
2	分析化学	11	化学通报	20	功能高分子学报
3	化学学报	12	分子科学学报	21	光谱实验室
4	催化学报	13	分析科学学报	22	合成化学
5	无机化学学报	14	中国科学(B辑),化学	23	人工晶体学报
6	物理化学学报	15	化学进展	24	影像科学与光化学
7	有机化学	16	理化检验(化学分册)	25	计算机与应用化学
8	分析试验室	17	分子催化	26	核化学与放射化学
9	色谱	18	化学研究与应用		

© 1994-2012 China Academic Journal Electronic Publishing House. All rights reserved. http://www.c

各学科5500多位专家参加了审查工作,评议指标高达80种