铷光谱灯的光谱研究

王 芳^{1, 2}, 赵 峰¹, 祁 峰^{1, 2}, 吴汉华¹, 钟 达¹, 梅刚华^{1*}

中国科学院武汉物理与数学研究所,湖北 武汉 430071
 中国科学院研究生院,北京 100039

摘 要 Rb光谱灯是 Rb原子频标的重要部件。Rb光谱灯发出的光含有两种成分,一种是对原子跃迁信号 有贡献的有效光成分,一种是仅体现为光噪声的无效光成分。尽可能地增强 Rb光谱灯有效光成分并抑制无 效光成分,对于提高 Rb原子频标锁频环路的信噪比从而改善 Rb原子频标的频率稳定度具有重要意义。利 用单色仪获得了分别充有起辉气体 Ar, Kr和 Xe的三种常用 Rb光谱灯的光谱,分析了三种 Rb光谱灯的光 谱特性,讨论了如何提高有效光强和抑制无效光强的问题。实验和分析结果表明,Rb光谱灯有效光强与所 用起辉气体的种类和灯泡的工作温度密切相关。灯泡工作温度较低时,Xe灯有用光强最大,Kr灯次之,Ar 灯最低;当灯泡工作温度较高时,Xe灯有用光强仍最大,Ar灯次之,Kr灯最低。分析还表明,采用合适的 光学滤光方法可以有效地滤除 Rb光谱灯的无效光成分。

关键词 Rb光谱灯;光谱;起辉气体;光噪声 中图分类号: O433.4 文献标识码: A DO I: 10.3964/j.issn.1000-0593(2009)05-1164-04

引 言

Rb光谱灯是被动型 Rb原子频标的重要部件^[1]。Rb光 谱灯的作用^[2,3]是通过光抽运实现 Rb原子基态两个钟跃迁 能级之间的粒子数反转,对 Rb原子频标整机的性能有很大 影响^[4,5]。

Rb光谱灯的发光原理是无极放电^[6],发光物质是 Rb蒸 气和起辉气体。在高频电场的作用下,灯泡中的起辉气体分 子发生电离。电离后的起辉气体分子通过碰撞将能量传给 Rb原子,把 Rb原子激发到激发态上去。处于激发态的 Rb 原子通过跃迁回到基态而发光。光谱灯光谱可以分为两种成 分,一种是对光抽运有贡献的有效成分,包含 Rb原子从 $5^2 P_{1,2} - 5^2 S_{1,2}$ 跃迁所发出的光 (794.7 m)和从 $5^2 P_{3,2} - 5^2 S_{1/2}$ 跃迁所发出的光 (780 nm),称为有效光;一种是对光抽运没 有贡献的无效成分,包含 Rb原子其他谱线的发光和起辉气 体发光,称为无效光。一个性能优良的光谱灯所发出的光, 应该具有尽可能强的有效成分和尽可能弱的无效成分^[7]。从 上述发光过程可看出,Rb光谱灯的光谱特性与起辉气体关 系非常密切^[8]。因此,考察 Rb光谱灯的光谱特性与起辉气 体的关系,对于改善Rb光谱灯的性能乃至改善Rb原子频标 的性能具有重要意义。

Rb光谱灯所用的起辉气体选用化学性质不活泼的惰性 气体,一般有氩(Ar)、氪(Kr)和氙(Xe)三种。本文从实验上 研究充有以上三种不同起辉气体的 Rb光谱灯的光谱特性。 利用单色仪获得了三种谱灯在不同工作温度下的光谱,定量 分析了有效光和无效光成分,讨论了三种谱灯的特点,从设 计和使用的角度探讨了减小 Rb光谱灯光谱中无效成分的方 法。

1 实验方法

3个谱灯分别充有起辉气体 Ar, Kr, Xe气。气体压力为 267 Pa, 激励信号的频率约为 110 MHz, 功率为 1.8 W。灯泡 的工作温度用温控电路控制并设置, 以便测量不同温度下谱 灯的发光光谱。

光谱测试装置示于图 1。谱灯发出的光经过透镜聚焦后, 由狭缝 S1进入单色仪。入射光通过凹面反射镜 M1反射到光 栅 G进行分光,分光后得到的单色光经 M1和反射镜 M2反 射后穿过狭缝 S2,供光电倍增管探测^[9]。单色仪为 WDP500-D型自动扫描单色仪,扫描范围设置为 300~900 nm,采样 间隔为 0.1 nm,积分时间为 0.3 s,计算机发出单色仪光栅扫

收稿日期: 2008-03-10, 修订日期: 2008-06-16

作者简介:王 芳,1982年生,中国科学院武汉物理与数学研究所博士研究生 e-mail: fang_wang@wipm.ac.cn * 通讯联系人 e-mail: mei@wipm.ac.cn

基金项目:国家 "973 计划项目 (2005CB724507)资助

1165

描驱动指令,并储存光电倍增管的光强输出信号。

2 实验结果分析

2.1 光谱

采用图 1所示的实验装置,我们测得不同工作温度下 3 个谱灯的光谱。工作温度为 110 时三种谱灯的光谱示于 图 2。由图 2可以看到,Rb光谱灯光谱中含有众多成分,为 便于分析,我们对 Rb原子发光成分进行了标识^[10]。

如图 2所示,三种谱灯中均观察到丰富的发光谱线。这 些谱线可以分为 Rb发光和起辉气体发光两种。Rb发光谱线 共观察到 6条,谱线标识列于表 1。在 6条 Rb原子谱线中, 谱线 和 (分别对应 $5^2 P_{1/2}$ — $5^2 S_{1/2}$ 跃迁 (794.7 mm)和 $5^2 P_{3/2}$ — $5^2 S_{1/2}$ 跃迁 (780 mm),是 Rb光谱灯光谱中的有效成 分,其余为无效成分。由图 2和表 1,可以看出三种谱线中有 效光谱成分所占比例呈现出较大差异,有效成分比重最大者 为 Xe灯。

Fig. 2 Light spectra of argon(a), krypton(b) and xenon(c) buffer gas kamps. The rubidium lines were marked, and unmarked ones are the buffer gas lines

	Table 1	Rub id ium	lines observed	'n	the	three	lam p
--	---------	------------	----------------	----	-----	-------	-------

"艹~~	对应原子跃迁	波长	3		
谱线		/nm	Ar灯	Ke灯	Xe灯
1	$Rb(6^2 P_{3/2} - 5^2 S_{1/2})$	420.1	219.5	118.5	115.7
2	$Rb(6^2 P_{1/2} - 5^2 S_{1/2})$	421.5	110.1	498.0	50.7
3	$Rb(6^2D_{3/2}-5^2P_{1/2})$	620.6	10.3	3.4	3.3
4	$Rb(6^2D_{5/2}-5^2P_{3/2})$	629.8	18.3	6.4	6.0
5	$Rb(5^2 P_{3/2} - 5^2 S_{1/2})$	780	193.7	180.0	218.8
6	$Rb(5^2 P_{1/2} - 5^2 S_{1/2})$	794.7	90.6	78.4	103.1

2.2 光谱随温度变化关系

-7

Rb光谱灯中灯泡的工作温度对发光特性的影响很 大^{111]}。为了弄清这种关系,我们在 106~142 之间改变谱 灯的工作温度,每隔 4 选择一个温度点,在每一个温度点

Fig. 3 Percentage ratios of useful light intensity to total light intensity as the function of kamp bulb temperature 1: Xe; 2: Ar, 3: Kr 对三种起辉气体的谱灯的光谱进行测试,得到了三种谱灯在 每个温度点的光谱。

对于一个实用的光谱灯,我们关心的主要问题为何种温 度条件下,有效光成分的比重最大。我们根据三种谱灯在不 同工作温度下的光谱,作出了有效光强在总光强中所占比例 随温度变化的曲线,见图 3。

3 讨 论

原子频标最重要的指标是频率稳定度。频率稳定度与原 子频标锁频环路的信噪比有直接关系,在信号一定的情况 下,噪声越大,稳定度越低。因此,抑制噪声是提高稳定度 的重要手段。对于 Rb原子频标而言,噪声主要来源是光子 的散弹噪声^[12],即

$$N_{\rm PC} = (2qI_{\rm PC})^{1/2} \tag{1}$$

其中 *q*为电子电量, *I*_{fc}为光电池探测到的直流光电流信号。 光电池探测到的是总光强信号。为了提高 Rb原子频标稳定 度,应尽可能提高有效光强在总光强中所占的比例。

(1)不同起辉气体谱灯特性比较

光谱灯中有用光强占总光强比例与充入的缓冲气体密切 相关。充入 Ar, Ke和 Xe作为起辉气体的谱灯都被证明是可 用的^[13, 14]。但迄今为止没有见到关于三种谱灯优劣的比较。 这种比较应该从光谱中有用光强占总光强比例进行。由图 3, 容易看到,在灯的工作温度较低时,光谱纯度是 Xe灯最优, Ar灯次之, Kr灯最差;当灯的工作温度较高时, Xe灯仍最 优,Kr灯次之,Ar灯最差;即无论是高温还是低温,都是Xe 灯的有用光强占总光强最大。最近美国Perking Emer公司研 制出目前世界上稳定度最高的谱灯抽运 Rb频标,用的就是 Xe灯^[15],这与 Xe灯的此特性不无关系。

(2)光学滤光

采用光学滤光方法,可以有效地滤除 Rb光谱灯的无效 光。滤光方案有低通滤光、高通滤光和带通滤光三种。滤光 方案的选取应根据无效光的分布特性确定。与有效光波长比 较,如果无效光分布在波长较短的区域,可采取高通滤光方 案;若无效光分布在波长较长的区域,可采取低通滤光方 案;如果象图 2所示 Kr灯光谱那样,无效光分布范围较大, 则可选用带通式滤光。光学滤光片的技术已经相当成熟,如 果选用合适,可以在减小 Rb频标的光量子噪声方面发挥重 要作用。

4 总 结

Rb光谱灯是 Rb原子频标的重要部件。Rb光谱灯总是 包含了有效光和无效光两种成分。有效光对信号有贡献,无 效光则仅对噪声有贡献,应尽可能加以抑制。本文研究了分 别充有 Ar, Kr和 Xe气体的三种 Rb光谱灯的发光光谱,发 现 Xe灯有用光强占总光强最大。因此,采用 Xe气作为起辉 气体,并采取合理的光学滤光措施,可以相当程度上减小 Rb 光谱灯的无效光成分,提高 Rb原子频标锁频环路的信噪比, 从而改善 Rb原子频标的频率稳定度指标。

参考文献

- [1] ZENG Yuan, ZHAO Feng, WU Han-hua, et al(曾 媛,赵 峰,吴汉华,等). Chinese Journal of Magnetic Resonance (波谱学杂志), 2004, 21(3): 345.
- [2] BellW E, Bloom A L, Lynch J. Rev. Sci Instum., 1961, 32: 688.
- [3] Brewer R G Rev. Sci Instum., 1961, 32: 1356.
- [4] Vanier Jacques, Audion Claude The Quantum Physics of Atomic Frequency Standards Adam Hilger, 1989, 1: 1271.
- [5] Volk C H, Frueholz R P. J. Appl Phys , 1985, 57(3): 980.
- [6] WANG Yi-qiu, WANG Qing-ji, FU Ji-shi, et al (王义遒, 王庆吉, 傅济时, 等). Quantum Frequency Standard Theory (量子频标原理). Beijing: Science Press(北京: 科学出版社), 1986. 368.
- [7] Camparo J C, Mackay R. Journal of Applied Physics, 2007, 101: 053303.
- [8] Fukuyo H, Iga K I Japanese Journal of Applied Physics, 1970, 9(7): 729.
- [9] YANG Huai-dong, XU Li, CHEN Ke-xin, et al(杨怀栋,徐立,陈科新,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2005, 25(9): 1520.
- [10] Luna F R T, Cavalcanti G H, Coutinho L H, et al Journal of Quantitative Spectroscopy & Radiative Transfer, 2002, 75: 559.
- [11] Fukuyo H, Iga K I, Kuramochi N, et al Japanese Journal of Applied Physics, 1970, 9: 729.
- [12] Vanier J, Bemier L G EEE Transactions on Instrumentation and Measurement M-30, 1981. 277.
- [13] Tako Toshiharu, Koga Yasuki, Hirano Isao Japanese Journal of Applied Physics, 1975, 14(5); 949.
- [14] Moe G, Tam A C, Happer W. Physical Review A, 1976, 14(1): 349.
- [15] Todd Dass, Gerald Freed, John Petzinger, et al. GPS Clocks in Space: Current Performance and Plans for the Future. 34th Annual Precise Time and Time Interval (PTTI) Meeting, Reston, VA, USA, December 03-05, 2002, 175.

Spectroscopy Study of Rubidium Spectrum Lamps

WANG Fang^{1, 2}, ZHAO Feng¹, Q I Feng^{1, 2}, WU Han-hua¹, ZHONG Da¹, MEI Gang-hua^{1*}

1. Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China

2 Graduate University of Chinese Academy of Sciences, Beijing 100039, China

Abstract Rubidium spectral lamp is one of the critical parts in a rubidium atom ic frequency standard (RAFS). The light emitted from the spectral lamp contains two components, one is the useful component, which contributes to the atom ic transition signal, and the other is the useless component, which acts only as the light noise In order to improve the signal-to-noise ratio of the frequency locking loop of a RAFS, and therefore to obtain a highly stable RAFS, it 's very important to enhance the useful light component and suppress the useless component. In the present work the light spectra of the three commonly used rubidium spectrum lamps with bulbs separately filled with buffer gases argon, krypton and xenon were obtained by means of a monochromator. The spectra were analyzed and the methods to enhance useful light intensity and reduce useless light intensity were discussed. Results showed that the useful light intensity strongly depends on the types of buffer gases and the bulb temperature. In the whole range of bulb temperature, the Xe lamp had the highest useful light intensity among the three lamps. The Kr lamp showed a higher useful light intensity than the Kr lamp. Analysis also indicates that the light noise of a rubidium spectrum lamp can be effectively minimized by adopting suitable light filtering technique.

Keywords Rubidium spectrum lamp; Spectroscopy; Buffer gas; Light noise

* Corresponding author

(Received Mar 10, 2008; accepted Jun 16, 2008)

(上接 1163页) 22-26 ACS Spring 2009 National Meeting & Exposition, Salt Lake City, UT; Contact ACS Meetings, 1155 16th St, NW, Washington, DC 20036; Tel (202) 872-4396, Fax: (202) 872-6128; E-mail: nathrtgs@acs org Web site: http://www.chemistry.org/

April 2009

9-11 7th China International Scientific Instrument and Laboratory Equipment Exhibition (CISLE 2009),
Beijing, China;
Contact CISLE Exhibition Office, B2-804 Room No 1 Building Wudongdalou No 9, Yard Chegongzhuang Street, Beijing 100044,
China; Tel 86 10 88395128, Fax: 86 10 88395130;
E-mail: chenwei@cisile.com.cn
Web site: http://www.cisile.com.cn/

13-17 2009 Materials Research Society Spring Meeting,

San Francisco, CA;

Contact Materials Research Society, 506 Keystone Drive, Warrendale, PA 15086-7573; Tel (724) 779-3003, Fax: (724) 779-8313;

E-mail: info@mrs org

Web site: http://www.mrs org/s_mrs/index asp

(下转 1175页)