【技术与方法】

文章编号:1001-5914(2004)06-0408-02

消毒剂中有效成分——对氯间二甲苯酚、 三氯羟基二苯醚的高效液相色谱测定法

杜达安,谢剑锋,胡静,朱杰民

摘要:目的 研究消毒剂中有效成分——对氯间二甲苯酚、三氯羟基二苯醚的测定方法。方法 选用高效液相色谱法,以乙腈:水=60:40(用冰醋酸调 pH 值 3.0)为流动相,选用二极管阵列检测器,检测波长为 280 nm。结果 对氯间二甲苯酚和三氯羟基二苯醚检出限分别为 2.48、2.08 ng,平均回收率范围为 95.4%~103.3%,相对标准偏差为 0.6%~3.4%。结论高效液相色谱测定法准确度和精密度较高,适用于含对氯间二甲苯酚、三氯羟基二苯醚消毒剂样品的测定。

关键词: 消毒剂;对氯间二甲苯酚;三氯羟基二苯醚;高效液相色谱测定法中图分类号: R113 文献标识码: B

Study on the Method for Determination of Nipacide PX and Triclosan in Disinfectant by High Performance Liquid Chromatography DU Da-an, XIE Jian-feng, HU Jing, et al. Centers for Disease Control And Prevation of Guangdong Province, Guangzhou, Guangdong 510300, China

Abstract: Objective To study the method for determination of nipacide PX and triclosan in disinfectant by high performance liquid chromatography. **Methods** High performance liquid chromatography, based on the mobile phase (CH₃CN:H₂O= 60:40, pH=3.0) and diode array detector(DAD, λ = 280 nm), was chosed to determine nipacide PX and triclosan in disinfectant. **Results** The detection limit of nipacide PX was 2.48 ng and triclosan was 2.08 ng. The rate of recovery was 95.4%–103.3%, the relative standard deviations (*RSD*) was 0.6%–3.4%. **Conclusion** The method is simple, precise and suitable for the determination of nipacide PX and triclosan in disinfectant.

Key words: Disinfectant; Nipacide PX; Triclosan; High performance liquid chromatography

一场突如其来的 SARS 灾害, 带给了人类健康意 识和思想观念的转变,人们的卫生观念和疾病防范意 识大大增强。各种消毒剂产品因为能够杀灭病原微生 物而在社会上得到广泛的使用,但是化学消毒剂很多 是有机化合物,对环境和人体会造成一定的危害。如 过氧乙酸和戊二醛消毒剂、虽可杀灭一切致病微生 物,但也腐蚀物品,污染空气,对人体呼吸道和皮肤有 强烈刺激、致敏性。随着我国卫生部《消毒技术规范》 (2002)的颁布实施,对消毒剂的种类和含量提出了具 体的要求和监管。对氯间二甲苯酚、三氯羟基二苯醚 属于苯酚类消毒剂,苯酚类消毒剂是使用历史最为悠 久的一类消毒剂,具有广谱高效低毒,使用安全,持效 长的优点而得到广泛的应用四。但是目前的《消毒技术 规范》(2002)并没有方法对其进行检测,笔者在参考 有关文献的基础上,通过实验研究,采用高效液相色 谱法分析这 2 种物质[2]。

1 材料与方法

1.1 仪器

HP1100 型高效液相色谱仪,配 G1311A 型四元泵,G1313A 型自动进样器,G1316A 柱温箱,G1315B型二极管阵列检测器(美国安捷伦公司);Reax-Top型

漩涡振荡器(德国 Heidolph 公司),5210E-MTH 型超声振荡器 (美国 BRANSONIC 公司),MILLI-Q Academic 超纯水处理器(法国 MILLIPORE 公司)。

1.2 试剂

对氯间二甲苯酚标准品(纯度≥99%,瑞典 Fluka公司),三氯羟基二苯醚标准品(纯度≥99%,日本 Tci公司),乙腈(色谱纯,美国 Burdick & Jackson 公司),冰醋酸、无水乙醇(优级纯,广州化学试剂厂),水为超纯水。

1.3 高效液相色谱条件

LC-18-DB 色谱柱 (150 mm×4.6 mm,5 μm, 美国 SUPELCO 公司),流动相为乙腈:水=60:40,用冰醋酸调 节 pH 值 3.0,柱温 25 ℃,流速 1.0 ml/min,二极管阵列 检测器,波长 280 nm。

1.4 样品预处理

称取膏霜、乳液或液体产品样品 1.000~g 于 25~ml 具塞离心试管中,用无水乙醇稀释定容至刻度,经漩涡 震荡混匀后,超声提取 10~15~min,取上清液用 $0.45~\mu m$ 滤膜过滤后备用,溶液中有不溶物时离心分离,取上清液过滤后备用。

1.5 样品测定

按上述色谱条件取 10 μl 待测溶液注入高效液相 色谱仪进行分析测定,根据色谱峰的保留时间和三维 光谱图进行定性,根据色谱峰面积进行定量。

1.6 标准曲线

标准储备液配置:准确称取对氯间二甲苯酚、三氯羟基二苯醚各 0.100~0~g 用无水乙醇溶解后定容至 100~ml 容量瓶中,配成标准溶液,浓度为 1~mg/ml。准确移取 0.0.10.0.20.0.50.1.00.2.00.5.00~ml 上述对氯间二甲苯酚、三氯羟基二苯醚标准溶液分别置于 100~ml 容量瓶中,用无水乙醇定容至刻度,配成标准系列混合溶液。进样 $10~\mu l$ 分析,用峰面积和标准浓度分别绘制对氯间二甲苯酚、三氯羟基二苯醚的标准曲线。

2 结果与讨论

2.1 检测器和检测波长的选择

现代消毒剂成分比较复杂,有些含有各种中草药、护肤功效成分等,如何选择合适的色谱条件十分重要。用紫外检测器对检测物质进行分析时,仅依据紫外检测器保留时间进行定性,很难排除复杂基体的干扰,影响对样品的准确定性,考虑到二极管阵列检测器为三维定性定量检测器,可以用保留时间和光谱图来进行综合判断,从而大大提高了样品分析的准确性,因此实验中检测器选用二极管阵列检测器。将对氯间二甲苯酚、三氯羟基二苯醚标准液在 200~300 nm 范围作光谱扫描,发现对氯间二甲苯酚在 220、280 nm,三氯羟基二苯醚在 230、254、280 nm 处均有较强的紫外吸收,综合考虑为了消除试剂的背景干扰,提高检测灵敏度,选择 280 nm 作为检测波长。

2.2 流动相 pH 值及配比对样品色谱行为的影响

根据对氯间二甲苯酚和三氯羟基二苯醚 2 种物质自身的物理和化学特性,以及在实际检测过程中样品自身的复杂和多样性,选择合适的流动相对分析有十分重要的意义。在反复实验中,发现在酸性条件下进行分析,其中 pH 值在 2.0~3.0 之间峰型变化不大,分离效果好,结果满足实验要求,但当 pH 值大于 3.0 时峰型变化较大,分离效果变差。选用强极性试剂乙腈与水为流动相,其中乙腈和水的配比在 50:50 至 70:30 之间 2 种物质都能够很好地分离,综合考虑实验时间的长短以及有机试剂对环境及人体的危害,选择乙腈和水的配比为 60:40。实验结果表明,在 pH=3.0 及乙腈和水的配比为 60:40 的流动相体系条件下,实验结果理想,满足实验要求。

2.3 色谱柱及柱温的选择

由于流动相 pH=3.0,所以选择耐酸柱来进行分析。 温度对样品分析没有明显影响,只对出峰时间有些影响,综合考虑柱温选定为 $25\,^{\circ}\mathrm{C}$,结果满足实验要求。

2.4 干扰性实验

由于现代消毒产品种类繁多,其自身的复杂和多

样性给检测工作带来很大干扰,如果分析过程中发现 有其他物质产生干扰,可以通过适当改变流动相的配 比关系,达到被测物色谱峰与干扰物色谱峰分离,并辅 以二极管阵列检测器进行三维定性分析,确保实验的 准确性。

2.5 标准曲线及最低检出限测定

对氯间二甲苯酚、三氯羟基二苯醚标准系列浓度测定 6次,取平均值得到标准曲线。则对氯间二甲苯酚标准曲线回归方程为 y=5 474.4x+11.552,相关系数 r=0.999 98;三氯羟基二苯醚标准曲线回归方程为 y=6 634.2x-0.241 86,相关系数 r=0.999 99。方法的最低检出限以 3 倍信噪比计算,对氯间二甲苯酚和三氯羟基二苯醚的检出限分别为 2.48、2.08 ng。

2.6 方法回收率和精密度试验

称取分别含有对氯间二甲苯酚、三氯羟基二苯醚 消毒洗手液、消毒药水进行加标实验,在标准曲线范围 内,分别加入对氯间二甲苯酚和三氯羟基二苯醚 3 种 高、中、低浓度的标准溶液,测得各类消毒剂的加标回 收率和相对标准偏差,结果见表 1。

表 1 消毒剂中对氯间二甲苯酚和三氯羟基二苯醚 高效液相色谱测定法的精密度与回收率实验结果 (*n*=6)

消毒剂	本底值	加标值	测定值	平均回收率	RSD(%)
	(mg/ml)	(mg/ml)	(mg/ml)	(%)	
对氯间二甲苯酚	0.200	0.010	0.206	98.1	1.5
		0.100	0.288	96.0	0.6
		1.000	1.172	97.7	2.0
	0.600	0.050	0.624	96.0	1.6
		0.500	1.082	98.4	1.0
		2.000	2.586	99.5	0.8
三氯羟基二苯醚	0.150	0.010	0.154	96.3	3.4
		0.100	0.241	96.4	2.1
		1.000	1.162	101.0	1.0
	0.200	0.010	0.205	97.6	0.9
		0.100	0.310	103.3	3.1
		1.000	1.145	95.4	2.8

3 小结

本方法操作简单,分离效果好,准确度和精密度高,适用于含对氯间二甲苯酚、三氯羟基二苯醚消毒剂样品的测定。

参考文献:

- [1] 陈仪本,欧阳友生,黄小茉,等. 工业杀菌剂[M]. 北京:化学工业出版社,2001.210-211.
- [2]朱杰民,胡静,杨业,等.高效液相色谱法测定化妆品中三氯生[J]. 卫生研究,2000,29(3):154-155.

(收稿日期:2004-03-02)