高效液相色谱-电喷雾飞行时间质谱鉴别柄海鞘中的 多种化合物及其特征图谱

程红艳1,陈军辉1*,杨黄浩1,赵恒强1,张道来1,王小如1,2

(1. 国家海洋局第一海洋研究所生态中心,山东 青岛 266061; 2. 厦门大学化学化工学院化学系,福建 厦门 361005)

摘要:本文建立了高效液相色谱-电喷雾飞行时间质谱 (HPLC-ESI-TOF/MS) 联用技术用于海洋天然药物 柄海鞘多种化学成分快速鉴定及其特征图谱研究的方法。对柄海鞘药材进行超声波辅助提取,采用 HPLC-ESI-TOF/MS 对柄海鞘水提物中多种化合物进行分析,鉴定出柄海鞘水提物中的 10 种化合物;在化合物鉴定的基础 上,建立了柄海鞘药材的 HPLC 特征图谱,并发现不同批次柄海鞘的质量存在差异。结果表明,本方法可用于柄 海鞘药材有效成分的快速鉴定及质量控制。

关键词: 高效液相色谱-电喷雾飞行时间质谱; 柄海鞘; 特征图谱 中图分类号: R917 文献标识码: A 文章编号: 0513-4870 (2010) 10-1285-05

Identification of active components in *Styela clava* by HPLC-ESI-TOF/MS and the study on their HPLC specific chromatograms

CHENG Hong-yan¹, CHEN Jun-hui^{1*}, YANG Huang-hao¹, ZHAO Heng-qiang¹, ZHANG Dao-lai¹, WANG Xiao-ru^{1, 2}

(1. Research Center for Marine Ecology, First Institute of Oceanography of State Oceanic Administration, Qingdao, 266061;
 2. Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China)

Abstract: A new method based on high performance liquid chromatography-electrospray ionization time of flight-mass spectrometry (HPLC-ESI-TOF/MS) was developed for the rapid identification of active compounds in *Styela clava* and the development of its specific chromatograms. Samples were extracted by ultrasonic-assisted extraction, and the extraction conditions were optimized. The developed HPLC-ESI-TOF/MS method was used to identify the components in *Styela clava* extract, and a specific chromatogram based on HPLC analysis was established. Ten compounds in *Styela clava* extract have been primary identified by HPLC-ESI-TOF/MS on-line detection combined with literature review. The result of similarity evaluation for specific chromatograms indicated that the quality of different *Styela clava* samples was not entirely consistent. This method has the advantages of simple operation, rapid measurement and it is a powerful tool for identification of active components in *Styela clava* and its quality control.

Key words: HPLC-ESI-TOF/MS; Styela clava ; specific chromatogram

柄海鞘 (Styela clava) 属于海鞘纲内性目柄海 鞘科^[1, 2],为温水性种,多产于浅海,成体多固着在

收稿日期: 2010-03-09.

*通讯作者 Tel: 86-532-88966705, Fax: 86-532-88963253, E-mail: jhchen@fio.org.cn 港湾、船壳、浮物、岩石、海藻、贝壳等上, 生长繁 殖迅速, 在我国黄海产量甚大, 朝鲜沿海、日本沿海 也有分布^[3]。近年来在柄海鞘活性成分及活性研究 方面取得了重要进展, 发现许多结构新颖、生理活 性良好的化合物具有抗微生物、抗肿瘤、抗病毒等作 用^[4-6]。目前, 在柄海鞘化学成分研究的相关研究报 道中, 主要是采用传统方法对柄海鞘中的化合物通

基金项目:国家自然科学基金资助项目 (20905017);海洋局青年基金 资助项目 (2010140);海洋一所基本科研业务专项资助项目 (2010G25).

过分离纯化、结构表征来进行鉴定,例如,Lin等^[7]从 青岛产柄海鞘中分离得到胸腺嘧啶、胸苷、尿嘧啶、 尿嘧啶脱氧核苷等化合物,Gu等^[8]从青岛产柄海鞘 中分离得到胸腺嘧啶等化合物,Wang等^[9]从中国黄 海的柄海鞘中分离得到3个类胡萝卜素和1个芳香胺 类化合物。采用天然产物化学成分研究的传统方法用 于海洋天然药物化学成分研究存在步骤多、耗时长、 费用高、效率低等缺点。

近年来,现代分析技术快速发展,特别是色谱-质 谱联用技术的日益成熟及广泛应用,为天然药物复杂 体系中活性成分的快速分离和鉴定提供了一种全新 的研究思路^[10,11]。需要特别强调的是高效液相色谱-质谱联用技术在天然药物复杂体系化学成分的快速 分析、鉴别研究中已显示出越来越重要的作用^[12,13]。 本课题组采用高效液相色谱-质谱联用技术已用于 罗氏海盘车、龙胆、娑罗子等天然药物活性成分的快 速鉴别,并获得良好分析结果^[14-16];本文首次采用 HPLC-ESI-TOF/MS 联用技术对柄海鞘提取物中的多 种化学成分进行快速分析,根据高分辨飞行时间质 谱获得的相对分子质量,并结合文献,对柄海鞘中多 种活性物质进行了鉴别。另外,在此基础上,对柄海 鞘药材的 HPLC 特征图谱研究进行了探讨。

材料与方法

仪器与材料 1200 型高效液相色谱仪 (美国 Agilent 公司), 配有二极管阵列检测器 (DAD)、四元 泵、柱温箱和自动进样器等; Agilent G1969A 型飞行 时间质谱仪, 配有电喷雾离子源 (美国 Agilent 公司); Sinochrom-C₁₈ 柱 (大连依利特分析仪器有限公司, 200 mm × 4.6 mm ID, 5 μm)。

13 批柄海鞘样品均采自青岛海域, 经中国海洋 大学水产学院曾晓起教授鉴定, 样品来源及采集时 间见表 1。

供试品液的制备 在贮藏的样品中抽取柄海鞘 干燥个体数个,切片、粉碎、过40目筛,混合均匀,制 备成干粉,封装于样品瓶中,备用。准确称取柄海鞘 干粉样品 0.50 g,置于 100 mL 具塞锥形瓶中,加入超 纯水 50 mL,在室温条件下超声提取 30 min,静置 10 min,吸取上清液 1.5 mL 过 0.45 μm 微孔滤膜后作为 供试品溶液。

色谱条件 流动相为超纯水 (A), 色谱纯甲醇 (B), 进样量为 40 μL, 流速 0.8 mL·min⁻¹, 室温, 检 测波长 260 nm, 淋洗时间为 60 min, 梯度洗脱程序: 0→10→20→25→50→60 min; B%: 1%→1%→7%→

15%→50%→100%。

 Table 1
 Source information and similarity of 13 batches of

 Styela clava
 Styela clava

No.	Source	Acquisition time	Similarity	
S1	Shazikou, Qingdao	2009.02	0.81	
S2	Hongdao, Qingdao	2009.03	0.93	
S3	Hongdao, Qingdao	2009.04	0.91	
S4	Shazikou, Qingdao	2009.02	0.90	
S5	Shazikou, Qingdao	2009.03	0.90	
S 6	Shazikou, Qingdao	2009.04	0.89	
S 7	Shazikou, Qingdao	2009.04	0.88	
S 8	Yangkou, Qingdao	2009.05	0.91	
S9	Yangkou, Qingdao	2009.05	0.93	
S10	Yangkou, Qingdao	2009.05	0.91	
S11	Yangkou, Qingdao	2009.05	0.90	
S12	Yangkou, Qingdao	2009.05	0.90	
S13	Yangkou, Qingdao	2009.05	0.93	

质谱条件 进行 HPLC-ESI-TOF/MS 分析时,将 "色谱条件"项下的超纯水改为含 0.2%乙酸的超纯 水,其他条件不变,进入高分辨飞行时间质谱的流动 相流速分流至 0.4 mL·min⁻¹,正离子电离模式,毛细 管电压 4 kV,喷雾气压 50 psi (1 psi ≈ 6.9 kPa),干燥 气 (N₂)流速 12 L·min⁻¹,干燥气温度 350 ℃,破碎电 压 100 V,锥孔电压 65 V,全扫描质荷比 (*m/z*)范围 为 120~1 000。

结果

1 HPLC 方法学考察结果

以柄海鞘药材特征图谱中的 4 个主峰(峰 3、5、 6 和 8,图 1A)进行考察,选择 5 号峰为参照峰(保 留时间和峰面积均设为 1),用于计算各主峰的相对 峰面积及相对保留时间来考察仪器精密度、方法的重 复性及稳定性。结果表明,4 个主峰相对峰面积和相 对保留时间 RSD 值在 0.17%~1.41%和 0.15%~ 0.47%内,表明仪器精密度良好。4 个主峰相对峰面 积和相对保留时间的 RSD 值分别为在 0.26%~2.58% 和 0.17%~0.46%内,表明该方法重复性良好。在 24 h 内,4 个主峰相对峰面积和相对保留时间的 RSD 值分 别在 1.46%~4.57%和 0.17%~0.45%内,说明供试品 溶液在 24 h 内化学性质稳定。

2 柄海鞘中多种化合物的鉴定

柄海鞘提取物的 HPLC-DAD 色谱图及其对应的 HPLC-ESI-TOF/MS 总离子流质谱图见图 1, 由图 1 可以看出,采用优化过的分析条件,柄海鞘提取液中

Figure 1 Liquid chromatogram (A) and mass spectrometric total ion chromatogram (TIC) (B) of the extract of *Styela clava*. Peaks 1–10 refer to tyrosine, hypoxanthine, uridine, phenylalanine, inosine, guanosine, adenosine, deoxyguanosine, thymidine, and tryptophane, respectively

的化合物得到较好的分离与检测。对色谱图中的主要 组分进行高分辨质谱鉴别,可得到各化合物的精确 相对分子质量信息,参考相关文献^[17, 18]及中国科学 院上海有机化学研究所化学专业数据库,结合 DAD 光谱图对各化合物进行鉴别,鉴别结果见表 2,结果 可见柄海鞘含有丰富的核苷类化合物,与文献^[7, 8]报 道一致。

以图1A中的峰8为例阐述色谱峰定性,由其DAD 光谱图 (图 2)可看出,最大吸收峰在 260 nm 左右, 是核苷类化合物的特征吸收,可以初步确定该化合 物为核苷类化合物,元素组成为C、H、O、N。峰8 的质谱图 (图 2)可看出 *m*/*z* 为 268.105 0 离子峰为准 分子离子峰, *m*/*z* 为 152.057 6 的碎片峰较明显,采用

Figure 2 MS spectra and UV spectrum of peak 8

系统中的 Analyst QS 软件对其分子式进行推测,结 果表明 m/z 为 268.105 0 离子的分子式为 C₁₀H₁₄N₅O₄, 即 C₁₀H₁₄N₅O₄ 分子的 [M+H]⁺ 准分子离子峰, m/z 为 152.057 6 离子的分子式为 C₅H₆N₅O,即 [M-C₅H₈O₃+ H]⁺离子。根据文献^[18]推断其为脱氧鸟苷,从表 2 中 TOF/MS 所测得的各色谱峰精确分子量和计算所得 的理论值比较结果可知,实验测得的分子量准确可 信。

3 柄海鞘特征图谱分析

13 批柄海鞘样品的色谱图见图 3, 对获得的 13 批柄海鞘样品的色谱图进行色谱图积分获得各色谱 峰保留时间、峰面积等信息, 再根据色谱图基线噪声 水平, 将信噪比小于 10 的色谱峰除去不作计算。在 本研究所建立的分析系统下, 柄海鞘提取物成分出 峰时间均在40 min之前, 主要有10个色谱峰 (图1A), 这 10 个色谱峰即构成柄海鞘的特征图谱, 也是鉴别 真伪、评价柄海鞘质量的主要指标。为了消除系统误 差, 本研究选择 5 号峰为参照峰 (保留时间和峰面积 均设为 1), 采用相对保留时间和相对峰面积进行计

 Table 2
 HPLC-ESI-TOF/MS accurate mass measurements of compounds in the water extract of Styela clava.
 D: Scientific Database

 for Chemistry of Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences
 D: Scientific Database

Peak $t_{\rm R}/{\rm min}$ No.	to/min	n Selected ion	m/z		Formula	Error	Compound	Main fragment	λ_{max}	Reference
	ι _K /mm		Experimental	Calculated	- I officia	LIIU	Compound	ion (m/z)	(nm)	Reference
1	11.36	$[M+H]^+$	182.082 1	182.081 7	$C_9H_{11}NO_3$	-5.14	Tyrosine	136.762 0	265	D
2	11.99	$[M+H]^+$	137.046 7	137.045 7	$C_5H_4N_4O$	-6.56	Hypoxanthine	119.035 3	250	18
								110.035 3		
3	14.67	$[M+H]^+$	245.070 8	245.076 8	$C_9H_{12}N_2O_6\\$	-5.02	Uridine	113.035 2	262	18
4	21.13	$[M+H]^+$	166.087 2	166.086 2	$C_9H_{11}NO_2$	-5.89	Phenylalanine	120.081 8	262	17
5	25.89	$[M+H]^+$	269.089 0	269.088 0	$C_{10}H_{12}N_4O_5$	-3.74	Inosine	137.046 4	250	18
6	26.75	$[M+H]^+$	284.100 1	284.098 9	$C_{10}H_{13}N_5O_5$	-4.23	Guanosine	152.057 8	254	18
								135.030 8		
7	27.37	$[M+H]^+$	268.105 0	268.104 0	$C_{10}H_{13}N_5O_4$	-3.79	Adenosine	136.062 6	262	18
8	28.54	$[M+H]^+$	268.105 0	268.104 0	$C_{10}H_{13}N_5O_4$	-3.79	Deoxyguanosine	152.057 6	254	18
9	29.65	$[M+H]^+$	243.098 6	243.097 5	$C_{10}H_{15}N_2O_5$	-4.35	Thymidine	127.050 5	268	18
10	32.63	$[M+H]^+$	205.098 0	205.097 1	$C_{11}H_{12}N_2O_2$	-4.28	Tryptophane	188.071 0	260	D

算,计算结果表明,各柄海鞘样品的谱图中各峰出峰 时间的相对标准偏差很小,峰面积相差较大,说明各 样品中的化学成分种类差异不大,而各成分的含量 有一定差别。

Figure 3 HPLC specific chromatograms of water extracts of 13 batches of *Styela clava* from different places

通过"中药色谱指纹图谱相似度评价系统"(中 国药典委员会 2004 A 版)对 13 批柄海鞘药材的特征 图谱进行相似度分析,结果见表 1。从表 1 可以看出 13 批柄海鞘中 1 号样品相似度值较低,低于 0.85,其 他 12 批样品的相似度值在 0.85 以上,可以看出不同 批次的柄海鞘样品的质量有差异。由此可见,根据不 同批次柄海鞘药材的特征图谱,结合相似度分析,可 以区分质量有差异的柄海鞘样品,对柄海鞘药材质 量评价有重要意义。

讨论

本研究对不同提取溶剂及其混合液 (乙醇、乙醇 水溶液、乙酸乙酯、石油醚、氯仿、水) 制备柄海鞘 提取物进行了比较, 经 HPLC-MS 分析结果表明, 水 作为柄海鞘提取溶剂时提取物中特征显著的化合物 最多, 所得到的特征图谱具有明显的特征, 可反映柄 海鞘的多种活性成分, 提取物中含有多种氨基酸及 核苷化合物。

本研究对4根不同厂家的色谱柱进行了比较,结 果表明,色谱柱的选择对柄海鞘特征图谱影响较为 显著,说明在柄海鞘 HPLC 特征图谱研究中,应注意 选择合适的色谱柱。使用 Sinochrom-C₁₈ 色谱柱获得 的柄海鞘水提物各峰分离度高、色谱峰分布均匀,因 此选择 Sinochrom-C₁₈ 柱用于柄海鞘水提物中各化合 物的分离。实验中对不同柱温 (15~35℃)进行了比 较,均可获得良好的实验结果,但随柱温升高,各化 合物出峰速度加快,即保留时间明显缩短。实验考察 了不同流动相的流速对分离度的影响,结果表明流 速在 0.8~1.2 mL·min⁻¹内对分离度无明显影响。

柄海鞘水溶性成分的电喷雾飞行时间质谱总离 子流图示于图 1B, 基本上每个组分都有很好的质谱 信号响应, 与紫外吸收的信号一一对应。根据文献[18] 采用电喷雾正离子模式分析,对流动相的酸度、碎裂 电压、干燥气的流速、干燥气的温度和毛细管电压等 条件进行了优化筛选。其中干燥气的流速和温度、毛 细管电压和雾化气压对质谱的信号影响不明显;而 流动相的酸度和碎裂电压对质谱特征信号影响显著。 考察了流动相水 (A) 中加入不同浓度 (0.05%、0.1% 和 0.2%) 的乙酸对质谱信号强度的影响, 当采用含 有0.2%乙酸的水为流动相时, 流动相的 pH 值低于目 标化合物的 pk,值,则使目标化合物在正离子模式下 更容易变成带电液滴,从而能得到较强的质谱信号。 考察了不同碎裂电压 (100、150、200 和 300 V) 对 质谱信号强度的影响, 当碎裂电压较小 (<200 V) 时, 目标化合物的质谱信号主要以准分子离子峰[M+H]+ 为主, 当电压升至 200 V 以上时, 分子碎裂得到碎片 离子的信号,从而为目标化合物的分子结构提供信 息,通过这些信息可以进一步验证通过分子量信息 进行化合物定性的准确性。

小结

本文采用 HPLC-ESI-TOF/MS 联用技术对海洋药 物柄海鞘水提物中的化学成分进行了快速鉴别,在 没有对照品的条件下,成功鉴别了酪氨酸、次黄嘌 呤、尿苷、苯丙氨酸、肌苷、鸟苷、腺苷、脱氧鸟苷、 胸腺嘧啶、色氨酸等 10 种化合物,说明液相色谱-高 分辨质谱联用技术在海洋天然药物复杂体系成分鉴 别领域有很强的适用性。此外,通过 HPLC 特征图谱 可以比较全面地反映柄海鞘药材的化学成分,进而 能反映柄海鞘药材的内在质量,结合相似度分析可 用于柄海鞘药材的真伪鉴别及质量控制。

References

- [1] Zheng CX. Species diversity of ascidian in the coastal China seas [J]. Chin Biodivers (生物多样性), 1995, 3: 201-206.
- [2] Zhang JH, Fang JG. Study on the oxygen consumption rates of some common species of ascidian [J]. J Fish Sci China (中 国水产科学), 2000, 7: 16-19.

- [3] Geng Y, Zhao XX, Shen L, et al. Analysis of nutritional components in *Styela clava* Herdman [J]. Acta Nutr Sin (营 养学报), 2001, 23: 376-377.
- [4] Lee IH, Cho Y, Lehrer RI. Styelins, broad-spectrum antimicrobial peptides from the solitary tunicate, *Styela clava*. Comp [J]. Biochem Physiol, 1997, 118B:515–521.
- [5] Xu CX, Jin H, Chung YS, et al. Chondroitin sulfate extracted from the *Styela clava* tunic suppresses TNF-α-induced expression of inflammatory factors, VCAM-1 and iNOS by blocking Akt/NF-kB signal in JB6 cells [J]. Cancer Lett, 2008, 264: 93–100.
- [6] Geng Y. The analysis of nutrients in *Styela* and the inhibitive effects of the extraction of *Styela* on the sarcoma S-180 of mouse [J]. J Huazhong Norm Univ (Humanit Soc Sci) (华中 师范大学学报 人文社会科学版), 1999, 33: 123-125.
- [7] Lao YB, Jiang T, Li J, et al. Chemical study on secondary metabolites from ascidian *Styela clava* (I) [J]. Chin J Marine Drugs (中国海洋药物), 2001, 80: 12–15.
- [8] Zu CL, Gu QQ, Fang YC, et al. Study on the chemical constituents of ascidian *Styela clava* (II) [J]. J Ocean Univ Qingdao (青岛大学学报), 2000, 30: 255-258.
- [9] Li L, Wang CY, Guo YW. Chemical studies on secondary metabolites from Chinese asidians *Styela clava* [J]. Chin J Nat Med (中国天然药物), 2007, 5: 408-412.
- [10] Hofstadler SA, Sannes-Lowery KA. Applications of ESI-MS in drug discovery: interrogation of noncovalent complexes [J]. Nat Rev, 2006, 5: 585–595.
- [11] Deng G, Sanyal G. Applications of mass spectrometry in early stages of target based drug discovery [J]. J Pharm

Biomed Anal, 2006, 40: 528–538.

- [12] Xiao SY, Luo GA, Wang YM, et al. Identification of *Panax notoginseng* and its preparations by LC/MS [J]. Acta Pharm Sin (药学学报), 2004, 39: 127-131.
- [13] Cai ZW, Lee FSC, Wang XR. A capsule review of recent studies on the application of mass spectrometry in the analysis of Chinese medicinal herbs [J]. J Mass Spectrom, 2002, 37: 1013–1024.
- [14] Zhang DL, Chen JH, Wang H, et al. Identification of active components in Asterias rollestoni Bell. by HPLC-ESI-MS and study on their HPLC fingerprint [J]. World Sci Technol Mod Tradit Chin Med (世界科学技术-中医药现代化), 2009, 11: 173-178.
- [15] Li WL, Chen JH, Yin YF, et al. Content of gentiopicroside and loganic acid in *Radix gentianae* and their fingerprints [J]. Acta Pharm Sin (药学学报), 2007, 42: 566-570.
- [16] Chen JH, Li WL, Yang BJ, et al. Analysis of triterpene saponins in Semen Aesculi by high performance liquid chromatography-electrospray-time of flight-mass spectrometry [J]. Anal Chem (分析化学), 2008, 36: 285-291.
- [17] Li GQ, Deng ZW, LI J, et al. Chemical constituents from starfish Asterias rollestoni [J]. J Chin Pharm Sci, 2004, 13: 81–86.
- [18] Fan H, Li SP, Xiang JJ, et al. Qualitative and quantitative determination of nucleosides, bases and their analogues in natural and cultured *Cordyceps* by pressurized liquid extraction and high performance liquid chromatography-electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS) [J]. Anal Chim Acta, 2006, 567: 218–228.