乌鳖颗粒定性定量方法研究^{*} 刘志辉 陈武 .贾媛

(江苏省中医院 南京 210036)

摘要 目的: 建立乌鳖颗粒的定性定量方法。方法: 采用薄层色谱法对处方中的制何首乌、白术、续断和枸杞子进行定性鉴别; 采用高效液相色谱法测定制剂中 2 3 5 4 $^{\prime}$ —四羟基二苯乙烯 -2 -0 $-\beta$ -D —葡萄糖苷和川续断皂苷 VI 含量。 HPLC 色谱条件: 采用 Hedera ODS -3 C_{18} (4 . 6 mm \times 250 mm 5 μ m) 色谱柱,以乙腈 — 水为流动相进行梯度洗脱,流速 1 . 0 mL \cdot min $^{-1}$ 检测波长 212 nm 柱温 30 $^{\circ}$; 结果: 薄层色谱鉴别方法专属性强,阴性对照无干扰; 含量测定结果表明 2 3 5 4 $^{\prime}$ —四羟基二苯乙烯 -2 -0 $-\beta$ -D —葡萄糖苷进样量在 0 . 04462 $^{\circ}$ 0 . 04462 $^{\circ}$ 0 . 04462 04462

Qualitative and quantitative study of Wubie granules^{*}

LIU Zhi - hui CHEN Wu JIA Yuan

(Jiangsu Provincial Hospital of Traditional Chinese Medicine Nanjing 210036 China)

Abstract Objective: To establish a qualitative and quantitative method for Wubie granules. **Methods**: Polygoni Multi-flori Radix Praeparata Atractylodis Macrocephalae Rhizoma Dipsaci Radix and Lycii Fructus in this medicine were identified by TLC; HPLC method was used to determine the content of 2 β β β - terahydroxystilbene $-2 - 0 - \beta - D - glucoside$ and asperosaponin VI. And the HPLC conditions were as follows: Hedera ODS -3 C₁₈(4.6 mm × 250 mm β μ m) column served as analytical column; The mobile phase was acetonitrile – water with gradient elution at a flow rate of 1.0 mL • min⁻¹; The detection wavelength was 212 nm and column temperature was 30 °C. **Results**: The TLC spots were quite clear; The linear range of 2 β β β - terahydroxystilbene $-2 - 0 - \beta - D$ – glucoside was in 0.04462 – 0.4462 μ g(r = 1.000) the average recovery was 97.33% with RSD of 1.3% (n = 6); The linear range of asperosaponin VI was in 0.6636 –6.636 μ g(n = 1.000) the average recovery was 100.3% with RSD of 2.7% (n = 6). **Conclusion**: The method is simple accurate and reproducible and can be used for the quality control of Wubie granules.

Key words: Wubie granules; Polygoni Multiflori Radix Praeparata; Atractylodis Macrocephalae Rhizoma; Dipsaci Radix; Lycii Fructus; terahydroxystilbene; glucoside; asperosaponin; qualitation and quantitation; TLC; HPLC

乌鳖颗粒来源于江苏省中医院临床经验方,由制何首乌、续断、白术(麸炒)、鳖甲(炙)、茯苓、枸杞子以及黄狗肾共7味中药组成,具有补肝肾、健脾胃、调冲任之功效,临床上用于治疗卵巢功能早衰(POF) 取得良好疗效。本实验采用薄层色谱法对处方中的制何首乌、白术(麸炒)、续断和枸杞子进行定性鉴别;并通过高效液相色谱法对制剂中的 2,

3.5.4 - 四羟基二苯乙烯 $-2-0-\beta-D$ - 葡萄糖苷和川续断皂苷 VI.2 种活性成分进行同时测定。为乌鳖颗粒的质量控制提供依据。

1 仪器与试药

凝胶成像分析仪(WD-9413A型,北京市六一 仪器厂); 医用超声波清洗仪(KQ-1000E型,昆山市超声仪器有限公司); Waters e2695-2998 高效液

 ^{*} 康缘中医药科技创新基金项目(HZ0805KY)
第一作者 Tel: (025) 86529291; E - mail: liuzh1008@126. com

2. 1. 1

制何首乌 取样品 10 g,加热水 50 mL,超

声 30 min 使溶解 滤过 滤液用乙酸乙酯萃取 2 次,

每次30 mL,合并乙酸乙酯层,水浴蒸干,残渣加2

mL 甲醇溶解 即得供试品溶液; 取缺制何首乌的阴

性样品 同法制备缺制何首乌的阴性样品溶液; 取制

何首乌对照药材 2 g 加水 50 mL 煎煮 1 h 滤过 按照供试品溶液的制备方法 ,从 "滤液用乙酸乙酯萃

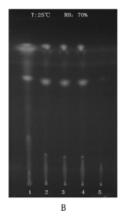
取2次"起操作,制得制何首乌对照药材溶液。吸

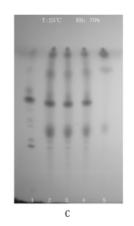
取上述 3 种溶液各 $10 \mu L$,分别点于同一块硅胶 G 薄层板上 ,以甲苯 – 乙醇(2:1) [1] 为展开剂 ,展至

3.5 cm 取出 晾干 ,再以甲苯 - 乙醇(4:1)[1] 为展

开剂 展至7 cm 取出 晾干 氨蒸气显色 旧光下检

视。样品色谱中 在与对照药材色谱相应位置上 湿


相同颜色的斑点,阴性对照色谱中则无此斑点(无


相色谱仪(美国 Waters 公司); 电子分析天平(BP – 211D 型 德国赛多利斯公司)。

对照药材制何首乌(批号 121454 - 200703)、白术(批号 120925 - 200708)、续断(批号 121033 - 200608)、枸杞子(批号 121072 - 200806)及对照品 2.3.5 A' - 四羟基二苯乙烯 $-2-O-\beta-D$ - 葡萄糖苷(含量测定用 ,批号 110844 - 200607)、川续断皂苷 VI (含量测定用 ,批号 111685 - 200401)均购自中国药品生物制品检定所; 乌鳖颗粒样品(江苏省中 医 院 制 剂 部 , 批 号 20100712 , 20100716 , 20100718);阴性样品(按乌鳖颗粒制备工艺自制);硅胶 G (青岛海洋化工);硅胶 G 薄层板(自制);乙腈、甲醇为色谱纯,水为超纯水,其他试剂均为分析纯。

- 2 方法与结果
- 2.1 薄层鉴别

干扰) 见图 1-A。

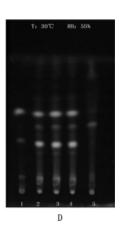


图 1 乌鳖颗粒中各药味薄层鉴别图

Fig 1 TLC of Wubie granules

A. 制何首乌(Polygoni Multiflori Radix Praeparata) B. 白术(麸炒) (Atractylodis Macrocephalae Rhizoma) C. 续断(Dipsaci Radix) D. 枸杞子 (Lycii Fructus)

1. 对照药材(reference crude drug) 2~4. 3 批样品(three samples) 5. 阴性样品(negative sample)

2.1.2 白术(麸炒) 取样品 10 g ,加正己烷 50 mL 超声 15 min 滤过 取续滤液 ,作为供试品溶液; 取缺白术(麸炒) 的阴性样品 ,同法制得缺白术(麸炒) 的阴性样品溶液; 取白术对照药材粉末 0.5 g ,加正己烷 2 mL 超声 15 min ,滤过 ,取续滤液 ,制得白术对照药材溶液 ^[2]。吸取上述 3 种溶液各 10 μL ,分别点于同一块硅胶 G 薄层板上 ,以环己烷 – 氯仿 – 乙酸乙酯(20: 10: 8) ^[3] 为展开剂 ,展开 ,取出 ,晾干。喷以 10% 硫酸乙醇液 ,105 ℃ 加热至斑点显色清晰 ,置紫外光(365 nm) 下检视。样品色谱中 ,在与对照药材色谱相应位置上 ,显相同颜色的荧光斑点 ,阴性对照色谱中则无此斑点(无干扰) ,见图

 $1 - B_{\circ}$

2.1.3 续断 取样品 10 g 加热水 50 mL 超声 30 min 使溶解 ,滤过 ,滤液用水饱和的正丁醇萃取 2 次 ,每次 30 mL。合并正丁醇层 ,水浴蒸干 残渣加 2 mL 甲醇溶解 ,即得供试品溶液; 取缺续断的阴性样品 ,同法制得缺续断的阴性样品溶液; 取续断对照药材 2 g 加水 50 mL 煎煮 1 h 滤过 ,按照供试品溶液制备方法 ,从"滤液用水饱和的正丁醇萃取 2 次"起操作 制得续断对照药材溶液。吸取上述 3 种溶液各 3 µL ,分别点于同一块硅胶 G 薄层板上 ,以正丁醇 - 醋酸 - 水(4:1:5) [2] 的上层液为展开剂 ,展开 ,取出 晾干。喷以 10% 硫酸乙醇液 105% 心加热至斑

点显色清晰, 日光下检视。样品色谱中, 在与对照药材色谱相应位置上, 显相同颜色的斑点, 阴性对照色谱中则无此斑点(无干扰), 见图 1 - C。

2.1.4 枸杞子 取样品 10 g,加热水 50 mL,超声 30 min 使溶解 滤过 滤液用乙酸乙酯萃取 2 次,每次 30 mL。合并乙酸乙酯层,水浴蒸干 残渣加 2 mL 甲醇溶解 ,即得供试品溶液; 取缺枸杞子的阴性样品 ,同法制得缺枸杞子的阴性样品溶液; 取枸杞子对照药材 0.5 g,加水 50 mL 煎煮 1 h,滤过,按照供试品溶液制备方法,从"滤液用乙酸乙酯萃取 2 次"起操作,制得枸杞子对照药材溶液。吸取上述 3 种溶液各 10 μL,分别点于同一块硅胶 G 薄层板上,以甲苯 - 乙酸乙酯 - 甲醇 - 甲酸(4:3:0.4:0.1)为展开剂,展开,取出,晾干,置紫外光(365 nm) 下检视。样品色谱中,在与对照药材色谱相应位置上,显相同颜色的荧光斑点,阴性对照色谱中则无此斑点(无干扰),见图 1 - D。

2.2 含量测定

2.2.1 溶液制备 混合对照品溶液: 分别精密称 取置五氧化二磷干燥器中干燥 12 h 的对照品 2 , 35 A^{\prime} - 四羟基二苯乙烯 $-2-\theta-\beta-D$ - 葡萄糖 苷和川续断皂苷 VI 适量 ,置于 25 mL 棕色量瓶中 , 加稀乙醇适量 ,超声使溶解 ,定容 ,摇匀 ,即得混合对照品溶液(235 A^{\prime} - 四羟基二苯乙烯 $-2-\theta-\beta-D$ - 葡萄糖苷 $14.87 \text{ µg} \cdot \text{mL}^{-1}$,川续断皂苷 VI $221.2 \text{ µg} \cdot \text{mL}^{-1}$)。供试品溶液: 取样品约 0.5 g 精密称定。精密加入 70% 乙醇 25 mL ,密塞 ,称 重。超声(100 W ,40 kHz) 提取 30 min ,放冷 ,以 70% 乙醇补足失重 ,摇匀 ,0.45 µm 微孔滤膜滤过 ,取续滤液 ,即得。阴性样品溶液: 取缺制何首乌和续断的阴性样品 ,按供试品溶液制备方法操作 ,即得。

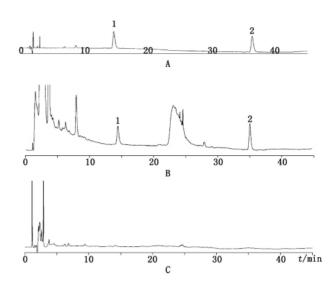


图 2 乌鳖颗粒 HPLC 色谱图

Fig 2 HPLC of Wubie granules

A. 对照品(reference substances) B. 样品(sample) C. 阴性样品(negative sample without Polygoni Multiflori Radix Praeparata and Dipsaci Radix)

1. 2 3 5 β´- 四羟基二苯乙烯 - 2 - 0 - β - D - 葡萄糖苷(2 3 5 , 4' - terahydroxystilbene - 2 - 0 - β - D - glucoside) 2. 川续断皂苷VI(asperosaponin VI)

2. 2. 3 线性关系考察 精密吸取混合对照品溶液 3β ,10 ,15 ,20 ,25 ,30 μ L ,按上述色谱条件进样测定。以进样量 $X(\mu g)$ 为横坐标 ,色谱峰面积 Y 为纵坐标 ,进行线性回归 ,得 $2 \beta \beta A'$ - 四羟基二苯乙烯 $-2 - O - \beta - D$ - 葡萄糖苷、川续断皂苷 VI 线性方程 分别为:

 $Y = 3.000 \times 10^6 X - 1.668 \times 10^4$ r = 1.000 $Y = 1.758 \times 10^5 X - 1.470 \times 10^4$ r = 1.000线性范围分别为 $0.04462 \sim 0.4462$ μg 和 $0.6636 \sim 6.636$ μg 。

2. 2. 4 精密度试验 精密吸取混合对照品溶液 10 μ L 按上述色谱条件连续进样 6 次。结果 2 β β A — 四羟基二苯乙烯 -2 — 0 — β — D — 葡萄糖苷、川续断皂苷 VI 峰面积的 RSD(n=6) 分别为 0.60% 和 1.2%。

2. 2. 5 重复性试验 取同一批号乌鳖颗粒约 0.5 g ,共 6 份 ,精密称定 ,依法制备供试品溶液 ,进样测定 ,计算含量。结果 2 3 5 4 — 四羟基二苯乙烯 — 2 — 0 — β — D — 葡萄糖苷、川续断皂苷 VI 含量平均值 (n = 6) 分别为 0.7180 和 14.64 mg • g^{-1} ,RSD 分别为 1.1% 和 1

2.2.6 稳定性试验 取同一供试品溶液,按上述色谱条件,分别于0.2.4.6.8,12 h进样测定。结果

 $2\ 3\ 5\ 4$ - 四羟基二苯乙烯 $-2\ -0\ -\beta\ -D\ -$ 葡萄糖苷、川续断皂苷 VI 峰面积的 RSD(n=6) 分别为 1.7% 和 1.6% 。

2.2.7 回收率试验 称取同一批号已知含量的乌鳖颗粒约 0.25~g ,精密称定 ,共 6~G。分别加入含 2~g , 4~G — 四羟基二苯乙烯 -2~G — 6~G — 6~G — 面萄糖苷 0.1812~g 、川续断皂苷 1.3.656~g 的对照品溶液 .依法制备供试溶液。按上述色谱条件进样测定 .计算回收率 .结果 2~g .5 4~G — 四羟基二苯乙烯 — 2~G — 6~G — 6~G — 面萄糖苷、川续断皂苷 1.0~G — 1.0~G —

2. 2. 8 样品含量测定 取乌鳖颗粒样品 3 批 ,依 法制备供试品溶液 ,按上述色谱条件测定 ,以外标法 计算含量。结果 3 批样品中 2 3 5 4 — 四羟基二苯 乙烯 -2 — 0 — β — β — 葡萄糖苷含量分别为 β 0. β 0. β 0. β 10 β 0. β 11 β 12 β 13 β 14. β 14. β 14. β 14. β 14. β 14. β 15 β 15 β 16 β 16 β 16 β 17 β 18 β 18 β 19 β 18 β 18 β 18 β 19 β 19 β 19 β 19 β 10 β 19 β 10 β

3 讨论与结论

3.1 薄层鉴别 对制剂处方中的制何首乌、白术 (麸炒)、续断、枸杞子4味药进行了薄层鉴别研究。 方法简便,重复性和专属性良好;在白术(麸炒)的薄层鉴别中,曾参考药典方法采用石油醚(60~90℃)-乙酸乙酯(50:1)为展开剂,结果未获成功。可能是由于制备工艺中白术(麸炒)加水煎煮提取后苍术酮等挥发性成分损失较大,未检出。后来在文献基础上进行了摸索、调整,建立了其鉴别方法。

3.2 含量测定

3.2.1 指标成分的选择 乌鳖颗粒是由制何首乌、续断等 7 味中药组成的复方制剂。处方中制何首乌为君药。2 3 5 4 —四羟基二苯乙烯 -2 — 0 — β — D —葡萄糖苷是何首乌中特有的生物活性成分,具有抗氧化清除自由基、保护肝脏、调节机体免疫功能等作用 [6] 。这与本制剂治疗卵巢功能早衰的目的一致,所以测定制剂中 2 3 5 4 —四羟基二苯乙烯 -2 — 0 — β — 0 — 葡萄糖苷含量;处方中续断为臣药,川续断皂苷 0 — 0

止骨质疏松、增强骨密度的作用,与续断补肝肾、强筋骨、续折伤功效吻合^[7],所以同时测定制剂中川续断皂苷VI含量。

3. 2. 2 检测波长的选择 由 2 β β A' – 四羟基二苯乙烯 – 2 – O – β – D – 葡萄糖苷和川续断皂苷 VI 光谱图可知: 川续断皂苷 VI 在 212 nm 处有最大吸收; 2 β β A' – 四羟基二苯乙烯 – 2 – O – β – D – 葡萄糖苷在 320 nm 处有最大吸收,在 212 nm 处有较大吸收。为了同时测定制剂中的上述 2 种成分,选择 212 nm 为检测波长,方法学考察结果表明,该方法可行。

3.2.3 供试品溶液制备方法的考察 比较了不同提取方法(加热回流提取、超声提取)、不同提取溶剂(甲醇;50% 60% 70% 80% 95% 乙醇;乙酸乙酯;正丁醇)以及提取时间(15 30 45 60 min)对提取效果的影响。最终确定了供试品溶液的制备方法。

参考文献

- 1 ChP(中国药典).2005.Vol I(一部):122
- 2 ChP(中国药典).2010.Vol I(一部):95 309
- 3 CHEN Jian zhen(陈建真) SONG Yu liang(宋玉良) "LÜ Gui yuan(吕圭源). Study on quality specification of Shangning oral liquid(伤宁口服液质量标准的研究). Tradit Chin Drug Res Clin Pharmcol(中药新药与临床药理) 2003 [14(4):263]
- 4 LU Jing(鲁静) SU Xiao li(粟晓黎), DONG Hai rong(董海荣) et al. HPLC determination of stilbene derivative in Radix Polygoni Multiflori(高效液相色谱法测定何首乌及制首乌中羟芪衍生物的含量). Chin J Pharm Anal(药物分析杂志) 2000 20(2): 104
- 5 ZHOU Dan dan(周丹丹) ,ZHAO Yun li(赵云丽) ,ZHANG Yan li(张艳莉) , et al. RP HPLC simultaneous determination of polydatin and stilbene glycoside in Yigan Shukang capsules (RP HPLC 法同时测定乙肝舒康胶囊中虎杖苷和二苯乙烯苷含量). Chin J Pharm Anal (药物分析杂志) 2008 28(3):411
- LÜ Li shuang(吕丽爽). Recent advances on stilbene glucoside from Polygonum multiflorum Thunb. (何首乌中二苯乙烯苷的研究 进展). Food Sci(食品科学) 2006 27(10):608
- 7 WANG Yan(王岩) ZHOU Li ling(周莉玲) "LI Rui(李锐). The study progress in *Dipsacus asper* Wall. (川续断的研究进展). *Lish-izhen Med Mater Med Res*(时珍国医国药) 2002 ,13(4):233

(本文于2010年9月20日收到)