3,5-二氯水杨醛氨基硫脲酰腙-邻菲□啰啉 Zn(Ⅱ)配合物的合成及晶体结构分析^①

张小鸽 刘峥²⁰ 王松梅 王 渊

(桂林理工大学化学与生物工程学院 广西桂林市建干路 12 号 541004)

摘 要 采用溶液法合成了 3, 5-二氯水杨醛氨基硫脲酰腙-邻菲□罗啉 Zn(II) 配合物,并培养出单晶。 通过元素分析、红外光谱对配体及配合物结构进行了表征。利用 Bruker SMART CCD 衍射仪测定了配合 物的晶体结构。结构解析表明,标题配合物属单斜晶系,空间群为 P_{21}/n ,其晶胞参数为 a=1.96322(19)nm, b=2.1942(2) nm, c=2.6927(3) nm, $\alpha=90.00^\circ$, $\beta=95.637(2)^\circ$, $Y=90.00^\circ$, V=11.5434(19) nm³, Z=8, Dc= 1.421g • cm⁻³, F(000) = 1018;最终偏差因子 $R_1=0.0640$, $wR_2=0.1789$ 和 $R_1=0.1690$, $wR_2=0.2451$ 。

关键词 酰腙;邻菲啰啉;晶体结构

中图分类号: 0434.13; 0657.33 文献标识码: A 文章编号: 1004-8138(2011) 04-2079-06

1 引言

酰腙是由酰肼与醛或酮发生亲核加成再消除脱水反应形成的产物,是由酰肼类化合物改性而成的一类席夫碱化合物,它们由醛或酮和酰肼缩合而成,具有良好的生物活性、较强的配位能力和多样的配位形式,在医药、农药、材料和分析试剂等方面受到了广泛的关注^[1]。近年来,国内外许多研究人员对该领域进行了比较深入地研究,研究发现酰腙类化合物具有抗菌、消炎、除草等多种生物活性^[2-8]。某些酰腙类化合物还具有抗癌作用。酰腙类化合物在材料科学领域也有潜在的应用前景,比如酰腙类化合物可用作合成束缚金属防止氧化的聚合塑料的原料。因此,不断开发合成新的酰腙化合物具有重要意义。

本文以3,5-二氯水杨醛氨基硫脲酰腙(H2L)配体和邻菲啰啉(Phen)配体,采用溶液合成法,与 过渡金属离子Zn(II)进行配位反应,得到3,5-二氯水杨醛氨基硫脲酰腙-邻菲啰啉配合物 [Zn(L)(Phen)],并培养出了它的单晶。利用Bruker SMART CCD 衍射仪确定了它的晶体结构。

2 实验部分

2.1 仪器与试剂

RE-52A 旋转蒸发仪(上海亚荣生化仪器厂);SK2210LHC 超声波清洗器(上海科导超声仪器 有限公司);Vario ELIII元素分析仪(德国 Elementar 公司);Shimadzu FTIR-8400型红外光谱仪(日 本岛津公司);Bruker SMART CCD 衍射仪(德国 Bruker 公司)。

3,5-二氯水杨醛(CP,江阴新星化工厂);硫代氨基脲(CP,上海国药集团化学试剂公司);冰醋

作者简介:张小鸽(1987--),女,河南省漯河市人,硕士研究生,主要从事应用有机合成工作。

收稿目期?261020162;接受目前22d6m20Journal Electronic Publishing House. All rights reserved. http://www.

① 桂林理工大学博士基金

② 联系人, 电话: (0773) 5896839; E-mail: lisa4. 6@ 163. com

酸(AR, 广东汕头市西陇化工厂有限公司); 无水乙醇(AR, 广东汕头市西陇化工厂有限公司); 无水 甲醇(AR, 广东汕头市西陇化工厂有限公司); 硝酸锌(CP, 国药集团化学试剂公司); 邻菲 啰啉 (AR, 广东汕头市西陇化工厂有限公司)。实验用水为二次蒸馏水。

2.2 配体 3,5-二氯水杨醛氨基硫脲酰腙(H₂L)的合成

在 100mL 烧瓶中加入 10mmol(0.9114g) 氨基硫脲和 30mL 蒸馏水,搅拌溶解。将 10mmol (1.910g) 3, 5-二氯水杨醛溶于 30mL 无水乙醇溶液中,在 75℃水浴条件下,将 3, 5-二氯水杨醛的 乙醇溶液缓慢滴入氨基硫脲水溶液中,然后加入 1.5mL 冰醋酸催化剂,反应 4h,静置冷却至室温,过滤,用冷的无水甲醇和蒸馏水分别洗涤数次,真空干燥后得到灰白色的 3,5-二氯水杨醛氨基硫脲酰腙固体(H2L),收率 95%。

2.3 Zn(L) (Phen) 的合成

0. 5mmol(0.132g) 干燥的 H₂L 溶于 35mL 无水甲醇中, 65℃搅拌条件下, 缓慢滴加 10mL 含 0. 5mmol(0.149g) Zn(NO₃)₂ • 6H₂O 的无水甲醇溶液,反应约 45min 后,用 7 滴浓氨水调 pH= 7—8,再反应 15min,再滴加 10mL 含 0. 5mmol(0.099g) 邻菲啰啉的无水甲醇溶液,立刻有黄 色沉淀析出,反应 45min,过滤,将滤渣溶解于 15mL N, N-二甲基甲酰胺(DMF)中,搅拌,过滤,滤 液在室温下自然挥发,数天后得到适合 X-射线单晶衍射分析的黄色正方形片状单晶。配合物产率 为63.2%。

3 结果与讨论

3.1 配合物化学组分测定和 IR 光谱分析

配合物的 C、H、N 用元素分析仪测定, (C49H47Cl4N13O5S2Zn2,%,括号内为理论值) C:47.50(47.67);H: 3.79(3.84);N: 14.82 (14.75);S:5.22(5.19)。

在 4000—400cm⁻¹波数范围内, 以溴化钾压 片法测定了配合物的红外光谱(图 1): C = N 吸 收从 1612cm⁻¹移到了 1608cm⁻¹, 说明次胺基 N 参与了配位, 1168cm⁻¹是 vAr-o吸收峰, 2360、 844cm⁻¹ 是 C—S 伸缩振动吸收峰, 1465、 1430cm⁻¹是苯环骨架振动的特征峰, 形成配合物

后,与配体相比较,高波数段在 3425、3303cm⁻¹处仍有较强吸收,它们是 胺基中 w- н的吸收峰, 1101、1054cm⁻¹是 w- м 吸收峰。

3.2 配合物的晶体结构测定及解析

选取尺寸大小为 0. 45_{mm}×0. 43_{mm}×0. 2000_{mm}的晶体, 置于 Bruker SMART CCD 衍射仪 上,用石墨单色化的 M₀K α 射线(λ = 0.071073_{nm}, ω 和 φ 在 0°—180°范围内, 温度 298(2) K, 在 1. 20° $\leq \theta \leq 25.01$ °内,从衍射区–23 $\leq h \leq 23$, –25 $\leq k \leq 26$, –20 $\leq l \leq 32$ 收集到 58085 个数据,其中 独立衍射点 20296 个(R_{int} = 0.0936), I > 2°(I)的可观测点 8961 个,全部数据经过经验校正,晶体结 构由直接法解出,对全部非氢原子及其各向异性热参数进行了全矩阵最小二乘法修正,所有计算均 在 PC 机上用 Siemens SHELXTL97 程序包完成,最佳吻合因子 S= 1.007, ($\Delta'\sigma$) max= 0.001,最终 偏差因子 R_1 = 0.0640, wR_2 = 0.1789[对 8961 个可观测衍射点($I > 2\sigma(I)$)]和 R_1 = 0.1690, wR_2 = 0.2451(分所有的衍射点?,权重方案"w= Π 行货(P_2)^P+0(6, \Pi38p)^P= 0.6987p1, P=(P_2 + 2 P_2)/73° 差值 Fourier 图最高残余电子密度峰 ρ_{max} = 886e/ nm³, 最低残余电子密度峰 ρ_{min} = -437e/ nm³。其他 相关数据及结晶学数据列于表 1。

= 1	和스物的日休当新	+ 🖓
衣工	能合物的晶体子数	怙

分子式	$C_{49}H_{47}Cl_4N_{13}O_5S_2Zn_2$
分子量	1234. 66
热力学温度(K)	298(2)
波长(nm)	0. 071073
晶系	单斜晶系
空间群	$P 2_1/n$
	$a = 1.96322(19) \text{ nm} \alpha = 90.00^{\circ}$
晶胞参数	b= 2. 1942(2) nm β = 95. 637(2) °
	$c= 2.6927(3)$ nm $Y= 90.00^{\circ}$
$V(\text{nm}^3), Z$	11. 5434(19), 8
Dc(计算值,g/cm ³)	1. 421
吸收系数(mm ⁻¹)	1. 144
F(000)	1088
晶体尺寸(nm)	$0.45 \times 0.43 \times 0.20$
数据收集 θ ()	1. 20-25. 01
晶体指数范围	$-23 \le h \le 23, -25 \le k \le 26, -20 \le l \le 32$
收集/独立衍射点数	$58085/20296[R_{int} = 0.0936]$
吸收校正	半经验法
精修方法	基于 F ² 的最小二乘法
数据/限制/参数	20296/ 0/ 1584
可视衍射点 $[I > 2\sigma(I)]$	8961
对 F^2 的拟合优度	1.007
最终偏差因子 $R[I > 2\sigma(I)]$	$R_{1}=0.0640, wR_{2}=0.1789$ $R_{1}=0.1690, wR_{2}=0.2451$
<u>残余峰最大值和最小值(e/nm³)</u>	886, - 437
注: $R_1 = \sum \ F_o\ - \ F_c\ / \sum F_o ; b$: $wR_2 = [\sum w(F_o^2 - b)]$	$F_{c}^{2})^{2/2} \sum w (F_{o}^{2})^{2}]^{1/2} $

3.3 配合物晶体结构描述

晶体结构分析表明, Zn(L)(Phen)晶体属于单斜晶系, 空间群为P21/n。Zn(L)(Phen)的晶体结构图、配位多面体图、Zn²⁺与配位原子的空间填充图、相互作用图和晶胞堆积图、分子间氢键导致的三维网状结构图、分别见图 2, 3, 4, 5, 6 和图 7。部分键长列于表 2, 分子间作用形成的氢键列于表 3。

化学键(nm)	键长(nm)	化学键(nm)	键长(nm)	化学键(nm)	键长(nm)
Zn1-01	0. 1959(5)	Zn3-N14	0. 2112(6)	N6-N7	0.1381(7)
Zn1-N2	0. 2080(6)	$Z_n 3 - N_1 15$ 0. 2181(6)		N11-C41	0. 1308(9)
Zn1-N5	0.2104(6)	Zn3-S3	0.2331(2)	N11-N12	0.1396(8)
Zn1-N4	0.2152(6)	Zn4-04	0. 1966(5)	N16-C61	0. 1314(9)
Zn1-S1	0.2347(2)	Zn4-N17	0. 2097(6)	N 16-N 17	0.1392(8)
Zn2-02	0. 1964(5)	Zn4-N19	0. 2121(6)	S1-C1	0.1748(8)
Zn2-N7	0. 2092(6)	Zn4-N20	0.2153(6)	S2-C21	0.1741(7)
Zn2-N10	0. 2133(6)	Zn4-S4	0. 2332(2)	S3-C41	0. 1738(8)
Zn2-N9	0.2140(6)	N1-C1	0. 1315(9)	S4-C61	0.1745(8)
Zn2-S2	0. 2353(2)	N1-N2	0. 1390(8)		
Zn3-03	0. 1954(5)	N2-C2	0. 1285(8)		
Zn3-N12	0. 2094(6)	N6-C21	0. 1319(8)		
键角	角度(°)	键角	角度(°)	键角	角度(°)
01-Zn1-N2	88.2	N 7-Z n2-N 10	98.5	04–Zn4–N17	87.8
01-Zn1-N5	107.5	02-Zn2-N9	92.2	04-Zn4-N19	97.0
N2-Zn1-N5	107.2	N7-Zn2-N9	176.6	N 17–Zn 4–N 19	100.4
01-Zn1-N4	91.0	N10-Zn2-N9	78.2	04-Zn4-N20	95.6
N2-Zn1-N4	174.1	N9–Zn2–S2	99.4	N 17–Zn 4–N 20	176.4
N5-Zn1-N4	78.7	O3-Zn3-N12 88.0		N 19-Zn 4-N 20	78.3
01-Zn1-S1	148.8	03–Zn3–N14	102.0	04-Zn4-S4	141.8
N2-Zn1-S1	83.0	N12-Zn3-N14	102.9	N17-Zn4-S4	82.5
N 5-Zn1-S 1	103.7	03-Zn3-N15	90.7	N 19-Zn 4-S 4	121.1
N4-Zn1-S1	94.8	N12-Zn3-N15 178.3		N20-Zn4-S4	95.3
02-Zn2-N7	88.6	N 14-Zn3-N 15	78.4		
02-Zn2-N10	113.2	N15-Zn3-S3	98.0		

表 2 配合物部分的键长与键角

© 1994-2012 China Academic Journal Electronic Publishing House. All rights reserved. http://www.c

表 3 配合物的氢键键长和氢键键角

			-	(1411)	
D—H····A	<i>d</i> (D—H)	$d(\mathbf{H}\cdots\mathbf{A})$	$d(\mathbf{D}\cdots \mathbf{A})$	∠DHA (°)	
N(3)-H(3A)N(6) ^a	0.08607	0.21631	0. 2992(8)	16.147	
N(3)-H(3B)····O(7) ^b	0.08611	0. 22237	0.3023(11)	15.444	
N(8)-H(8A) …N(1) °	0.08606	0. 22141	0.3061(8)	16.778	
N(8) -H(8B) -O(8) d	0.08590	0.21837	0.2989(11)	15. 595	
N(13) -H(13A) ····N(16) ^e	0.08595	0.22756	0.3033(8)	14.698	
N(13) -H(13B) ····O(5) ^f	0.08596	0.21633	0. 2932(11)	14.873	
N(18) -H(18A)N(11) g	0.08594	0. 22792	0.3117(8)	16.495	
$N(18) -H(18B) \cdots O(6)^{h}$	0.08608	0.21024	0.2941(11)	16.465	
$C(29) -H(29) -O(2)^{i}$	0.09290	0.24859	0.3359(10)	15.676	
C(51)-H(51) ····N(6)°	0.09313	0.25496	0.3381(12)	14.881	
C(58) -H(58) ····O(3) j	0.09295	0. 23924	0.3152(10)	13.888	
$C(71) - H(71) - N(1)^{k}$	0.09299	0. 26191	0.3538(10)	16.993	
$C(78) - H(78) \cdots O(1)^{1}$	0.09279	0.24105	0.3196(10)	14.232	
C(80) –H(80) ····Cl(7) ^m	0.09308	0.28052	0.3572(9)	14.040	

対称码: (a): 1- x, 1/2+ y, 1/2- z; (b): 2- x, 1/2+ y, 1/2- z; (c): 1- x, y- 1/2, 1/2- z; (d): x- 1, y, z; (e): x, 1/2- y, z- 1/2; (f): 3- x, - y, 1- z; (g): x- 1, 1/2- y, 1/2+ z; (h): x, 1/2- y, 1/2+ z; (i): 1- x, 3/2- y, 3/2+ z; (j): 3- x, - y, - z; (k): x, 3/2- y, 1/2+ z; (l): 2- x, y- 1/2, 3/2- z; (m): 3- x, 1- y, 2- z 。

图 2 配合物的晶体结构图

图 3 配合物的配位多面体图

由晶体结构图 2 可以看出,该配合物的分子式为: C₄₉H₄₇Cl₄N₁₃O₅S₂Zn₂,其晶体结构是一个 Zn (II)阳离子与三齿酰腙阴离子配体 L 和一个邻菲姆啉(Phen)配体所构成的重复单元,L 呈烯硫醇 式配位,整个配合物分子显电中性。在结构单元中,中心锌离子与来自一个酰腙的一个 O[O(O1)] 原子、N[N(2)]原子和 S(S1)原子,以及 Phen 分子的的两个 N(N4,N5)原子配位(图 4),形成了一 个五配位的三角双锥构型(图 3)。Zn(II)周围的配位环境为:配位原子 N5,O1,S1 共平面于 0.00020nm内,Zn1偏离该平面的距离 0.00040nm,它们与中心锌离子形成的键角 $[(1) \angle O1-Zn1-N5=107.5^{\circ},(2) \angle N5-Zn1-S1=103.7^{\circ},(3) \angle O1-Zn1-S1=148.8^{\circ}]$ 之和为 359.997°接近 360°,从这些数据可以看出 N5,O1,S1,Zn1处于同一平面,且共面性好。配位原子与中心 Zn(II)的键长(表 2)分别为 Zn1-N2=0.2080(6)nm,Zn1-N4=0.2152(6)nm,Zn1-N5=0.2104(6)nm,Zn1-O1=0.1959(5)nm,Zn1-S1=0.2347(2)nm,从键长数据可以看出配位能力最弱的仍是巯基 S1,最强的是酚羟基 O1。

由图 5 可以看出配合物中存在两种氢键, C(29B)-H(29B)…O(2AA)ⁱO.24859nm, C(51A)-H(51A)…N(6AA)^cO.25496nm(i: 1-x, 3/2-y, 3/2+z; c: 1-x, y-1/2, 1/2-z),通过这些氢键的相互作用,把配合物连接成链状结构,同时还有其他的氢键(表 3)共同作用,进一步堆积成 3D 结构(图 6、图)),由于该晶体管有大量的溶剂分子光序结构,分清晰起见散堆积图中溶剂部

(**nm**)

图 4 Zn 与配位原子的空间填充图

图 6 配合物的晶胞堆积图

图 5 配合物相邻分子片之间的相互作用

图 7 分子间氢键导致的三维网状结构图

4 结论

利用溶液法合成了标题配合物,并获得了单晶,通过元素分析、红外光谱对配合物进行了表征, X 单晶衍射表明,配合物晶体属单斜晶系。

参考文献

- [1] 范志金, 钟滨, 王素华等. 1, 3-二甲基-5-甲硫基-4-苯腙基羰基吡唑的合成及抑菌活性[J]. 应用化学, 2003, 20(4): 365—367.
- [2] 李来仲,徐克花,李平等. 芳醛-N-芳氧乙酰腙类化合物的合成与表征[J]. 合成化学, 2003, 5(11): 431-433.
- [3] Jeremy M P, Anang S, Aaron K et al. Discovery of Trypanocidal Thiosemicarbazone Inhibitors of Rhodesain and TbcatB[J]. Bioorganic & Medicinal Chemistry Letters, 2008, 9(18): 2883-2885.
- [4] Lowe J. The Chemotherapy of Leprosy Late Results of Treatment with Sulphone, and with Thiosemicarbazone J]. The Lancet, 1954, 264(6847): 1065-1068.
- [5] 赵国良, 吕天喜, 刘幸海等. 金刚烷胺水杨醛 Schiff 碱锌(II) 配合物的合成、表征及生物活性[J]. 化学研究, 2005, 16(2): ①1994-2012 China Academic Journal Electronic Publishing House. All rights reserved. http://www.c

- [6] 吴文士, 刘世雄, 黄尊行. N-乙酰皮考林酰肼合铜的合成和晶体结构[J]. 分子科学学报, 2003, 19(1): 40246.
- [7] M at thews C J, Thompson L K, Parsons S R. Pentanuclear Homoleptic M5L6 [M = Mn(II), Co(II), Zn(II)] Complexes Formed by Strict Self-Assembly[J]. Inorg. Chem., 2001, 40(17): 4448-4454.
- [8] Kovala-Demertzi D, Miller J R, Kourkoumelis N et al. Palladium(II) and Platinum(II) Complexes of Pyridine-2-Carbaklehyde Thiosemicarbazone with Potential Biological Activity. Synthesis, Structure and Spectral Properties. Extended Network Via Hydrogen Bond Linkages of [Pd(PyTsc) Cl][J]. Polyhedron, 1999, 18(7): 1005-1013.

Synthesis and Crystal Structure of Complex Zn(II) [3, 5-Dichlorosalicylaldehyde-Thiosemicarbazide Acylhydrazone] [Phenanthroline]

ZHANG Xiao-Ge LIU Zheng WANG Song-Mei WANG Yuan

(College of Chemical and Biological Engineering, Guilin University of Technology, Guilin, Guangxi 541004, P.R. China)

Abstract The title complex Zn (II) [3, 5-dichlorosalicylaldehyde-thiosemicarbazide acylhydrazone][phenanthroline] was synthesized by solution method, and the single crystal of the title complex was obtained. It was characterized by elemental analysis and IR, and the crystal structure was determined by Bruker SMART CCD diffractometer. The test showed the crystal belonged to monoclinic, space group P_{21} / n, and cell parameters: a = 1.96322(19) nm, b = 2.1942(2) nm, c = 2.6927(3) nm, $\alpha = 90.00^{\circ}$, $\beta = 95.637(2)^{\circ}$, $\gamma = 90.00^{\circ}$, V = 11.5434(19) nm³, Z = 8, Dc = 1.421g • cm⁻³, F(000) = 1018; final deviation factor: $R_1 = 0.0640$, $wR_2 = 0.1789$ and $R_1 = 0.1690$, $wR_2 = 0.2451$.

Key words A cylhy drazone; Phenanthroline; Crystal Structure

1980多种核心	北京高校图书馆期刊工作研究会最新评选结果汇编	各学科5500多		
期刊从12400	北京大学图书馆馆长 朱 强 等主编	位专家参加了		
多种中文期刊	北京大学出版社出版	审查工作,评议		
中脱颖而出	中文核心期刊要目总览》(2008)	指标高达80种		
化学/晶体学类核心期刊一览表				

序号	刊 名	序号	刊 名	序号	计
1	高等学校化学学报	10	分析测试学报	19	化学试剂
2	分析化学	11	化学通报	20	功能高分子学报
3	化学学报	12	分子科学学报	21	光谱实验室
4	催化学报	13	分析科学学报	22	合成化学
5	无机化学学报	14	中国科学(B辑),化学	23	人工晶体学报
6	物理化学学报	15	化学进展	24	影像科学与光化学
7	有机化学	16	理化检验(化学分册)	25	计算机与应用化学
8	分析试验室	17	分子催化	26	核化学与放射化学
Ģ	1994 絕會12 China Academie	Jogurna	l E 化學研究G应用lishing Hou	ise. A	ll rights reserved. http://wwv