硼污染土壤中硼释放特征及无机离子对其释放的影响

刘 莹,梁成华,杜立宇,赵宇光

(沈阳农业大学土地与环境学院,辽宁 沈阳 110161)

摘 要采用连续液流法研究了硼污染土壤中硼的释放动力学过程,并采用振荡平衡法就无机离子对硼释放的影响进行了研究。结 果表明(1)供试土壤硼的累计释放量随时间的延长而增大,累计释放量与全硼含量相关性不显著,而与土壤有效硼含量呈显著正 相关。(2)准二级动力学方程是描述土壤硼释放动力学过程的最佳方程。(3)供试土壤各时段硼平均释放速率的自然对数与时间呈 极显著的线性相关性 随时间延长反应速率不断下降。释放速率有阶段性特点,可分为快速反应阶段、中速反应和慢速反应三个阶 段,释放的硼 90%以上来自前两个阶段。(4)无机离子对供试土壤中硼表现出不同的释放能力,对释放量影响的大小顺序依次为: Cl>SO²₄>CO²₃, Na⁺>Ca²⁺。

关键词 土壤污染 硼污染 释放动力学 中图分类号 :X53 文献标志码 :A 文章编号 :1672-2043(2009)04-0711-05

The Characteristics of Boron Release from Boron Contaminated Soil and the Inorganic Ion Effect on Boron Release

LIU Ying, LIANG Cheng-hua, DU Li-yu, ZHAO Yu-guang

(College of Land and Environment, Shenyang Agricultural University, Shenyang 110161, China)

Abstract Boron release as a function of time was measured for boron contaminated soils by liquid flow technique with 0.01 mol·L⁻¹ CaCl₂ solution, and the inorganic ions genarally exsited in soil effects on boron release were studied by batch method. Four mathematical models (first order, pseudo-second order, Elovich and power function) were used to describe Boron release. The relationship between release velocity and time was also disscussed by mathematical models. The results showed that the cumulative amount of boron release increased with time and was independent of soil initial sample boron content. The release capacity was different in tested soils. Boron release equilibrated in the time of 240~255, 90~105, 135~150, 90~105, and 195~210 min, respectively. Comparison coefficients of determination(r^2) and standard errors of estimate (se), pseudo-second order, Elovich and power function could describe Boron release, but Pseudo second-order equation was best fitted with experimental kinetic date. There was a linear relationship between the logarithm of the release velocity and time, and the velocity decreased with time fast. The kinetic reaction could be divided into three different phases, and the release percentage of boron from first two phases accounted more than 90% of the total release boron. The boron release reaction from tested soils was a rapid reaction, and the rest boron was difficult to be removed. The release capacity of different ions to boron release was different in tested soils, with significant differences among them(P<0.001), and the order was $Cl>SO_4^2>CO_3^2$, Na*>Ca²⁺.

Keywords :contaminated soil; boron contamination; release kinetics

硼是植物生长所必需的营养元素之一,同时土 壤中硼的足够数量和过剩中毒的数量间的范围很 窄。当土壤中热水溶性硼超过5mg·kg⁻¹时,植物出 现中毒现象^[1]。中国的硼矿资源主要分布于青藏高原 的盐湖及辽东半岛的营口、凤城、宽甸、集安一带。长

收稿日期 2008-07-06

- 基金项目 :国家重点基础研究发展计划项目 :典型城区与矿区水-土-气界面污染过程及生态风险(2004CB418504)
- 作者简介:刘 莹(1983-),女 辽宁沈阳人,在读硕士,主要从事污染 土壤修复与利用方面的研究。E-mail liuying_1949@163.com

通讯作者 梁成华 E-mail :liang110161@163.com

期以来在硼的开采和硼化工产品的生产过程中产生 大量含硼废渣和废水,污染了当地土壤,使农产品产 量下降,严重者颗粒无收。硼在土壤中的释放行为常 被看作土壤吸附态硼的释放过程,土壤中硼的释放 动力学特征与其作用机理和环境效应密切相关,研 究土壤硼的释放行为对预测土壤环境中硼的迁移转 化规律和硼污染土壤修复具有重要意义。有关土壤 硼对作物生长发育影响的报道较多,对污染土壤中 硼释放的研究国外有些报道,而国内则鲜有报道。硼 在不同地域土壤中有不同释放特性。本文以丹东凤 城市硼污染的农田土壤为研究对象,就污染土壤硼 的释放动力学特征及土壤中普遍存在的无机离子对 硼释放的影响进行了研究,以期为硼污染土壤风险 评价及污染土壤修复提供参考。

1 材料与方法

1.1 供试土壤

供试土壤采自辽宁省丹东市凤城某化工厂附近 污染农田土壤。土样风干后,过1mm 筛备用,土壤基 本理化性质见表1。

1.2 硼释放动力学实验

土壤硼的释放实验采用连续液流法。称 5.000 g, 过 1 mm 筛风干土样放入底部垫有石英砂的自制交 换柱中,以 0.01 mol·L⁻¹ CaCl₂ 为淋洗液自上而下经过 交换柱,待测液第一滴流下准确计时,淋出液体在 15~300 min 时间段内取样,时间间隔为 15 min。

1.3 无机离子对硼释放影响实验

共选择 5 种无机离子 3 种阴离子 SO²₄(Na₂SO₄)、 CO²₃(Na₂CO₃)、Cl⁻(NaCl)和 2 种阳离子 Na⁺(NaCl)、 Ca²⁺(CaCl₂),称取 1.000 g 过 1 mm 筛的土壤样品于 50 mL 离心管中,加入 0.02 mol·L⁻¹的上述浸提液 20 mL ,在 25 ℃条件下恒温振荡 24 h ,离心,过滤,测定 上清液的硼含量,以蒸馏水为参照。

1.4 测定方法

土壤 pH 采用电位法 20 ℃下 液土比为 2.5:1 ,有 机质采用重铬酸钾容量法;土壤全硼采用 H₃PO₄-HNO₃-HF-HClO₄ 消煮-ICP-AES 法;土壤有效硼采用 沸水浸提-甲亚胺分光光度法,游离氧化铁采用 DCB 法测定,粘粒含量采用吸管法测定,待测液中硼采用 甲亚胺分光光度法测定。

1.5 计算方法

取样后按式(1)计算解吸量,淋出液体积采用称 重法计算。

 $q = c \times V/m$

式中 *q* 为硼解吸量 mg·kg⁻¹;*V* 为流出液体积 mL *m* 为供试土壤质量 g *r* 为流出液硼浓度 mg·L⁻¹。实验 均设平行,所得实验数据用动力学方程拟合,寻求优 化方程。用相关系数(*r*)和标准误差(*se*)判断模型优 劣 *r* 愈大 *se* 愈小 ,则该模型最优。实验数据采用 DPS 数据处理系统进行处理。

2 结果与讨论

2.1 硼释放特征

2.1.1 供试土壤硼的释放量随时间的变化

在相同的实验条件下,硼污染程度不同的供试土 壤硼的释放动力学曲线具有共性,供试土壤硼的动力 学曲线见图 1。由图可见硼的释放量是一个动态变化 的过程,供试土壤硼累计释放量均随时间的延长而增 大。反应进行一段时间后,释放量与时间关系近似成 一条平行于横轴的直线,说明后期的释放量不再增加 或者增加很少。Reeve 等和 Rhoades 等都曾报道渗滤 水在反应初期可去除土壤中大量的硼,而后即使有大 量渗滤水也很难去除残余的硼^[2-3],本实验出现相同 现象。供试土壤 A~E 释放量趋于稳定的时间依次为 240~255、90~105、135~150、90~105、195~210 min。供 试土壤释放量趋于稳定的时间不同,表明释放速率不

(1)

Table 1	Basic	nhysical	and	chemical	nronerties	of	the	tested	soil
Table 1	Dasic	physical	anu	chennear	properties	OI.	une	testeu	5011

土壤编号	全硼/mg·kg ⁻¹	有效硼/mg·kg ⁻¹	<u>全盐</u> /%	pH(水浸)	有机质/g·kg ⁻¹	游离氧化铁/%	<0.002 mm 粘粒含量/%
А	902.1	521.8	0.242	6.29	3.78	1.03	12.40
В	1 197.0	174.7	0.106	5.30	3.05	1.48	12.36
С	549.2	268.5	0.116	6.06	2.54	0.89	11.20
D	349.5	203.2	0.130	6.27	3.24	1.03	11.22
Е	832.5	698.1	0.629	6.11	2.68	1.14	11.84

同。供试土壤最大累计释放量分别为:A 土 473.06 $mg \cdot kg^{-1}$, B ± 154.78 $mg \cdot kg^{-1}$, C ± 252.30 $mg \cdot kg^{-1}$, D 土 114.80 mg·kg⁻¹ E 土 680.97 mg·kg⁻¹。用释放率 即 释放量占全硼的比率,来衡量各土样中硼的释放强 度。A 土硼释放率 52.44% B 土 12.93% C 土45.94%, D ± 32.85% E ± 81.80%。5种污染程度不同土壤中 硼的释放率不同,表明供试土壤硼释放强度有差异, 依次为 E>A>C>D>B。硼的释放率高低还反映了硼在 土壤中专性吸附态所占比例的高低。总体来看 供试 土壤均表现出有效硼含量越高硼释放量越大。从长远 来看 释放率的高低也反映了供试土壤在淋洗修复后 存在着生态风险的大小。当外界环境发生变化、有可 能导致残余态硼向水溶态转化 E 土样释放率较高, 较其他土样更适合采用淋洗修复的方式 其他供试土 样淋洗后硼再生的风险比较大,可能需要采取其他措 施抑制硼毒的再生。

有研究指出土壤 pH、有机质、粘粒含量、铁铝氧 化物含量均影响硼在土壤中的化学行为⁴⁴。在 pH<7土 壤溶液中 B(OH);是主要的吸附形态,土壤对其吸附 的能力较弱,在 pH3~9 的范围内 pH 提高有效硼含 量降低^[5]。由于影响硼吸附解吸的条件不同 国内外学 者关于 pH 影响硼有效性方面的结论不完全相同。供 试土壤中 B 土样 pH 最低 但其释放率在 5 个土样中 最低,究其原因可能是 B 土样中游离氧化铁含量均 高于其他土样,大部分硼以 B(OH)4的形态吸附于游 离氧化铁中 Bingham 等指出土样中游离氧化铁铝对 硼的滞留起主导作用⁶⁶。而Sims 等的结论相反,认为 pH 对硼释放的影响强于游离氧化物,因为在粘土矿 物存在的条件下铁铝氧化物对硼的影响更为复杂??。 供试土壤硼的释放强度与土壤pH、有机质、粘粒含 量、铁铝氧化物含量间相关系数分别为-0.61、0.32、 -0.09、-0.47 均未达到显著性水平。说明还有其他因 素影响着硼释放的过程,这种因素可能是更为复杂的 土壤矿物组成,因为在土壤中粘土矿物提供了主要的 吸附点位。

2.1.2 硼释放动力学模型

硼在土壤中解吸的动力学过程可以用不同的动 力学方程描述,包括一级动力学方程(First-order equation)、Elovich 方程、power funcation 方程等^[8]。准二 级动力学方程(Pseudo second-order quation)多用于描 述吸附过程 在描述释放过程中的应用比较少 少数 学者用准二级动力学描述重金属的释放过程取得很 好的相关性¹⁹,用于描述硼的释放过程还鲜有报道。从 表 2 中可以看出除了一级方程的 r 值低于 0.85 外 其 余方程均适合描述供试土壤中硼的释放过程。从表中 r 值范围 0.965~0.998 可以看出准二级动力学方程为 最优拟合模型。实验数据与准二级动力学方程有良好 的相关性 说明被释放出来的大部分硼来自化学吸附 的部分 这部分硼与土壤结合力较弱在短时间内便会 被释放出来。准二级动力学方程拟合后各土样 k、q。 见表 2。各土样 k 值大小顺序依次为 B>D>C>E>A k值反应释放容量。k值与 pH、有机质、粘粒含量、铁铝 氧化物的相关系数分别为-0.803、-0.410、0.181、 0.784 未达到显著相关水平,说明影响 k 的因素更为 复杂。

2.1.3 释放速率随时间的变化

随着释放平衡时间的延长,不同反应时段,硼在 土壤中的释放速率也在不断变化。释放速率与释放时 间存在一定关系。准二级动力学方程可以很好拟合实 验数据,则硼的瞬时释放速率可由式(2)计算⁹⁹。

$$\frac{\mathrm{d}q_i}{\mathrm{d}t} = k(q_e - q_i)^2 \tag{2}$$

通常以下 4 种模型比较适于描述释放速率与时 间的关系。

表 2 供试土壤硼释放的动力学方程拟合参数

P-1-1- 2	Demonsteres	f 11	1		J + .	J	D.		1 - + - 1	C	C:			1
able Z	Parameters of	n the	кіпецс	models	used to	describe	\mathbf{D}	reiease (uata	from .	пуе с	contaminated	SOI	41

土壤	-	一级动; _{qi} =	力学方程 ^{:a+b_i}		准二级动力学方程 $t/q_i=1/(kq_e^2)+t/q_e$			Elovich 方程 q _i =a+blnt				Power-function 方程 lnq,=a+blnt				
細丂	a	b	r	se	k	q_{e}	r	se	a	b	r	se	a	b	r	se
А	391.1	0.34	0.750**	27.48	0.000 26	476.2	0.997***	3.18	221.3	46.36	0.931***	15.20	5.5	0.12	0.912***	17.38
В	135.1	0.08	0.800**	5.47	0.001 04	156.3	0.994***	1.98	97.5	1.40	0.953***	2.77	4.6	0.08	0.943***	3.05
С	197.5	0.24	0.755**	18.63	0.000 35	263.2	0.998***	3.18	80.6	31.92	0.938***	9.82	4.7	0.16	0.913***	11.94
D	87.5	0.12	0.673	11.50	0.000 67	119.1	0.965***	4.66	27.1	16.27	0.874***	7.57	3.7	0.20	0.933***	9.11
Е	60.5	0.33	0.691**	31.12	0.000 29	714.3	0.990***	7.58	435.3	45.83	0.889***	19.71	6.1	0.08	0.874***	21.06

注 (1)上式中 q_t 为 t 时刻的释放量 q_e 为平衡时释放量 $\rho \land k$ 均为常数。(2)*P<0.01, **P<0.001。

表 2 硼释放速率自然对数与时间线性拟合参数

Table 2 Parameters of the linear equation between the

logarithm of the velocity and time

土壤代码	A	В	r	se
А	1.487	-0.029	0.978	0.536
В	0.113	-0.028	0.983	0.443
С	1.190	-0.034	0.987	0.485
D	0.003	-0.028	0.965	0.659
Е	1.500	-0.033	0.987	0.474

 $V=A+B\ln t \quad (3) \quad V/V_{\max}=A+Bt \quad (4)$

 $\ln V = A + B \ln t$ (5) $\ln V = A + B t$ (6)

式中 :*A*、*B* 为模型参数 *t* 为时间 ,*V* 为释放反应速率 , *V*_{max} 为最大释放速率。

通过对供试土壤的释放速率与时间用以上4种 模型进行回归分析发现, 硼释放速率与时间关系的最 优模型为式(6), 拟合结果列于表2中。由表2可见, 释放速率的自然对数与时间有良好的线性相关性,其 相关系数r为0.965~0.987, 达到显著相关水平。回归 参数A为直线截距 B为斜率 B<0 说明随时间延长, 累计释放量的增大释放速率不断下降。这还表明随着 释放的进行,专性吸附所占的比例越来越大。5 土样 B值的变化范围从-0.028 到-0.034 B值不同表明释 放速率随时间变化的下降率不同 B值越小,反应速 率下降的越平缓。从总体上看各土样中B值的绝对 值大小为 C>E>A>D~B B值不同说明土壤性质对释 放速率的下降率有影响。

以 A 土为例 A 土初始释放速率为 58.2 mg·kg⁻¹· min⁻¹ 进行到第 30 min 释放速率为 2.33 mg·kg⁻¹·min⁻¹, 反应进行到第 75 min 释放速率为 3.30×10⁻¹ mg·kg⁻¹· min⁻¹ 到第 240 min 释放速率 1.55×10⁻² mg·kg⁻¹·min⁻¹。 各时刻与初始反应速率相比反应速率分别降低 25 倍、176 倍、3 755 倍。根据瞬时反应速率的巨大差异 结合图 1, 可将硼的释放过程分为快速反应、中速反 应、慢速反应3个阶段。不同阶段对应不同吸附点位 上硼的释放。快速反应阶段对应的是范德华力和静电 力吸附的硼的释放;中速反应阶段将能级较低的共价 键结合的硼释放出来 慢速反应阶段对应高能共价键 所吸附的硼的释放。被释放的硼 90%以上来自于前 两个阶段。这两个阶段被释放的硼可能来自与土壤结 合较弱的 B(OH); ,或者来自土壤中含硼的可溶组分 及附在土壤界面上硼砂、类硼酸复合物等一类含硼物 质的溶解,还可能包括铁、铝、镁氢氧化物上解吸出来 的硼^[10]。供试土壤累计释放量与土壤盐分含量相关系

数达到 0.879 7 *P*<0.05 ,达到显著性相关水平 ,可见释放出来的部分硼来自于硼酸盐的溶解。随着盐基离子的释放会导致土壤 pH 升高 ,可能会使反应速率变慢

2.2 无机离子对硼释放的影响

土壤中的无机盐离子是影响硼释放的一个重要 因素。由图 2 可见,以蒸馏水为参比不同无机离子对 硼释放的强度不同。总体看来,阳离子对供试土壤硼 释放能力均表现出 Na⁺>Ca² 阴离子对硼释放的影响 均表现出 :Cl~>SO²->CO²。有研究发现,硝酸盐能降 低吸附在铁铝氧化物上的硼使硼向水溶态及非专性 吸附态转化。Cl⁻、SO²-同样可以使硼向水溶态转化, Cl⁻对硼的释放能力强于 SO²-。CO²-未能增加水溶态 硼的数量 其原因是 CO² 使溶液 pH 升高 增加了土 壤中B(OH); 的数量, 土壤对其吸附力强, 使水溶态 硼减少。而 CO²,对供试土壤硼却增加了其水溶态含 量,其原因可能是供试土壤硼较其他供试土壤游离 铁氧化物的含量高,在碱性条件下 Fe-OH 会离解出 质子而使得硼释放出来。经检验,不同无机离子,对 不同供试土壤硼释放能力的差异均达到 P<0.001 显 著性差异水平。

3 结论

硼在污染土壤中的释放是一个相对快速的反应 过程,在反应进行100min之后,大量水溶性硼释放 出来,随后释放量增加很少或不再增加。供试土壤有 效硼含量越低,累计释放量优先趋于稳定。供试土壤 对硼的释放强度和释放特征存在一定差异,一般表现 为有效硼含量越高,硼的释放强度越大。被释放出来 的硼只占吸附于土壤中硼的一部分,随着环境的变化 剩余部分可能被重新缓慢地释放出来,反映了硼污染 所导致的生态与健康风险的长期性。Elovich 方程、 Power function 方程、准二级动力学方程均可用于描 述硼的释放动力学过程,但准二级动力学为最优模 型。随着反应时间延长,累计释放量增加,释放速率不 断降低。硼释放过程可以分为快、中、慢反应3个阶 段。不同无机离子对硼释放的强度不同,总体表现为: 阳离子 Na*>Ca² 阴离子 Cl~>SO²~>CO².

参考文献:

[1] 刘 鹏. 硼胁迫对植物的影响及硼与其他元素关系的研究进展[J].
农业环境保护, 2002, 21(4):372-374.

LIU Peng. Effects of stress of boron and interaction between boron and other element[J]. *A gro–Environmental Protection*, 2002, 21(4) 372–374.

- [2] Reeve R C , A F Pillsbury, L V wilcox, et al. Reclamation of a saline and high-boron soil in the Coachella Valley of California [J]. *Hilgardia*, 1955, 24 :69–91.
- [3] Rhoades J D, Ingvalson R D, Hatcher J T, et al. Adsorption of boron by ferromagnesium minerals and magnesium hydroxide[J]. *Soil Sci Soc Ame Proc*, 1970b, 34 938–941.

- [4] Elrashidi M A, o' Connor G A. Boron sorption and desorption in soils [J]. Soil Sc. Am, 1982, 46 27–31.
- [5] Keren R, Bingham F T. Boron in water, soil, and plants[J]. Soil Science, 1985, 1 229–276.
- [6] Bingham F T, Page A L. Specific character of boron adsorption by an amorphous soil[J]. Soil Sci Soc Amer Proc, 1971, 35 \$92–893.
- [7] Sims J R, Bingham F T. Retention of boron by layer silicates, sesquioxides and soil materials 'I Sesquioxide[J]. Soil Sci Soc Amer Proc, 1968, 32 :369–373.
- [8] Sharma H C, Pasricha N S, Bajwa M S. Comparison of mathematical models to describe B desorption from salt-affected soils[J]. Soil Sci, 1989, 147 79-84.
- [9] Mehran Shirvani, Hossein Shariatmadari, Mahmoud Kalbasi. Kinetics of cadmium desortption from fibrous silicate clay minerals influence of organic ligands and aging[J]. *Applied Clay Science*, 2007, 37:175–184.
- [10] Griffin R A, Burau R G. Kinetic and equilibrium studies of boron desorption from soil[J]. Soil Sci Soc Amer Proc, 1974, 38 892–896.
- [11] 许中坚,等. 模拟酸雨影响下红壤中硼的释放特征[J]. 中国环境科学, 2003, 23(5):498-502.

XU Zhong-jian, et al. Studies on release of boron from red soils under the influence of simulated acid soil[J]. *China Environmental Science*, 2003, 23(5):498–502.