机载 FTIR 被动遥测大气痕量气体

高闽光, 刘文清, 张天舒, 刘建国, 陆亦怀, 王亚萍, 徐 亮, 朱 军, 陈 军

中国科学院环境光学与技术重点实验室,中国科学院安徽光学精密机械研究所环境光学中心,安徽合肥 230031

摘 要 介绍了以各种地物为背景的机载傅里叶变换红外光谱法(FT IR)被动遥测大气中痕量气体飞行测量 试验,讨论了相应的被动下视遥测技术,复杂背景下大气痕量气体红外特征光谱信息获取方法和浓度反演 算法模型,定量分析了飞行试验区域内高度1000 m以下边界层内大气中痕量气体 CO 和 N₂O 的平均浓度。 这种遥测量技术和数据分析方法可在不预先测量背景辐射光谱的情况下对大尺度区域内大气痕量气体进行 快速、机动遥感遥测,以及突发性大气污染事故的应急监测。

主题词 机载; FTIR; 被动遥测; 痕量气体 中图分类号: 0657.3 文献标识码: A 文章编号: 1000-0593(2006) 12-2203-04

引 言

遥感傅里叶变换红外光谱技术(FTIR)是近年来迅速发 展起来的一门综合性探测技术。世界上许多国家利用该项技 术开展了对大气环境的观测及研究工作,尤其是主要温室气 体,反应性痕量气体的本底、分布廓线以及时空变化^[1]。这 方面的研究应用已从早期的地基长光程 FTIR、太阳吸收光 谱 FT IR 向近些年的机载、球载、星载被动 FT IR 技术发 展[25]。被动 FT IR 遥测是基于对大气中痕量气体的红外辐 射光谱和背景光谱进行探测处理以及气体的定性定量分析。 机载平台的价值在于:飞行方式可以精确地进行控制,遥测 对流层中痕量气体是如何分布的,以及其随时间的变化情 况,还有这些变化与地球气候变化的相互关系。本文讨论了 被动 FT IR 遥测原理与技术:提出了以多种地物为背景的机 载下视测量情况下大气痕量气体红外特征光谱信息获取方法 和浓度反演算法模型:利用机载遥测平台得到了飞行试验区 域高度 1 000 m 以下边界层内大气痕量气体 CO 和 N₂O 的平 均浓度。

算法模型

以机载为测量平台从高空对地观测时, 红外光谱仪所探 测到的辐射包括地表的热红外辐射、大气的热红外辐射、太 阳辐射的后向散射、地表对太阳辐射和大气下行辐射的反 射。被动 FTIR 大气痕量气体遥感测量中, 一般选取的定量 分析波段为波长大于 4^µm(波数< 2 500 cm⁻¹)的长波部分。 这一波段的辐射主要来自于地表的热红外辐射、大气的热红 外辐射,而太阳辐射的后向散射、地表对太阳辐射和大气下 行辐射的反射贡献很小,其影响可以忽略。

通常在高空对地观测情况下,红外探测器下的大气可分为多匀质层,对每一匀质层来说,都接收到前一层的辐射并 对下一层输出辐射,其输出的光谱辐射亮度 *L*;可表示为:

 $L_i = (1 - T_a)B_i + T_a L_{i-1} + \rho_i$ (1) 式中: B_i 为等于i 层温度时的黑体辐射亮度, L_{i-1} 为前一层的 辐射亮度, T_a 为i 层大气的透过率, ρ_i 为i 层中所有物质的散 射贡献。

而 B_i 可根据普朗克定律得到:

$$B_i = \frac{c_1 \mathcal{V}^s}{\exp(c_2 \mathcal{W} T_i) - 1}$$
(2)

式中: B_i 是黑体辐射亮度[w•(cm²•sr•cm⁻¹)⁻¹], c_1 和 c_2 分别为第1辐射常数和第2辐射常数。 ν 是波数(cm⁻¹), T_i 是该层温度(k)。

对于在 1000 m 高度下大气边界层内的飞行遥测实验, 由于大气气压及温度变化较小,可近似将这 1000 m 垂直路 径的大气看作为一均质层,在气溶胶或其它物质的散射可忽 略的情况下,红外探测器所接收到的光谱辐射亮度为

$$L_{\rm T} = (1 - T_{\rm atm}) B_{\rm atm} + T_{\rm atm} L_{\rm b}$$
(3)

式中: B_{atm} 为等于边界层平均温度的黑体辐射亮度, L_b 为地物背景的辐射亮度。由(3) 式转化可得到包含有各种红外活性气体吸收特征的测量层大气透过率谱 τ_{atm} :

$$T_{\rm atm} = \frac{L_{\rm T} - B_{\rm atm}}{L_{\rm b} - B_{\rm atm}}$$
(4)

作者简介: 高闽光, 1962年生, 中国科学院安徽光学精密机械研究机所副研究员

收稿日期: 2005-10-16, 修订日期: 2006-02-28

基金项目: 国家自然科学基金项目(10274080)资助

^{© 1994-2012} China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

由边界层内大气的平均温度通过普朗克定律计算得到 B_{am} ,因而获得准确的各种地物背景的辐射亮度谱 L_b 是真实 反演测量层大气透过率谱关键所在。在 4 μ m 以上红外 波段, 从各种地物背景发出的辐射主要是自身的热辐射,辐射特性 类似于黑体辐射,其表面发射率 0< $\epsilon(\nu)$ < 1,物体表面发出 的光谱辐射亮度由普朗克定律表述:

$$L_{\rm b} = \mathcal{E}(\mathcal{V}) \frac{c_1 \mathcal{V}}{\exp(c_2 \mathcal{W} T_{\rm b}) - 1}$$
(5)

在实际机载飞行测量中,由于飞经的各种地物繁多复杂 且发射率变化差异较大,以及存在着地物的辐射亮度会出现 高于或低于边界层温度的情况,所以在以陆地地物为背景 1000 m 高度所测量到的辐射谱中,大气中的红外活性气体 呈现出吸收特性;而在以海水为背景所测量到的辐射谱中, 大气中的红外活性气体通常呈现出辐射特性,所以各种地物 背景的辐射亮度谱获取应根据地物的不同进行分别处理。 图 1和图 2 是在 1000 m 高度机载飞行测量到的以裸土和海 水为背景的辐射光谱。

对既是大气窗口又为地物自身热辐射占主要作用的 2 000~ 2 200 cm⁻¹波段所测量到的光谱进行分析和处理,获 取地物背景的辐射光谱。根据边界层中红外活性气体所呈现 出的吸收或辐射特征,用黑体辐射曲线拟合测量光谱的上、 下廓线,得到最佳拟合的等效辐射亮度(如图 1 和图 2 所 示),这条等效亮温的黑体辐射光谱即可作为地物的辐射背 景谱 *L*_{leo} 这种方法可以在不预先测量或模拟计算背景谱的 情况下用于 FTIR 的被动遥测,具有便捷、实用、准确性较高等特点,但对光谱的处理则需要较好的经验与技巧。

在得到了测量谱 $L_{\rm T}$ 、背景谱 $L_{\rm b}$ 以及测量层的等效黑体 辐射谱 $B_{\rm atm}$ 后,利用(4)式计算包含有各种红外活性气体吸 收特征的测量层大气透过率谱 $T_{\rm atm}$,并进行后续的定量分析。

对大气中痕量气体的定量分析采用 MALT(multiple atmospheric layer transmission)¹⁰ 与 非线 性最 小 二乘 法 (NLLS)^{17]} 联用的浓度反演算法。这种方法尤其适用于无法 利用样品池来产生校准光谱的长光程开放光路和以太阳、天 空、地物为背景的被动 FT IR 遥测的定量分析。它的校准光 谱是由吸收线参数数据库(HIT RAN)通过 MALT 程序计算 得到,在其计算中包括了环境参数(气压,温度,路径长度 等)和仪器线型函数*ILS* 的影响,因此计算的光谱非常接近 于实测光谱。由预设的气体组分和环境参数得到的透过率 t,卷积仪器线型函数*ILS* 产生校准透过率 τ :

$$\tau = \tau \quad ILS \tag{6}$$

NLLS 通过迭代计算光谱去拟合测量的光谱直到在计算 的和测量的光谱之间的残差收敛到可接受的最小量,最终由 最佳拟合光谱可以得到气体的浓度信息。

$$\sum_{i=1}^{N} (\mathcal{T}_{cal}^{i} - \mathcal{T}_{meas}^{i})^{2} \stackrel{!}{=} \min$$
 (7)

式中 N 为拟合区域的光谱点数。对于光谱拟合的结果可以 用均方根误差评价:

$$RMS = \frac{\sqrt{\sum_{i=1}^{N} (m_i^2 - f i t_i^2)}}{N}$$
(8)

式中 m_i 为单点的测量数据, fit_i 为单点的拟合数据,N表示 拟合区域中数据点数。

2 实验结果与分析

机载 FTIR 被动遥测实验的飞行区域为山东半岛地区, 飞机为国产 Y-12 型,主要飞行高度为 1 000 m,以各种地物 为背景进行下视测量以获得测量路径上的大气痕量气体 CO, N₂O 的浓度。地物类型包括裸土、沙地、植被,海水、 居民区。实验仪器为 ABB Bomem 的 MR154 型傅里叶变换 红外辐射光度计,液氮制冷 InSb 探测器,测量光谱波段为 2 000~4 000 cm⁻¹,光谱分辨率为 4 cm⁻¹,视场角为 28 mrad。

对测量到的辐射光谱进行分析处理(如图 1 和图 2 所示) 获取各种地物背景的辐射光谱 L_b ,通过(4)式计算测量层的 包含有各种红外活性气体吸收特征的大气透过率谱 T_{am} ,利 用 MALT- NLLS 算法对痕量气体 CO, N₂O 进行浓度反演。 定量分析波段选为 2 140~2 200 cm⁻¹,因为在这一波段 CO, N₂O 的吸收线存在重叠(CO: 2 020~2 240 cm⁻¹; N₂O: 2 160~2 265 cm⁻¹),可同时反演 2 种气体的浓度,同样也 必须考虑水气的影响。

图 3 和图 4 为飞行高度 1 000 m, 地物背景为村庄民居 的测量光谱、拟合谱以及残差谱。拟合的结果为: 垂直测量 路径中 CO 的浓度 489 44 ng • mL⁻¹, N₂O 浓度为 317 49 http://www.cnki.net

机载 FT IR 被动遥测实验对飞行航线下方垂直路径内的 CO, N₂O 进行了连续测量,图 5 和图 6 分别为一段时间内的 定量分析数据(每分钟 1 个分析数据)。

3 结 论

机载 FT IR 被动遥测虽然在探测的灵敏度和精度上与地

基长光程、主动式测量有一定的差距,但由于其具有快速、 机动、可远距离遥测等特点,非常适合于大尺度区域大气痕 量气体与污染气体的遥感遥测,可采用下视测量得到气体垂 直柱数密度,以及临边模式对气体的水平分布梯度进行测 量,并且这种遥测方法也适合于突发性大气污染事故的应急

Continuously measured result of N2O

监测。

Fig 6

参考文献

- [1] HUANG Zhong-hua, WANG Jun-de(黄中华, 王俊德). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2002, 22(2): 235.
- [2] Weddigen C, Eesge C, Hopfner M. Appl. Opt., 1993, 32: 4586.
- [3] Kobayashi H, Shimota A, Kondo K. Appl. Opt., 1999, 38: 6801.
- [4] Clerbaux C, Hadji Lazaro J, Payan S, et al. Appl. Opt., 2002, 41: 68.
- [5] Clerbaux C, Hadji Lazaro J, Turquety S, et al. Atmos. Chem. Phys., 2003, 3: 1495.
- [6] Griffith David W T. Appl. Spectrosc., 1996, 50: 59.
- [7] Benner D Chris, Rinsland Curits P, Deui V Malathy. J. Quant. Spectrosc. Radit. Transfer., 1995, 53(6): 705.

Remote Sensing of Atmospheric Trace Gas by Airborne Passive FTIR

GAO Min-guang, LIU Wen-qing, ZHANG Tian-shu, LIU Jian-guo, LU Yihuai, WANG Ya-ping, XU Liang, ZHU Jun, CHEN Jun

Key Lab of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China

Abstract The present article describes the details of aviatic measurement for remote sensing trace gases in atmosphere under various surface backgrounds with airborne passive FTIR. The passive down viewing and remote sensing technique used in the experiment is discussed. The method of acquiring atmospheric trace gases infrared characteristic spectra in complicated background and the algorithm of concentration retrieval are discussed. The concentrations of CO and N₂O of boundary-layer atmosphere in experimental region below 1 000 m are analyzed quantitatively. This measurement technique and the data analysis method, which does not require a previously measured background spectrum, allow fast and mobile remote detection and identification of atmosphere trace gas in large area, and also can be used for urgent monitoring of pollution accidental breakout.

Keywords Airborne; FTIR; Passive remote sensing; Trace gas

(Received Oct. 16, 2005; accepted Feb. 28, 2006)