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In silico prediction of terre strial and aquatic toxicitie s
for organic chemicals
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( 1 ． Department of Pharmaceutical Sciences，School of Pharmacy，East China University of
Science and Technology，130 Meilong Road，Shanghai 200237，China;

2 ． G raduate School of Agriculture，Kyoto University，Kitashirakawa Oiwake-cho，Sakyo-ku，Kyoto 606-8502，Japan)

Abstract : Qualitative classification and quantitative regression models for fathead minnow and honey
bee toxicity prediction w ere developed using different chemoinformatics techniques such as substructure
pattern recognition and different machine learning methods． Specifically，methods include support vector
machine，C4． 5 decision tree，k-nearest neighbors，random forest and naive bayes． Reliable predictive
models w ere developed and all models w ere validated by the independent test set． The overall predictive
accuracy of the classification models using support vector machine w ere 95． 9% for the fathead minnow
test set and 95． 0% for the honey bee test set． The square of correlation coefficient of regression models
w ere 0． 878 for the fathead minnow test set and 0． 663 for the honey bee test set using support vector
machine regression algorithm ． At last，some representative substructure patterns for characterizing
fathead minnow and honey bee toxicity compounds，such as 1，2-diphenol，dialkylthioether，diarylether
and phosphoric_ acid_ derivative w ere also identified via the information gain analysis． The approaches
provide a useful strategy and robust tools in the screening of ecotoxicological risk or environmental
hazard potential of chemicals．
Key words : fathead minnow toxicity ; honey bee toxicity ; quantitative structure-activity relationship
( QSAR) ; substructure pattern recognition; information gain; support vector machine

有机化合物的陆地和水生环境毒性的
计算机预测研究

程飞雄1， 沈 杰1， 李卫华1， Philip W． LEE* 1，2， 唐 赟 * 1

( 1． 华东理工大学 药学院 药物科学系，上海 200237 ;

2． 京都大学 农业研究院 日本 京都 606-8502 )

摘 要: 采用子结构模式识别结合 5 种机器学习方法( 包括支持向量机、C4． 5 决策树、k-最近邻法、
随机森林法、和朴素贝叶斯法) ，分别构建了有机化合物对水生和陆地环境毒性评价的两个重要生

物靶标———呆鲦鱼( Fathead minnow ) 和蜜蜂毒性的定性分类和定量回归预测模型。所有模型均通



农 药 学 学 报 Vol． 12

过独立测试集验证。其中，利用支持向量机分类算法得到的分类模型对呆鲦鱼和蜜蜂毒性测试集

的整体预测准确度分别达到 95． 9% 和 95． 0%。采用支持向量机回归算法得到的回归模型，对呆鲦

鱼和蜜蜂毒性测试集的预测相关系数的平方( R2 ) 分别达到 0． 878 和 0． 663。最后，通过信息熵分

析的方法，确定了一批能够代表性地表征呆鲦鱼和蜜蜂毒性的子结构模式，包括 1，2-二酚、二烷基

硫醚、二芳香醚和磷酸衍生物等。提出的方法为有毒化学品的生态风险评价提供了一种非常好的

评价策略和可靠的工具。
关键词: 呆鲦鱼毒性; 蜜蜂毒性; 定量结构-活性相关性 ( QSAR ) ; 子结构模式识别; 信息熵; 支持向

量机
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0 Introduction

Computational toxicology may help to
significantly reduce the cost of experimental toxicity
assessment and accelerate the environmental hazard
assessment，which is highly recommended by US
Environmental Protection Agency ( EPA ) and
European Union ( EU ) ［1］． EU approved a new
regulation， called “ Registration， Evaluation and
Authorization of Chemicals ( REACH ) ” on 1 June
2007，which advocates the use of non-animal testing
methods and，in particular，quantitative structure-
toxicity relationship ( QSTR) and quantitative
structure-activity relationship ( QSAR) approaches in
order to decrease the number and costs of animal
testing ( http: ∥ ec． europa． eu / environment /
chemicals / reach / reach _ intro ． htm ) ． Recently
paradigm shift has been suggested in toxicology w ith a
specific reference to computational methods as reliable
support in toxicity assessment［2］． Investigations into
the development and use of QSAR models to rapidly
predict the ecotoxicity of xenobiotics，pesticides and
industrial chemicals from their molecular structure
and / or physicochemical properties have increased
dramatically over the past decades in order to save
time and money in the design of safer chemicals［3］．

Fathead minnow ( FHM ) and honey bee ( HB )

are tw o commonly used test organisms for the
assessment of environmental impact of toxicants． In
the past decades，there w ere several QSAR models for
fathead minnow toxicity ( FHMT ) and honey bee
toxicity ( HBT ) prediction［4–6］． James et al． developed
QSAR models to estimate the acute toxicity of 100
pesticides to Apis mellifera using multi-layer feed-
forw ard neural netw ork［4］． The root mean square

residual values for the training set( 89 chemicals) and
external test set ( 11 chemicals ) were 0． 430 and
0. 386，respectively ． Vighi et al． proposed a QSAR
model for estimating the acute toxicity of pesticides to
Apis mellifera［5］． The usefulness of these models is
limited because they w ere only designed for
simulating the toxicity of organophosphorus
pesticides． Tan et al． applied the support vector
machines ( SVM ) and artificial neural netw orks
( ANN ) methods to predict the acute toxicity of 611
compounds to FHM based on molecular structure［6］．
SVM model gave an averaged prediction accuracy of
95. 5% for FHMT，79. 3% for non-FHMT and
91. 0% for all samples; comparably，the ANN model
results w ere 92. 5% ， 75. 2% and 87. 7% ，

respectively ． M ichielan et al． also presented a robust
classification model for FHMT and the overall
predictive precision w as greater than 89． 2% for test
set［7］． The objective of this study is to generate a
more reliable predictive tool for the FHMT and HBT
prediction based on a vast diverse group of chemicals．

In this study，the diverse data set of 195
pesticides or pesticides-like molecules for HBT were
collected from the US EPA ECOTOX database［8］ and
554 compounds w ith training set and 295 compounds
w ith test set for FHMT were collected from the w ork
of M ichielan et al．［7］． M odels w ere developed using
our recently developed substructure pattern recognition
methods［9］． Different machine learning methods w ere
also applied and evaluated，including support vector
machine( SVM ) ，C 4. 5 decision tree ( C 4. 5 DT ) ，k-
nearest neighbors ( k-NN ) ，random forest ( RF ) and
naive bayes( NB ) ． The quantitative regression models
for FHMT and HBT prediction w ere also developed
based on support machine regression algorithm ． Unlike
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traditional methods，our methods made a direct
connection betw een the chemical structure and the
toxicity endpoints of compounds． M oreover，some
representative substructure patterns for HBT and
FHMT were identified based on the information gain
( IG ) analysis［9］．

1 Mate rials and Me thods

The entire w orkflow in this study w as presented
in Fig ． 1．

Fig ． 1 The workflow of the qualitative
classification mode ls and quantitative
re gre ssion mode ls for fathe ad minnow

and honey be e toxicity prediction

1． 1 Data se t colle ction and dive rsity analysis
1． 1． 1 Fathead Minnow data set 554 compounds
served as the training set and other 295 compounds as
the test set for FHMT were collected from EPA
Fathead M innow Acute Toxicity Database
( EPAFHM ) ［7］． The training set and test set in our

study w ere the same w ith M ichielan et al．［7］． The
FHMT endpoint of each compound w as expressed as
the concentration lethal to 50% of the organisms
( LC50 ) for FHM in 96-h flow -through exposure
tests． The threshold value of LC50 = 0． 5 mmol /L w as
chosen to divide the data set into high acute FHMT
compounds and low acute FHMT ones［7］． Compounds
w ith the value of LC50 ＜ 0． 5 mmol /L w ere assigned
as high acute FHMT compounds，whereas others w ere
assigned as low acute FHMT compounds． The
statistical description of the entire compound data set
w as listed in Table 1． Compound name，SM ILES and
LC50 value can be found in the w ork of M ichielan et
al．［7］．

Table 1 The statistical data for the entire fathe ad
minnow and honey be e toxicity data se t

Species
Training set Test set Total

P N P N P N

fathead minnow 366 188 196 99 562 287

honey bee 76 79 23 17 99 96

Note: P，high acute honey bee toxicity or high acute fathead

minnow toxicity compounds; N，low acute honey bee toxicity or low

acute fathead minnow toxicity compounds．

1． 1． 2 Honey Bee data set 195 pesticides or
pesticide-like molecules for HBT were collected from
US EPA ECOTOX database［8］． The HBT endpoint to
Apis mellifera was expressed as the dose lethal to
50% of the organisms ( LD50 ) in a 48-h exposure
tests． The threshold value of LD50 = 100 μg / bee w as
chosen to designate high acute HBT compounds and
low acute HBT compounds． Compounds w ith the
value of LD50 ＜ 100 μg / bee w ere assigned as high
acute HBT compounds，while others w ere assigned as
low acute HBT compounds． The next step，the entire
data set w as divided into 99 high acute HBT
compounds and 96 low acute HBT compounds． 155
compounds ( 80% data for the entire data set ) were
randomly selected for the training set，which included
76 high acute HBT compounds and 79 low acute HBT
compounds． And others 40 compounds ( 20% data for
the entire data set) which included 23 high acute HBT
compounds and 17 low acute HBT compounds w ere
used as the test set． The training set and test set had
good balance positive samples ( high acute HBT
compounds) and negative samples ( low acute HBT
compounds) based on this principle of allocation in
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this study ． The statistical description of the entire
compound data set w as presented in Table 1． CAS
number and LD50 value of each compound w ere
provided in US EPA ECOTOX database［8］．
1． 1． 3 Data set diversity analysis The structural
diversity of the data set w as assessed by the
calculation of the average Tanimoto similarity index
( based on MDL PublicKeys ) ． For this purpose，we
used the educational version of Pipeline Pilot( version
6． 0 ; SciTegic，San Diego，CA，2005 ) to calculate
molecular similarity matrix and derive the Tanimoto
similarity index ．
1. 2 Substructure pattern recognition description

The recently developed substructure pattern
recognition methods［9］ to depict the entire data set
w ere used． Each molecule is described as a bit string
structural key ． The predefined dictionary contains a
SMARTS list of substructure patterns． There is a one-
to-one correspondence betw een each SMARTS pattern
and each bit in the pattern fingerprint． For a SMARTS
pattern，if a specified substructure is present in the
given molecule，the corresponding bit is set to “1”;

conversely，it is set to“0”［9］．
In this present study，MACCS structural keys and

FP4 fingerprints w ere used． The MACCS structural
keys use a dictionary of MDL PublicKeys［10］，which
contains a set of 166 most common substructure
features and they are referred to as the MDL Public /
MACCS keys． The dictionary of FP4 fingerprint
contains 307 substructure patterns． The definitions of
MACCS structure key and FP4 fingerprints are
available in OpenBabel ( http: ∥ openbabel． org /，
Access Date: Jan． 18，2010 ) ［11］．

The IG of each pattern is calculated to measure
its effectiveness in a classification system，which is
composed of tw o or more classes of molecules． The
patterns w ith no or low IG values w ere discarded
according to a predetermined threshold and the
remaining patterns composed of a multi-dimensional
vector representing each molecule． Some
representative substructure patterns of HBT and
FHMT compounds w ere then identified based on IG
analysis［9］．
1． 3 Machine le arning me thods

In this study，SVM，C4． 5 DT，k-NN，RF and NB
were selected for carrying out both HBT and FHMT

classification and regression models． SVM was
performed by LIBSVM 2． 9 package［12］ and LIBSVM
2． 84 package［13］． C 4． 5 DT，k-NN，RF and NB were
performed in Orange 2. 0 package ( Version 2. 0 b，

freely available in the w ebsite ＜ http: ∥www ． ailab．
si / orange /＞ ) ．
1． 3． 1 Support vector machine ( SVM ) Support
vector machine ( SVM ) ，originally developed by
Vapnik for pattern recognition，aims at minimizing the
structural risk under the frame of VC theory［14］．
Recently，it had been extended to the domain of
regression problems［15］． In this study，support vector
machine classification ( SVMC ) and support vector
machine regression( SVMR) algorithms w ere selected
for carrying out classification and regression modeling
task，respectively ． The classification models w ere built
using SVM classification module provided by
LIBSVM 2． 9 package［12］． Regression models w ere
built using the regression module provided by
LIBSVM 2． 84 package［12，16］．
1． 3． 1． 1 Support vector machine classification
( SVMC ) The classification problem can be
restricted to consideration of the tw o-class problem
w ithout loss of generality ． Details about the theory of
SVM theory can be found in the literature［14］．
Basically，in this study，each molecule w as represented
using a eigenvector t，and the selected patterns t1 ，t2 ，

…，tn make up the components of t． For SVM
training，the category label y should be added． So the
i th molecule in the data set is defined as M i = ( ti，yi ) ，

where yi = 1 for the“positive”category and yi = － 1
for the “negative” category ． SVM gives a decision
function( classifier) :

f( t) = sgn 1
2∑

n

i = 1
α i K ( ti，t)( )+ b ( 1 )

Where α i is the coefficient to be learned and K is a
kernel function． Parameter α i is trained through
maximizing the Lagrangian expression given below :

maxim ize
α i
∑

n

i = 1
α i －

1
2∑

n

i = 1∑
n

j = 1
aiaj y i y j K ( ti，t)

subject to :∑
y i = 1

yiai = 0， 0 ≤ ai ≤ C ( 2 )

A superiority of SVM is that it can deal w ith
high dimensional space w ith the input of vectors from
low dimensional space by introducing kernel function．
In this study，commonly-used kernel function of
Gaussian radial basis function kernel w as used． Radial
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basis functions ( RBF ) kernel has paid significant
attention，most commonly w ith a Gaussian of the
form :

K ( x，x' ) = exp － ‖x － x'‖2

2σ( )2 ( 3 )

To obtain a SVMC models w ith optimal
performance，the penalty parameter C and different
kernels parameter γ were tuned based on the training
set using the grid search strategy based on 5-fold
cross-validation．
1． 3． 1． 2 Support vector machine regression ( SVMR)

SVM can also be applied to regression problems by
the introduction of an alternative loss function［16］． The
loss function must be modified to include a distance
measure． Using a ε-insensitive loss function:

L ε ( y) = 0 fo r | f( x) － y | ＜ ε
| f( x) － y | － ε{ o therw ise

( 4 )

Similarly to classification problems，a non-linear
model is usually required to adequately model data． In
the same manner as the non-linear SVMC approach，a
non-linear mapping can be used to map the data into a
high dimensional feature space where linear regression
is performed． The kernel approach is again employed
to address the curse of dimensionality ． The non-linear
SVMR solution，using a ε-insensitive loss function，

which is given by :

max
a，a*

W ( a，a* ) = max
a，a*
∑

l

i = 1
a*

i ( yi － ε) － ai ( yi + ε) －

1
2∑

l

i = 1
∑

l

j = 1
( a*

i － ai ) ( a*
j － aj ) K ( xi，xj ) ( 5 )

w ith constraints，
0 ≤ ai，a

*
i ≤ C， i = 1，…，l

∑
l

i = 1
( ai － a*

i ) = 0 ( 6 )

Solving equation 5 w ith constraints equation 6
determines the Lagrange multipliers，ai，a*

i and the
regression function is given by，

f( x) = ∑
SV s

( ai － a*
i ) K ( xi，x) + b ( 7 )

Where

＜ w，x ＞ = ∑
l

i = 1
( ai － a*

i ) K ( xi，xj )

b = － 1
2∑

l

i = 1
( ai － a*

i ) ［K ( xi，xr ) + K ( xi，xs) ］

( 8 )

As w ith the SVMR the equality constraint may be

dropped if the Kernel contains a bias term，b being
accommodated w ithin the Kernel function，and the
regression function is given by :

f( x) = ∑
l

i = 1
( ai － a*

i ) K ( xi，x) ( 9 )

A SVMR model contains three tuning parameters:
Epsilon ( ε) of the loss function，C of the constraints．
These parameters w ere also selected based on the
training set using the grid search strategy by 5-fold
cross-validation． The negative logarithm of LC50 for
FHMT ( pLC50 ) and the negative logarithm of LD50

for HBT ( pLD50 ) were used as the dependent variable
to develop regression models．
1． 3． 2 Random forest( RF) RF is a combination of
tree predictors such that each tree depends on the
values of a random vector sampled independently and
w ith the same distribution for all trees in the
forest［17］． RF models consist of an ensemble of
decision trees，each obtained by splitting object
collections until terminal nodes contain only objects of
the same class． In this study，models w ere trained
using a number of binary strings from computed
MACCS structural key and FP4 fingerprint，w ith the
objective of modeling whether a given compound is
correctly fit to the high acute HBT ( yi = 1 ) or low
acute HBT ( y i = － 1 ) and high acute FHMT ( yi = 1 )

or low acute FHMT ( yi = － 1 ) ．
1． 3． 3 k-nearest neighbors ( k-NN ) k-NN is a
method for classifying objects based on closest
training examples in the feature space． In this study，

the nearness is measured by hamming distance matrix
and the standard protocol of 3-NN is implemented
simply as follow s: 1 ) to calculate distances betw een
an unknown object ( y ) and all the objects in the
training set; 2 ) to select 3 objects from the training set
most similar to object y，according to the calculated
distances; and 3 ) to classify object y w ith the group to
which the majority of the 3 objects belongs．
1． 3． 4 C 4． 5 decision tree ( C 4． 5 DT) The program
C 4． 5 DT is a successor of the basic Iterative
Dichotomiser 3 ( ID3 ) decision tree learning algorithm
developed by Ross Quinlan［18］． C 4． 5 defines the
possible decision tree by means of a hill-climbing
search based on the statistical property measure called
information gain． The elements of the tree generated
by ID3 and C 4． 5 are either leafs or decision nodes．
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The leaf show s a class，and the decision node specifies
the test to be implemented on an attribute value，w ith
one branch and sub-tree for each possible result of the
test． The detail descriptors of C 4． 5 can be found in
original literature［18］．

1． 3． 5 Nal̈ve bayes ( NB) Bayesian classification is
a statistical method that allow s the user to categorize
instances in a data set based on the equal and
independent contributions of their attributes［19］． A NB
classifier is generated using a training set to provide
the prior evidence that an instance belongs to a certain
class． An example of this w ould be a training set of B
molecules where A of the molecules are known to be
high acute toxicity and the remainder are known to be
low acute toxicity against a given organisms． These
molecules can be used to train the classifier such that
it is able to distinguish the high acute toxicity
molecules from the low acute toxicity molecules． The
prior probability of a molecule being toxicity，P［A］，

is given by equation 10． In this study，the NB
classifier can be generated using the MACCS
structural keys and FP4 fingerprint described above．

P［A］ = A
B

( 10 )

1． 4 Performance of mode ls
All models w ere validated by the independent

test set． The classification models for high and low
acute HBTs，high and low acute FHMTs were
evaluated based on the counts of true positives( TP ) ，

true negatives ( TN ) ，false positives ( FP ) ，false
negatives ( FN ) ． TP represents the number of high
acute HBT and FHMT compounds predicted
correctly ． TN represents the number of low acute HBT
and FHMT compounds predicted correctly ． FP
represents the number of low acute HBT and FHMT
compounds predicted w rongly ． And FN represents the
number of high acute HBT and FHMT compounds
predicted w rongly ． Furthermore，the sensitivity［SE =
TP / ( TP + FN) ］，which is the prediction accuracy for
high acute HBT and FHMT compounds，and the
specificity［SP = TN / ( TN + FP ) ］，which is the
prediction accuracy for low acute HBT and FHMT
compounds，were calculated． The overall accuracy
( Q ) ，F-measure ( F ) and Matthew s correlation
coefficient ( C ) were also calculated by the equation
11，12 and 13．

Q = TP + TN
TP + TN + FP + FN

( 11 )

F = 2TP
2TP + FP + FN

( 12 )

C = TP × TN － FN × FP
( TP + FN) ( TP + FP) ( TN + FN) ( TN + FP槡 )

( 13 )

The overall performance of regression models
w as evaluated by measuring the square of correlation
coefficient ( R2 ) ，root mean square error ( RMSE )

calculated from the follow ing equations:

R2 = 1 － ∑ ( yi － yj )
2

∑ ( yi － ym ) 2
( 14 )

RMSE =
∑

ns

i = 1
( yi － yj )

2

n槡 s

( 15 )

where，yi，yj and ym represent the experimental value，

predicted value and the mean of dependent variable，

respectively ． ns is the number of molecules in data set
of regression equation．

In addition，a receiver operating characteristic
( ROC ) curve w as also employed to graphically
present the model behavior in a visual w ay ． A ROC
curve had been proved to be a valuable w ay to
evaluate the quality of a binary classifier． At last，a
plot of trade-off betw een the true positive rate
( sensitivity，y-axis ) and false positive rate ( 1-
specificity，x-axis) was shown．

2 Re sults and Discussion

2． 1 Data se t dive rsity analysis
If compounds have the smaller Tanimoto

similarity index，they have good diversity ． The average
Tanimoto similarity indexes of our data set w ere
0. 123 for the FHMT training set and 0． 149 for the
FHMT test set; The average Tanimoto similarity index
w ere 0． 239 for the HBT training set and 0. 314 for
HBT test set． The results show ed that the entire data
set of the FHMT and HBT had good chemical
diversity ．
2． 2 Performance of binary classification
mode ls
2． 2． 1 Binary classification models for fathead
minnow toxicity In this study， the FHMT
classification models w ere built using the training set
composed of 544 compounds w ith five different
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machine learning methods，including SVM，k-NN，

C 4． 5 DT，RF and NB． All models w ere validated by
a test set containing 295 compounds． The detail
statistical results of SE ( % ) ，SP ( % ) ，Q ( % ) ，F，C
and AUC values for test set w ere listed in Table 2，

where the Q value w as 95． 9% ，99． 3% ，91． 2% ，

93. 6% and 75． 9% w ith MACCS structural keys

using SVM，k-NN，C4． 5 DT，RF and NB algorithms，
respectively ． Comparing the five different machine
learning methods，the performance of k-NN and SVM
was better than others． As shown in Table 2 and the
ROC curve in Fig ． 2，the model performance using
MACCS structural keys were better than FP4 fingerprint．
It could be explained that MACCS structural keys which

Table 2 Pe rformance of classification mode ls for fathe ad minnow toxicity te st se t using
five diffe rent machine le arning me thods

Models M ethods TP TN FP FN SE /% SP /% Q /% F C AUC
FHMT-MACCS SVM 192 91 8 4 98． 0 91． 9 95． 9 0． 970 0． 908 0． 998

k-NN 195 98 1 1 99． 5 99． 0 99． 3 0． 995 0． 985 0． 999
RF 186 90 9 10 94． 9 90． 9 93． 6 0． 951 0． 856 0． 988
C4． 5 185 84 15 11 94． 4 84． 9 91． 2 0． 934 0． 801 0． 931
NB 154 70 29 42 78． 6 70． 7 75． 9 0． 813 0． 479 0． 819

FHMT-FP4 SVM 187 78 21 9 95． 4 78． 8 89． 8 0． 926 0． 768 0． 956
k-NN 183 95 4 13 93． 4 96． 0 94． 2 0． 956 0． 876 0． 984
RF 180 75 24 16 91． 8 75． 8 86． 4 0． 900 0． 691 0． 955
C4． 5 180 72 27 16 91． 8 72． 7 85． 4 0． 893 0． 666 0． 853
NB 166 76 23 30 84． 7 76． 8 82． 0 0． 862 0． 605 0． 871

M ichielan et al． 's w ork 183 81 18 14 92． 9 81． 8 89． 2 0． 92 0． 755

Note: FHMT-MACCS represents the FHMT classification models built by MACCS structural keys; FHMT-FP4 represents the FHMT classification
models built by FP4 fingerprints． SVM ( support vector machine) ，C4． 5 DT ( C4． 5 decision tree) ，k-NN ( k-nearest neighbor) ，RF( random forest) ，NB
( naive bayes) ; TP( true positives ) ，TN ( true negatives ) ，FP ( false positives ) ，FN ( false negatives ) ，SE ( sensitivity ) ，SP ( specificity ) ，Q ( overall
predictive accuracy ) ，F( F-measure) ，C ( Matthew s correlation coefficient) and AUC ( the area under receiver operating characteristic curve) ．

Fig ． 2 Repre sentation of re ce ive r ope rating characte ristics ( ROC) curve s
with five diffe rent machine le arning me thods

SVM ( support vector machine) ，C 4． 5 DT ( C 4． 5 decision tree) ，k-NN ( k-nearest neighbor) ，RF( random forest) ，

NB ( naive bayes) and AUC ( the area under receiver operating characteristics curves)
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w ere the mostly common substructure features may be
better than the FP4 fingerprint w hich w as w ritten in an
attempt to represent the classification of organic
compounds from the viewpoint of an organic chemist．
2． 2． 2 Binary classification models for honey bee
toxicity The HBT classification models w ere

developed using the training set containing 155
compounds and validated by a test set w ith 40
compounds． The detail statistical results of HBT
classification models for test set using five different
machine learning methods w ere listed in Table 3． The
performance of HBT classification models w as some

Table 3 Pe rformance of classification mode ls for honey be e toxicity te st se t using
five diffe rent machine le arning me thods

Models M ethods TP TN FP FN SE /% SP /% Q /% F C AUC
HBT-MACCS SVM 21 17 0 2 91． 3 100． 0 95． 0 0． 955 0． 904 0． 973

k-NN 19 16 1 4 82． 6 94． 1 87． 5 0． 884 0． 759 0． 943
RF 18 16 1 5 78． 3 94． 1 85． 0 0． 857 0． 717 0． 888
C4． 5 14 15 2 9 60． 9 88． 2 72． 5 0． 718 0． 496 0． 839
NB 20 16 1 3 87． 0 94． 1 90． 0 0． 909 0． 803 0． 905

HBT-FP4 SVM 16 14 3 7 69． 6 82． 4 75． 0 0． 762 0． 514 0． 870
k-NN 16 13 4 7 69． 6 76． 5 72． 5 0． 744 0． 455 0． 876
RF 15 14 3 8 65． 2 82． 4 72． 5 0． 732 0． 473 0． 803
C4． 5 14 13 4 9 60． 9 76． 5 67． 5 0． 683 0． 371 0． 719
NB 19 14 3 4 82． 6 82． 4 82． 5 0． 844 0． 646 0． 830

Note: HBT-MACCS represents the HBT classification models built by MACCS structural keys; HBT-FP4 represents the HBT classification models
built by FP4 fingerprints． SVM ( support vector machine) ，C4． 5 DT ( C4． 5 decision tree) ，k-NN ( k-nearest neighbor) ，RF ( random forest) ，NB ( nal̈ve
bayes) ; TP( true positives) ，TN( true negatives) ，FP ( false positives ) ，FN ( false negatives ) ，SE ( sensitivity ) ，SP ( specificity ) ，Q ( overall predictive
accuracy ) ，F( F-measure) ，C ( Matthew s correlation coefficient) and AUC ( the area under receiver operating characteristic curve) ．

little different to FHMT classification models． The
SVM was performed better than other algorithms in
HBT classification models， but the k-NN was
performed better than others in FHMT classification
models study ． The sensitivity and specificity of HBT
classification models using SVM and MACCS
structure keys w ere 91. 3% and 100. 0% ，

respectively ． It show ed that the performance of SVM
method w as obvious better than other four kinds of
machine learning methods when developing HBT
classification models． The advantage of SVM is not
only to obtain good statistical performance，but also
can be applied when some experimental data w ere
lost． SVM method typically used a portion of training
set as support vectors for classification． If the lost
experimental data are the non-support vectors，it can
not affect the performance of models．
2． 3 Performance of regre ssion mode ls
2． 3． 1 Regression models for fathead minnow
toxicity The pLC50 value of FHMT were used as the
dependent variable and MACCS structural keys and
FP4 fingerprint for each compound w ere used as the
independent variables to develop FHMT regression
model． The estimated square of correlation coefficient
( R2 ) and RMSE for FHMT regression model w ere

listed in Table 4． The R2 and RMSE using MACCS
structural keys for fathead minnow toxicity test set
w ere 0． 878 and 0． 258，respectively ． Comparing the
performance of the regression models，MACCS
structural keys w ere also better than FP4 fingerprints．
Fig ． 3 show ed the plot of the predictive R2 for the
fathead minnow toxicity test set using MACCS
structural keys and FP4 fingerprints，respectively ．
As shown in Fig ． 3，we currently investigated the
chemical and toxicological reasoning behind the four
outliers，such as 5，5-dimethyl-1，3-cyclohexanedione，

malononitrile，2，6-diphenylpyridine and 2，3-methylene
bis( 3，4，6-trichlorophenol) ．

Table 4 Pe rformance of re gre ssion mode ls for
fathe ad minnow and honey be e data se t using
support ve ctor machine re gre ssion algorithm

Data set Species
MACCS FP4

R2 RMSE R2 RMSE
Training set FHM 0． 881 0． 213 0． 647 0． 601

HB 0． 833 0． 323 0． 854 0． 290
Test set FHM 0． 878 0． 258 0． 653 0． 804

HB 0． 663 1． 11 0． 422 1． 95

Note: FHM : fathead minnow ; HB : honey bee; R2 : the square of

correlation coefficient; RMSE: root mean square error．

2． 3． 2 Regression models for honey bee toxicity
The pLD50 value of HBT were used the dependent

484



No． 4 CHENG Fei-xiong，et al． : In silico prediction of terrestrial and aquatic toxicities for organic chemicals

Fig ． 3 The plot showed the square of corre lation
coe fficie nt ( R 2 ) of support ve ctor machine

re gre ssion mode ls for fathe ad minnow toxicity
te st se t using MACCS structural ke ys and

FP4 finge rprints，re spe ctive ly

variable and MACCS structural keys and FP4
fingerprints for each compound w ere used as the
independent variables respectively to develop HBT
regression model． The R2 and RMSE for HBT
predictive regression models w ere listed in Table 4．
The R2 and RMSE using MACCS structural keys for
honey bee toxicity test set w ere 0． 663 and 1． 11，

respectively ． Comparing the performance of the HBT
regression models，MACCS structural keys w ere
obvious better than FP4 fingerprint w hich w as in
agreement w ith the results of FHMT prediction
regression model． Fig ． 4 show ed the plot of R2 for
honey bee toxicity test set using MACCS structural
keys and FP4 fingerprints，respectively ． As shown in
Fig ． 4，we also further investigated the chemical and
toxicological reasoning behind the three outliers，such

Fig ． 4 The plot showed the square of corre lation
coe fficie nt ( R 2 ) of support ve ctor machine

re gre ssion mode ls for honey be e toxicity te st
se t using MACCS structural ke ys and

FP4 finge rprints，re spe ctive ly

as mythomyl CAS 16752-77-5，emamectin benzoate
CAS 155569-91-8 and beta-cypermethrin CAS 52315-
07-8．
2． 4 Identifying key substructure patte rns

Some representative substructure patterns for
FHMT and HBT compounds w ere identified by our
previous developed substructure pattern recognition
method［9］． The representative substructure patterns，
the frequency of patterns and IG value w ere listed in
Tables 5 and 6． As listed in Table 5，the patterns of
urethane，vinylogous_halide，phenol，carboxylic_ester，
aldehyde and arylchloride w ere present more
frequently in high acute FHMT compounds than in
low acute FHMT compounds． How ever，the patterns
of primary_amide and 1，2-aminoalcohol w ere present
more frequently in low acute FHMT compounds than
in high acute FHMT compounds class． The patterns
of 1，2-diphenol， dialkylthioether， diarylether and
arylfluoride w ere only present in high acute FHMT
compounds class． As listed in Table 6，the patterns of
trifluoromethyl，amide，urea and carboxylic_acid w ere
present more frequently in low acute HBT compounds
class than high acute HBT compounds class． The
pattern of nitrile，dialkylthioether，chloroalkene and
sulfenic _ derivative w ere present more frequently in
high acute HBT compounds class than low acute HBT
compounds class． Furthermore，phosphoric _ acid _
derivative w as only present in high acute HBT
compounds class ( evidenced by the organophosphate
insecticides) and vinylogous_amide w as only present
in low acute HBT compounds class． If one pattern w as
only present in toxicity class，this pattern w as called
structural alert． That is，if a compound has a pattern
of 1，2-diphenol， dialkylthioether， diarylether and
arylfluoride，it has a higher potential to exhibit toxicity
for FHM ． If a compound has the patterns of
phosphoric_acid_derivative，it has a higher potential to
exhibit toxicity for HB．

The interpretation of QSAR models is an
important issue． In this study，the diverse FHMT and
HBT data covered a w ide range of toxicity
mechanism，which ranged from narcosis Ⅰ，narcosis
Ⅱ， or narcosis Ⅲ， electrophile / proelectrophile
reactivity，and CNS seizure mechanisms ( including
AChE inhibition ) ［20–21］． These complex toxicity
mechanisms can be explained by representative
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Table 5 Some repre sentative substructure patte rns with the ir possible classe s for

fathe ad minnow toxicity ( FHMT) were identifie d by Information Gain analysis

Substructure SMARTS of pattern Descriptions NP NN P( t) N( t) IG

［#7X3］［#6］( =［OX1］) ［#8X2］［#6］ Urethan 10 1 0． 018 0． 003 0． 003

［#6X3］( =［OX1］) ［#6X3］= ，:

［#6X3］［FX1，ClX1，BrX1，IX1］
Vinylogous_halide 15 2 0． 027 0． 007 0． 003

［OX2H］［c］ Phenol 111 25 0． 198 0． 087 0． 016

［CX3 ; $ ［R0］［# 6］) ，$ ( ［H1R0］) ］

( =［OX1］) ［OX2］［#6; ! $ ( C =［O，N，

S］) ］

Carboxylic_ester 68 9 0． 121 0． 031 0． 018

［$ ( ［CX3H］［#6］) ，$ (

［CX3H2］) ］=［OX1］
Aldehyde 72 6 0． 128 0． 021 0． 028

［Cl］［c］ Arylchloride 89 10 0． 158 0． 035 0． 029

R—NH2
［CX3 ; $ ( ［R0］［#6］) ，$ ( ［H1R0］) ］

( =［OX1］) ［NX3H2］
Primary_amide 1 13 0． 002 0． 045 0． 019

［OX2H］［CX4 ; ! $ ( C( ［OX2H］) ［O，

S，#7，#15，F，Cl，Br，I］) ］［CX4 ; ! $ ( C
( ［N］) ［O，S，# 7，# 15］) ］［NX3 ; !

$ ( NC =［O，S，N］) ］

1，2-Aminoalcohol 1 16 0． 002 0． 056 0． 024

［OX2H］［c］［c］［OX2H］ 1，2-Diphenol 6 0 0． 011 0 0． 004

［SX2］( ［CX4 ; ! $ ( C( ［OX2］) ［O，S，

#7，#15，F，Cl，Br，I］) ］) ［CX4 ; ! $ ( C
( ［OX2］) ［O，S，#7，#15］) ］

Dialkylthioether 15 0 0． 027 0 0． 011

［c］［OX2］［c］ Diarylether 18 0 0． 032 0 0． 013

［F］［c］ Arylfluoride 19 0 0． 034 0 0． 014

Note: NP are the number of high acute FHMT compounds in entire data set w ith pattern t，NN are the number of low acute FHMT compounds in

entire data set w ith pattern t，P ( t ) and N ( t ) are the proportion of the compounds w ith pattern t in high acute and low acute FHMT compounds，

respectively ．

Table 6 Some repre sentative substructure patte rns with the ir possible classe s for honey be e toxicity ( HBT)

were identifie d by Information Gain analysis

Substructure SMARTS of pattern Descriptions NP NN P( t) N( t) IG

［FX1］［CX4 ; ! $ ( ［H0］［Cl，Br，I］) ; !

$ ( ［F］［C］( ［F］) ( ［F］) ［F］) ］( ［FX1］)

( ［FX1］)

Trifluoromethyl 7 13 0． 071 0． 135 0． 008

［CX3 ; $ ( ［R0］［#6］) ，$ ( ［H1R0］) ］( =

［OX1］) ［#7X3 ; $ ( ［H2］) ，( ［H1］［#6 ; !

$ ( C = ［O，N，S］) ］) ，( ［# 7］( ［# 6 ; !

$ ( C =［O，N，S］) ］) ［#6 ; ! $ ( C =［O，

N，S］) ］) ］

Amide 4 10 0． 040 0． 104 0． 011
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续表( Continued)

Substructure SMARTS of pattern Descriptions NP NN P( t) N( t) IG

［#7X3 ; ! $ ( ［#7］［! #6］) ］［#6X3］( =

［OX1］) ［#7X3 ; ! $ ( ［#7］［! #6］) ］
Urea 1 9 0． 010 0． 094 0． 029

［CX3 ; $ ( ［R0］［#6］) ，$ ( ［H1R0］) ］( =

［OX1］) ［OX2］［# 6 ; ! $ ( C = ［O，N，

S］) ］

Carboxylic_acid 4 8 0． 040 0． 188 0． 042

［NX1］#［CX2］ Nitrile 8 2 0． 081 0． 021 0． 014

［SX2］( ［CX4 ; ! $ ( C( ［OX2］) ［O，S，#

7，# 15，F，Cl，Br，I］) ］) ［CX4 ; ! $ ( C

( ［OX2］) ［O，S，#7，#15］) ］

Dialkylthioether 7 1 0． 071 0． 010 0． 019

［ClX1］［CX3］=［CX3］ Chloroalkene 12 1 0． 121 0． 040 0． 042

［SX2 ; $ ( ［H1］) ，$ ( ［H0］［#6］) ］［! #

6］
Sulfenic_derivative 17 1 0． 172 0． 010 0． 067

［PX4D4］( = ［! # 6］) ( ［! # 6 ］) ( ［! #

6］) ［! #6］
Phosphoric_acid_derivative 28 0 0． 283 0 0． 157

［#6X3］( =［OX1］) ［#6X3］ =，: ［#6X3］

［#7X3 ; $ ( ［H2］) ，$ ( ［H1］［#6 ; ! $ C =

［O，N，S］) ］) ，$ ( ［#7］( ［#6 ; ! $ ( C =

［O，N，S］) ］) ［# 6 ; ! $ ( C = ［O，N，

S］) ］) ］

Vinylogous_amide 0 8 0 0． 083 0． 043

Note: NP are the number of high acute HBT compounds in entire data set w ith pattern t，NN are the number of low acute HBT compounds entire

data set w ith pattern t，P( t) and N( t) are the proportion of the compounds w ith pattern t in high acute and low acute HBT compounds，respectively ．

substructure patterns identified by IG analysis． For
example，the patterns of aldehyde，arylchloride，

phenol，1，2-diphenol and dialkylthioether have more
potential toxicity to FHM and HB，because these
pattern can covalent bind w ith biological
macromolecules or can react w ith nucleophilic groups
( － NH2 ，－ OH，－ SH ) in biological macromolecules
such as DNA and proteins and result in narcosis or
electrophile / proelectrophile reactivity toxicity［20，22］．
As listed in Table 6，the pattern of phosphoric_ acid_
derivative w as on represent in high acute BHT
compounds class，which w as in agreement w ith
findings of Christine et al． that phosphoric _ acid _
derivative easily take place oxidative phosphorylation
uncoupling w ith organisms［21］． These meaningful
substructures can potentially provide scaffolds and be
interpreted by chemists to gain understanding and
guide modification information to reduce FHMT and
HBT． Thus，our models had higher information
content than historical descriptors employing
exhaustive structural features．

2． 5 Comparison with previous reported
mode ls

A direct comparison of our results w ith previous
studies is inappropriate，because the data set，used data
description methods w ere different betw een the
various models． Nevertheless，a simple comparison of
the model statistics could provide some basic
information about the accuracy of the various FHMT
and HBT prediction methodologies． As listed in Table
2，the same training set and test set in the w ork of
M ichielan et al． w ere used in this w ork． Comparing
the results of our models w ith M ichielan et al．［7］，the
performance of our models was better than Michielan’
work． The overall predictive accuracy of 99. 3% and
the SP of 99． 0% using k-NN and MACCS structural
keys w ere significantly higher than 89． 2% and
81. 8% in the w ork of M ichielan et al． ，respectively ．
Tan et al． reported a SVM model for FHMT using 611
compounds，which gave an average SE 95． 5% ，SP
79． 3% and Q 91． 0%［6］． The SE，SP and Q value of
our SVM model using the MACCS structural keys for
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FHM test set w ere 98． 0% ，91． 9% and 95． 9%
respectively，which w as obvious better than models
performance of Tan et al． ．

3 Conclusion

In this study， the robust classification and
regression models for FHMT and HBT prediction
w ere developed using different machine learning
methods and substructure pattern recognition method．
All models w ere validated by independent test set and
the performances of our methods w ere better than
literature reports． Five different machine learning
methods including SVM，C4． 5 DT，k-NN，RF and NB
were evaluated here． The performances of FHMT and
HBT classification models show ed that SVM and k-
NN algorithms w ere the superior algorithms than
others． The average predictive accuracy of the FHMT
classification models to test set w ith MACCS
structural keys w as 95． 9% and 99． 3% for SVM and
k-NN algorithms，respectively ． The average predictive
accuracy and AUC of ROC curve for HBT test using
SVM w ith MACCS structural keys w as 95． 0% and
0. 973， respectively ． The square of correlation
coefficient of regression models w ere 0． 878 for
FHMT test set and 0． 663 for HBT test set using
MACCS structural keys and support machine
regression algorithm ． Moreover，some representative
substructure patterns for FHMT and HBT compounds
w ere identified，which can be applied to guide
modification information for chemical detoxification．
This study provided a useful strategy and robust tool
for evaluating toxicological properties of industrial
chemicals and pesticides in the environmental hazard
assessment．
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