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Abstract: Qualitative classification and quantitative regression models for fathead minnow and honey
bee toxicity prediction were developed using different chemoinformatics techniques such as substructure
pattern recognition and different machine learning methods. Specifically methods include support vector
machine C4.5 decision tree k-nearest neighbors random forest and naive bayes. Reliable predictive
models were developed and all models were validated by the independent test set. The overall predictive
accuracy of the classification models using support vector machine were 95.9% for the fathead minnow
test set and 95.0% for the honey bee test set. The square of correlation coefficient of regression models
were 0.878 for the fathead minnow test set and 0. 663 for the honey bee test set using support vector
machine regression algorithm. At last some representative substructure patterns for characterizing
fathead minnow and honey bee toxicity compounds such as 1 2-diphenol dialkylthioether diarylether
and phosphoric_ acid_ derivative were also identified via the information gain analysis. The approaches
provide a useful strategy and robust tools in the screening of ecotoxicological risk or environmental
hazard potential of chemicals.
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0 Introduction

Computational  toxicology  may  help to
significantly reduce the cost of experimental toxicity
assessment and accelerate the environmental hazard

assessment which is highly recommended by US

Environmental Protection Agency (EPA) and
European Union (EU) '. EU approved a new
regulation called “ Registration Evaluation and

Authorization of Chemicals ( REACH)” on 1 June
2007 which advocates the use of non-animal testing
in particular quantitative structure—

(QSTR) and

structure-activity relationship ( QSAR) approaches in

methods and

toxicity  relationship quantitative

order to decrease the number and costs of animal

(http:  //  ec.

chemicals/reach/reach

testing europa. eu/environment/

intro. htm) . Recently
paradigm shift has been suggested in toxicology with a
specific reference to computational methods as reliable
support in toxicity assessment ~ . Investigations into
the development and use of QSAR models to rapidly
predict the ecotoxicity of xenobiotics pesticides and
industrial chemicals from their molecular structure
and/or physicochemical properties have increased
dramatically over the past decades in order to save
time and money in the design of safer chemicals * .
Fathead minnow ( FHM) and honey bee ( HB)
are two commonly used test organisms for the
assessment of environmental impact of toxicants. In
the past decades there were several QSAR models for
fathead minnow toxicity ( FHMT) and honey bee
toxicity ( HBT) prediction ©° . James et al. developed
QSAR models to estimate the acute toxicity of 100
pesticides to Apis mellifera using multidayer feed-

4
forward neural network * . The root mean square

0.878  0.663,

( QSAR); ; ;

:1008-9303(2010) 040647742

residual values for the training set( 89 chemicals) and
external test set ( 11 chemicals) were 0. 430 and
0.386 respectively. Vighi et al. proposed a QSAR
model for estimating the acute toxicity of pesticides to
Apis mellifera > . The usefulness of these models is

limited because they were only designed for

simulating  the  toxicity of  organophosphorus
pesticides. Tan et al. applied the support vector
machines ( SVM )

( ANN) methods to predict the acute toxicity of 611

and artificial neural networks

compounds to FHM based on molecular structure °

SVM model gave an averaged prediction accuracy of
95.5% for FHMT 79.3% for non¥HMT and
91.0% for all samples; comparably the ANN model
92.5%  75.2% and 87.7%

respectively. Michielan et al. also presented a robust
FHMT and the

predictive precision was greater than 89.2% for test

results were

classification model for overall
set ' . The objective of this study is to generate a
more reliable predictive tool for the FHMT and HBT
prediction based on a vast diverse group of chemicals.

In this study the diverse data set of 195
pesticides or pesticidesdike molecules for HBT were
collected from the US EPA ECOTOX database * and
554 compounds with training set and 295 compounds
with test set for FHMT were collected from the work
of Michielan et al. " . Models were developed using
our recently developed substructure pattern recognition
methods * . Different machine learning methods were
also applied and evaluated including support vector
machine( SVM) C4.5 decision tree( C4.5 DT) k-
nearest neighbors ( k-NN) random forest( RF) and
naive bayes( NB) . The quantitative regression models
for FHMT and HBT prediction were also developed

based on support machine regression algorithm. Unlike
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traditional methods our methods made a direct
connection between the chemical structure and the
toxicity endpoints of compounds. Moreover some
representative substructure patterns for HBT and
FHMT were identified based on the information gain
(IG) analysis ’

1 Materials and Methods

The entire workflow in this study was presented

in Fig. 1.

Data set collection
SMILES or 2D or 3D molecular structure
toxicity data

enerating MACCS structural: :Toxicity endpoints dat:
keys and FP4 fingerprints : : LCs, and LDy, value

l QSAR or QSTR models

Model generation

Validation

Y

Test set prediction

| Qualitative prediction | | Quantitative prediction

A 4 A 4

Computational toxicology prediction

In silico fathead
minnow toxicity
prediction

In silico honey bee
¢ toxicity prediction

Via Information gain(1G)

y

Final interpretable model
representative substructure patterns

Fig. 1

classification models and quantitative

The workflow of the qualitative

regression models for fathead minnow

and honey bee toxicity prediction

1.1 Data set collection and diversity analysis
1.1.1
served as the training set and other 295 compounds as
the test set for FHMT were collected from EPA
Fathead
(EPAFHM) 7 . The training set and test set in our

Fathead Minnow data set 554 compounds

Minnow Acute  Toxicity  Database

study were the same with Michielan et al. ' . The
FHMT endpoint of each compound was expressed as
the concentration lethal to 50% of the organisms
(LC,) for FHM in 96-h flow—hrough exposure
tests. The threshold value of LC,; = 0.5 mmol/L was
chosen to divide the data set into high acute FHMT
compounds and low acute FHMT ones ' . Compounds
with the value of LCy, <0.5 mmol/L were assigned
as high acute FHMT compounds whereas others were
FHMT
statistical description of the entire compound data set

was listed in Table 1. Compound name SMILES and

LC,, value can be found in the work of Michielan et

assigned as low acute compounds. The

al.’

Table 1 The statistical data for the entire fathead

minnow and honey bee toxicity data set

Training set Test set Total
Species
P N P N P N
fathead minnow 366 188 196 99 562 287
honey bee 76 79 23 17 99 96

Note: P high acute honey bee toxicity or high acute fathead
minnow toxicity compounds; N low acute honey bee toxicity or low
acute fathead minnow toxicity compounds.

1.1.2
pesticidedike molecules for HBT were collected from
US EPA ECOTOX database * . The HBT endpoint to

Apis mellifera was expressed as the dose lethal to

Honey Bee data set 195 pesticides or

50% of the organisms( LD,;) in a 48-h exposure
tests. The threshold value of LD, = 100 pg/bee was
chosen to designate high acute HBT compounds and
low acute HBT compounds. Compounds with the
value of LDy, <100 wg/bee were assigned as high
acute HBT compounds while others were assigned as
low acute HBT compounds. The next step the entire
data set was divided into 99 high acute HBT
compounds and 96 low acute HBT compounds. 155
compounds( 80% data for the entire data set) were
randomly selected for the training set which included
76 high acute HBT compounds and 79 low acute HBT
compounds. And others 40 compounds(20% data for
the entire data set) which included 23 high acute HBT
compounds and 17 low acute HBT compounds were
used as the test set. The training set and test set had
good balance positive samples ( high acute HBT
compounds) and negative samples ( low acute HBT

compounds) based on this principle of allocation in
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this study. The statistical description of the entire
compound data set was presented in Table 1. CAS
number and LD,, value of each compound were
provided in US EPA ECOTOX database °

1.1.3

diversity of the data set was

Data set diversity analysis  The structural
assessed by the
calculation of the average Tanimoto similarity index
( based on MDL PublicKeys) . For this purpose we
used the educational version of Pipeline Pilot( version

6. 0; SciTegic San Diego CA 2005)

molecular similarity matrix and derive the Tanimoto

to calculate

similarity index.
1.2 Substructure pattern recognition description

The recently developed substructure pattern
recognition methods ° to depict the entire data set
were used. Each molecule is described as a bit string
structural key. The predefined dictionary contains a
SMARTS list of substructure patterns. There is a one-
to-one correspondence between each SMARTS pattern
and each bit in the pattern fingerprint. For a SMARTS
pattern if a specified substructure is present in the
given molecule the corresponding bit is set to “17;
conversely it is set to “0” 7 .

In this present study MACCS structural keys and
FP4 fingerprints were used. The MACCS structural
which

contains a set of 166 most common substructure

keys use a dictionary of MDL PublicKeys '

features and they are referred to as the MDL Public/
MACCS keys. The dictionary of FP4 fingerprint
contains 307 substructure patterns. The definitions of
MACCS
available in OpenBabel ( http: // openbabel. org/
Access Date: Jan. 18 2010) '' .

The IG of each pattern is calculated to measure

structure key and FP4 fingerprints are

its effectiveness in a classification system which is
composed of two or more classes of molecules. The
patterns with no or low IG values were discarded
according to a predetermined threshold and the
remaining patterns composed of a multi-dimensional
molecule. Some

vector representing each

representative substructure patterns of HBT and
FHMT compounds were then identified based on 1G
analysis ’
1.3 Machine learning methods

In this study SVM C4.5 DT kNN RF and NB

were selected for carrying out both HBT and FHMT

classification and regression models. SVM was
performed by LIBSVM 2.9 package " and LIBSVM
2.84 package ” .C 4.5 DT k-NN RF and NB were
performed in Orange 2.0 package( Version 2.0 b

freely available in the website < http: // www. ailab.
si/orange/>) .

1.3. 1  Support vector machine ( SVM)

vector machine ( SVM )

Support
originally developed by
Vapnik for pattern recognition aims at minimizing the
structural risk under the frame of VC theory "

Recently it had been extended to the domain of
regression problems ' . In this study support vector
machine classification ( SVMC)

machine regression( SVMR) algorithms were selected

and support vector

for carrying out classification and regression modeling
task respectively. The classification models were built
using SVM
LIBSVM 2. 9 package "
built using the
LIBSVM 2.84 package ' .

1.3. 1.1 Support vector machine classification
(SVMC) The classification problem

restricted to consideration of the two-class problem

classification module provided by
. Regression models were
module

regression provided by

can be

without loss of generality. Details about the theory of
SVM

Basically in this study each molecule was represented

theory can be found in the literature

using a eigenvector ¢ and the selected patterns ¢, ¢,
t, make up the components of . For SVM

n

training the category label y should be added. So the
i" molecule in the data set is defined as M. = (1, y,)
where y, =1 for the “positive” category and y, = — 1

o

for the “negative” category. SVM gives a decision

function( classifier) :

A1) =5gn(%zn o, K(t, 1) +b) (1)

i=1
Where «; is the coefficient to be learned and K is a
kernel function. Parameter «, is trained through

maximizing the Lagrangian expression given below:

. . n 1 n n
maXimuez i % T ?z i=1 Zj:laiafyiyjK( )

subject to: Zyiai =0 <C (2)

sl

A superiority of SVM is that it can deal with
high dimensional space with the input of vectors from
low dimensional space by introducing kernel function.
In this study commonly-used kernel function of

Gaussian radial basis function kernel was used. Radial
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basis functions ( RBF)

attention most commonly with a Gaussian of the

kernel has paid significant

form:

- 2
K(x x9) = exp —”x_ii) (3)
20

SVMC models with

performance the penalty parameter C and different

To obtain a optimal
kernels parameter y were tuned based on the training
set using the grid search strategy based on 5-fold
cross-validation.
1.3.1.2 Support vector machine regression( SVMR)
SVM can also be applied to regression problems by
the introduction of an alternative loss function '° . The
loss function must be modified to include a distance
measure. Using a g-insensitive loss function:
L(y) = {0 for I A x) —‘yl <e
l filx) —yl-¢ otherwise
(4)
Similarly to classification problems a non-inear
model is usually required to adequately model data. In
the same manner as the nondinear SVM C approach a
non-linear mapping can be used to map the data into a
high dimensional feature space where linear regression
is performed. The kernel approach is again employed
to address the curse of dimensionality. The non-inear
SVMR solution using a g-insensitive loss function

which is given by:

*
aa aa

Solving equation 5 with constraints equation 6
determines the Lagrange multipliers a, a, and the

regression function is given by

Where
. 1
<w x> = ;(al—a ) K( %, )
b :—?;(a,—a) K(=x, x,) + K(x, x)

As with the SVMR the equality constraint may be

dropped if the Kernel contains a bias term b being
accommodated within the Kernel function and the

regression function is given by:
1

fx) = 3 (a -a ) K(x, ) (9)

i=1
A SVMR model contains three tuning parameters:
Epsilon (&) of the loss function C of the constraints.
These parameters were also selected based on the
training set using the grid search strategy by 5-fold
cross—validation. The negative logarithm of LCj, for
FHMT( pLL.C,,) and the negative logarithm of LD,
for HBT( pLD,,) were used as the dependent variable
to develop regression models.
1.3.2 Random forest( RF)

tree predictors such that each tree depends on the

RF is a combination of

values of a random vector sampled independently and
with the same distribution for all trees in the
forest . RF models consist of an ensemble of
decision trees each obtained by splitting object
collections until terminal nodes contain only objects of
the same class. In this study models were trained
using a number of binary strings from computed
MACCS structural key and FP4 fingerprint with the
objective of modeling whether a given compound is
correctly fit to the high acute HBT(y, =1) or low
acute HBT(y, = —=1) and high acute FHMT( y, = 1)
or low acute FHMT(y, = —-1).

1.3. 3  k-nearest neighbors ( k-NN) ENN is a
method for classifying objects based on closest
training examples in the feature space. In this study

the nearness is measured by hamming distance matrix
and the standard protocol of 3-NN is implemented
simply as follows: 1) to calculate distances between
an unknown object ( ¥) and all the objects in the
training set; 2) to select 3 objects from the training set
most similar to object y according to the calculated
distances; and 3) to classify object y with the group to
which the majority of the 3 objects belongs.

1.3.4 C 4.5 decision tree( C 4.5 DT)

C 4. 5 DT is a successor of the basic Iterative

The program

Dichotomiser 3( ID3) decision tree learning algorithm
developed by Ross Quinlan " . C 4. 5 defines the
possible decision tree by means of a hill-climbing
search based on the statistical property measure called
information gain. The elements of the tree generated

by ID3 and C 4.5 are either leafs or decision nodes.
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The leaf shows a class and the decision node specifies
the test to be implemented on an attribute value with
one branch and sub-tree for each possible result of the
test. The detail descriptors of C 4.5 can be found in

.. . 18
original literature

1.3.5 Naive bayes( NB)

a statistical method that allows the user to categorize

Bayesian classification is

instances in a data set based on the equal and
.A NB

classifier is generated using a training set to provide

independent contributions of their attributes "’

the prior evidence that an instance belongs to a certain
class. An example of this would be a training set of B
molecules where A of the molecules are known to be
high acute toxicity and the remainder are known to be
low acute toxicity against a given organisms. These
molecules can be used to train the classifier such that
it is able to distinguish the high acute toxicity
molecules from the low acute toxicity molecules. The
prior probability of a molecule being toxicity P A

is given by equation 10. In this study the NB

classifier can be generated using the MACCS
structural keys and FP4 fingerprint described above.
A
PA == 10
2 (10)

1.4 Performance of models

All models were validated by the independent
test set. The classification models for high and low
acute HBTs high and low

evaluated based on the counts of true positives( TP)

acute FHMTs were
true negatives ( TN) false positives ( FP) false
negatives( FN) .
acute  HBT and FHMT

TP represents the number of high
compounds predicted
correctly. TN represents the number of low acute HBT
and FHMT

represents the number of low acute HBT and FHMT

compounds predicted correctly. FP
compounds predicted wrongly. And FN represents the
number of high acute HBT and FHMT compounds
predicted wrongly. Furthermore the sensitivity SE =
TP/( TP + FN)
high acute HBT and FHMT compounds and the
specificity SP = TN/( TN + FP)
prediction accuracy for low acute HBT and FHMT

which is the prediction accuracy for

which is the

compounds were calculated. The overall accuracy
( Q) F-measure ( F)
coefficient( C) were also calculated by the equation

11 12 and 13.

and Matthews correlation

Vol. 12
TP + TN
Q_TP+TN+FP+FN (11)
2TP

F (12)

T 2TP + FP + FN
TP x TN — FN x FP
(TP + FN) (TP + FP) (TN + FN) (TN + FP)
(13)

The overall performance of regression models

C:

was evaluated by measuring the square of correlation

coefficient( R*) root mean square error ( RUSE)

calculated from the following equations:

Rz:l_Z(yi—y,)2 (14)
> (v =)

Yy -y)?
RMSE :\/ZL_,ny . (15)

where y, y, and y, represent the experimental value

predicted value and the mean of dependent variable
respectively. n, is the number of molecules in data set
of regression equation.

In addition a receiver operating characteristic
(ROC)

present the model behavior in a visual way. A ROC

curve was also employed to graphically

curve had been proved to be a valuable way to
evaluate the quality of a binary classifier. At last a
plot of trade-off between the true positive rate
( sensitivity y-axis) and false positive rate ( 1-

specificity x-axis) was shown.
2 Results and Discussion

2.1 Data set diversity analysis

If compounds have the smaller Tanimoto
similarity index they have good diversity. The average
Tanimoto similarity indexes of our data set were
0. 123 for the FHMT training set and 0. 149 for the
FHMT test set; The average Tanimoto similarity index
were 0. 239 for the HBT training set and 0. 314 for
HBT test set. The results showed that the entire data
set of the FHMT and HBT had good chemical
diversity.

2.2 Performance of binary classification

models
2.2. 1 Binary classification models for fathead
minnow  toxicily In this study the FHMT

classification models were built using the training set

composed of 544 compounds with five different
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machine learning methods including SVM E£-NN
C 4.5 DT RF and NB. All models were validated by
a test set containing 295 compounds. The detail
SP(%) Q(%) F C
and AUC values for test set were listed in Table 2

where the Q value was 95.9% 99.3% 91.2%

statistical results of SE( %)

using SVM kNN C4.5 DT RF and NB algorithms
respectively. Comparing the five different machine
learning methods the performance of £-NN and SVM
was better than others. As shown in Table 2 and the
ROC curve in Fig. 2
MACCS structural keys were better than FP4 fingerprint.

the model performance using

93.6% and 75. 9% with MACCS structural keys It could be explained that MACCS structural keys which
Table 2 Performance of classification models for fathead minnow toxicity test set using
five different machine learning methods
Models Methods TP TN FpP FN SE /% SP /% Q/% F C AUC
FHMT-MACCS SVM 192 91 8 4 98.0 91.9 95.9 0.970 0.908 0.998
E-NN 195 98 1 1 99.5 99.0 99.3 0.995 0.985 0.999
RF 186 90 9 10 94.9 90.9 93.6 0.951 0.856 0.988
C4.5 185 84 15 11 94.4 84.9 91.2 0.934 0.801 0.931
NB 154 70 29 42 78.6 70.7 75.9 0.813 0.479 0.819
FHMT-¥P4 SVM 187 78 21 9 95.4 78.8 89.8 0.926 0.768 0.956
E-NN 183 95 4 13 93.4 96.0 94.2 0.956 0.876 0.984
RF 180 75 24 16 91.8 75.8 86.4 0.900 0.691 0.955
C4.5 180 72 27 16 91.8 72.7 85.4 0.893 0.666 0.853
NB 166 76 23 30 84.7 76.8 82.0 0.862 0.605 0.871
Michielan et al. ’s work 183 81 18 14 92.9 81.8 89.2 0.92 0.755

Note: FHMT-MACCS represents the FHMT classification models built by MACCS structural keys; FHMT4P4 represents the FHMT classification

models built by FP4 fingerprints. SVM ( support vector machine)

( naive bayes) ; TP( true positives) TN ( true negatives)

predictive accuracy) F( F-measure)

1.0 T
0.9
~ 0.8
Py
= 0.7
= 06
g
) 0.5
2 04 —svmmuc:wos}
g 03 — k-NN(ALIC=0999)
= 0 =Sy
= 02 —— C4 5 DT(AUC=0931)
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0 0.1 0203 04 05 06 0.7 0.8 09 1.
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C4.5 DT( C4.5 decision tree)
FP( false positives)

E-NN( knearest neighbor) RF( random forest) NB

FN( false negatives) SE ( sensitivity) SP( specificity) Q ( overall

C( Matthews correlation coefficient) and AUC( the area under receiver operating characteristic curve) .
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Fig.2 Representation of receiver operating characteristics( ROC) curves

with five different machine learning methods
SVM ( support vector machine) C 4.5 DT( C 4.5 decision tree) k-NN( k-nearest neighbor) RF( random forest)

NB( naive bayes) and AUC( the area under receiver operating characteristics curves)
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were the mostly common substructure features may be developed using the training set containing 155
better than the FP4 fingerprint which was written in an compounds and validated by a test set with 40
attempt to represent the classification of organic compounds. The detail statistical results of HBT
compounds from the viewpoint of an organic chemist. classification models for test set using five different
2.2.2 Binary classification models for honey bee machine learning methods were listed in Table 3. The
toxicity The HBT classification models were performance of HBT classification models was some

Table 3 Performance of classification models for honey bee toxicity test set using

five different machine learning methods

Models Methods TP TN FpP FN SE /% SP /% Q /% F C AUC
HBT-MACCS SVM 21 17 0 2 91.3 100.0 95.0 0.955 0.904 0.973
E-NN 19 16 1 4 82.6 94.1 87.5 0.884 0.759 0.943

RF 18 16 1 5 78.3 94.1 85.0 0.857 0.717 0.888

C4.5 14 15 2 9 60.9 88.2 72.5 0.718 0.496 0.839

NB 20 16 1 3 87.0 94.1 90.0 0.909 0.803 0.905

HBT P4 SVM 16 14 3 7 69.6 82.4 75.0 0.762 0.514 0.870
E-NN 16 13 4 7 69.6 76.5 72.5 0.744 0.455 0.876

RF 15 14 3 8 65.2 82.4 72.5 0.732 0.473 0.803

C4.5 14 13 4 9 60.9 76.5 67.5 0.683 0.371 0.719

NB 19 14 3 4 82.6 82.4 82.5 0.844 0.646 0.830

Note: HBT-M ACCS represents the HBT classification models built by MACCS structural keys; HBT ¥P4 represents the HBT classification models
built by FP4 fingerprints. SVM ( support vector machine) C4.5 DT( C4.5 decision tree) k-NN( k-nearest neighbor) RF( random forest) NB( nalve
bayes) ; TP( true positives) TN( true negatives) FP( false positives) FN( false negatives) SE( sensitivity) SP( specificity) Q ( overall predictive

accuracy) F( F-measure) C( Matthews correlation coefficient) and AUC( the area under receiver operating characteristic curve) .

little different to FHMT classification models. The listed in Table 4. The R*> and RMSE using MACCS

SVM was performed better than other algorithms in structural keys for fathead minnow toxicity test set

HBT classification models but the kNN was were 0. 878 and 0. 258 respectively. Comparing the

performed better than others in FHMT classification performance of the regression models MACCS
models study. The sensitivity and specificity of HBT structural keys were also better than FP4 fingerprints.
classification models using SVM and MACCS Fig. 3 showed the plot of the predictive R® for the
structure  keys were 91.3% and 100.0% fathead minnow toxicity test set using MACCS
respectively. It showed that the performance of SVM structural keys and FP4 fingerprints respectively.
method was obvious better than other four kinds of As shown in Fig. 3 we currently investigated the
machine learning methods when developing HBT chemical and toxicological reasoning behind the four
classification models. The advantage of SVM is not outliers such as 5 5-dimethyld 3-cyclohexanedione
only to obtain good statistical performance but also malononitrile 2 6-diphenylpyridine and 2 3-methylene
can be applied when some experimental data were bis(3 4 6-richlorophenol) .
lost. SVM method typically used a portion of training Table 4 Performance of regression models for
set as support vectors for classification. If the lost fathead minnow and honey bee data set using
experimental data are the non-support vectors it can support vector machine regression algorithm
not affect the performance of models. Data st Species MACCS Fp4
2.3 Performance of regression models L RMSE R’ RMSE
Training set FHM 0.881 0.213  0.647  0.601
2.3.1 Regression models for fathead minnow HB 0.833  0.323  0.854 0290
toxicity The pLC,, value of FHMT were used as the Test set FHM  0.878 0.258 0.653  0.804
dependent variable and MACCS structural keys and HB  0.663 1.1l 0.422 1.95
FP4 fingerprint for each compound were used as the Note: FHM: fathead minnow; HB: honey bee; R*: the square of

correlation coefficient; RMSE: root mean square error.

independent variables to develop FHMT regression
model. The estimated square of correlation coefficient 2.3.2 Regression models for honey bee toxicity

(R*) and RMSE for FHMT regression model were The pLD,, value of HBT were used the dependent
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Fig.3 The plot showed the square of correlation
coefficient( R*) of support vector machine
regression models for fathead minnow toxicity

test set using MACCS structural keys and
FP4 fingerprints respectively

and MACCS and FP4

fingerprints for each compound were used as the

variable structural keys
independent variables respectively to develop HBT
regression model. The R> and RMSE for HBT
predictive regression models were listed in Table 4.
The R* and RMSE using MACCS structural keys for
honey bee toxicity test set were 0. 663 and 1. 11

respectively. Comparing the performance of the HBT
MACCS

obvious better than FP4 fingerprint which was in

regression models structural keys were
agreement with the results of FHMT prediction
regression model. Fig. 4 showed the plot of R’ for
honey bee toxicity test set using MACCS structural
keys and FP4 fingerprints respectively. As shown in
Fig. 4 we also further investigated the chemical and

toxicological reasoning behind the three outliers such

1.0] = MACCS{R™=0.663)
* ® FP4(R=0422) L
-
0.5
< 0] . ' Nol
: L. n " T
= 051 . 6 X"
zh an "’ - .,
= -1.04 . -
- - . x4
2 -1.54 ‘. L]
2 T % ER L . L
g -2 {}' L] . f ; b ‘II
‘i 4 =l o / bl |
= N
2.5 . il >
-3.0 T T T T T 3
3 2 -1 0 1 2 3

Experimental log(1/LD, )

Fig.4 The plot showed the square of correlation
coefficient( R>) of support vector machine
regression models for honey bee toxicity test
set using MACCS structural keys and
FP4 fingerprints respectively

as mythomyl CAS 16752975 emamectin benzoate
CAS 155569918 and beta—~cypermethrin CAS 52315-
07-8.
2.4 Identifying key substructure patterns
Some representative substructure patterns for
FHMT and HBT compounds were identified by our
previous developed substructure pattern recognition
method * . The representative substructure patterns
the frequency of patterns and IG value were listed in
Tables 5 and 6. As listed in Table 5 the patterns of
urethane vinylogous_halide phenol carboxylic_ester
aldehyde and
frequently in high acute FHMT compounds than in

arylchloride were present more
low acute FHMT compounds. However the patterns
of primary_amide and 1 2-aminoalcohol were present
more frequently in low acute FHMT compounds than
in high acute FHMT compounds class. The patterns
of 1 2-diphenol  dialkylthioether
arylfluoride were only present in high acute FHMT

diarylether and

compounds class. As listed in Table 6 the patterns of
trifluoromethyl amide urea and carboxylic_acid were
present more frequently in low acute HBT compounds
class than high acute HBT compounds class. The
pattern of nitrile dialkylthioether chloroalkene and
sulfenic _ derivative were present more frequently in
high acute HBT compounds class than low acute HBT
compounds class. Furthermore phosphoric _ acid _
derivative was only present in high acute HBT
compounds class( evidenced by the organophosphate
insecticides) and vinylogous_amide was only present
in low acute HBT compounds class. If one pattern was
only present in toxicity class this pattern was called
structural alert. That is if a compound has a pattern

of 1 2-diphenol  dialkylthioether
arylfluoride it has a higher potential to exhibit toxicity

diarylether and

for FHM. If a compound has the patterns of
phosphoric_acid_derivative it has a higher potential to
exhibit toxicity for HB.

The interpretation of QSAR models is an
important issue. In this study the diverse FHMT and
HBT data toxicity

covered a wide range of

mechanism which ranged from narcosis | narcosis

I or
reactivity and CNS seizure mechanisms ( including

AChE inhibition ) ***' . These

mechanisms can be explained by representative

narcosis [l electrophile/proelectrophile

complex toxicity
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Table 5 Some representative substructure patterns with their possible classes for

fathead minnow toxicity( FHMT) were identified by Information Gain analysis

Substructure SMARTS of pattern Descriptions Ny Ny P(t) N(1) 1G
(0]
)J\ A~ #7X3  #6 (= OX1 ) #38X2 #6 Urethan 10 1 0.018 0.003 0.003
HN (@]
@]
#6X3 = 0Xl1 #6X3 =
X/\)J\O/ ( ) Vinylogous_halide 15 2 0.027 0.007 0.003

#6X3 FX1 CIX1 BrX1 IX1

OH
©/ OX2H ¢ Phenol 111 25 0.198 0.087 0.016

CX3;$ RO #6 ) $( HIRO)
= OX1) OX2 #6;! $(C= ON Carboxylic_ester 68 9 0.121  0.031  0.018

R (
s)

R

P

$( CX3H #6 ) $(
Aldehyde 72 6 0.128 0.021 0.028
H CX3H2 ) = O0OXl1

e
2 0O
X
H
Cl
©/ Cl ¢ Arylchloride 89 10 0.158 0.035 0.029

CX3; $( RO #6 $( HIRO
R—NH, ( ) ( ) Primary_amide 1 13 0.002 0.045 0.019
(= OX1) NX3H2

oH OX2H CX4;! $(C( OX2H) O
H7N/Y S#7 #15 F CI Br1) CX4;! $(C

‘ 1 2-Aminoalcohol 1 16 0.002 0.056 0.024
NH, (( N) O S #7 #15) NX3;!
$(NC= 0 S N)
OH
OX2H ¢ ¢ OX2H 1 2-Diphenol 6 0 0.011 0 0.004
OH
N SX2 ( CX4;! $(C( O0X2) O S
PN

R? R! #7 #15 F Cl Br 1) ) CX4;! $(C Dialkylthioether 15 0 0.027 0 0.011
0X2 ) O S #7 #15)

(
0.
©/ \© ¢ 0X2 ¢ Diarylether 18 0 0.032 0 0.013
F

F ¢ Arylfluoride 19 0 0.034 0 0.014

Note: N, are the number of high acute FHMT compounds in entire data set with pattern ¢ Ny are the number of low acute FHMT compounds in
entire data set with pattern ¢ P(t) and N( ) are the proportion of the compounds with pattern ¢ in high acute and low acute FHMT compounds

respectively.

Table 6 Some representative substructure patterns with their possible classes for honey bee toxicity( HBT)

were identified by Information Gain analysis

Substructure SMARTS of pattern Descriptions Ny Ny P(1) N(1) G
F FXI CX4;! $( HO CI Br 1 );!

R+F $( F C( F)( F) F) ( FXI) Trifluoromethyl 7 13 0.071  0.135  0.008
F ( FX1)

CX3; $( RO #6 ) $( HIRO ) ( =

0 OX1) #7X3; $( H2) ( HI #6;!

)L R $(C= O N S) ) ( #7 ( #6;! Amide 4 10 0.040  0.104  0.011
$(C= ONS) ) #6! $(C= 0
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( Continued)

Substructure SMARTS of pattern Descriptions Np Ny P(1) N(1t) 1G
O .
#IX3:1 §( #7 1 #6)  #6X3 ( =
)J\ Urea 1 9 0.010 0.094 0.029
N OX1) #7X3;1 $( #1 | #6)
O 2
)J\ CX3; $( RO #6 ) $( HIRO ) ( =
R OH 0X1) O0X2 #6;1 $(C= O N Carboxylic_acid 4 8 0.040 0.188 0.042
S)
R——=N NXI1 # CX2 Nitrile 8 2 0.081 0.021 0.014
SX2 ( CX4;! §(C( OX2) O S #
RZ/S\RI 7 #15 F Cl Br 1) ) CX4;! $(C Dialkylthioether 7 | 0.071 0.010 0.019
( 0X2) O S # #15)
R~ . w1 L e
N a oxE exs o= 03 Chloroalkene 12 1 0.121  0.040  0.042
S8 CH o sx2 8 HL ) $( HO #6 ) !
R O 6 Sulfenic_derivative 17 1 0.172 0.010 0.067
?
P-O-R'  PX4D4 (= ! #6 I #6 o#
107N 2 ( ) ) Phosphoric_acid_derivative 28 0 0.283 0 0.157
O-R 6 ) ! #6
#6X3 (= OX1) #6X3 = : #6X3
o #IX3; $( H2 ) $( HI #6;! $C=
/\)J\ R ONS ) ) $( #7 ( #6;! $(C= Vinylogous_amide 0 3 0 0.083 0.043
R N O NS)) #61 $(C= 0 N
R

S) )

Note: N, are the number of high acute HBT compounds in entire data set with pattern ¢ N are the number of low acute HBT compounds entire
P g F F N F

data set with pattern ¢ P(¢) and N(t) are the proportion of the compounds with pattern ¢ in high acute and low acute HBT compounds respectively.

substructure patterns identified by IG analysis. For
of aldehyde
phenol 1 2-diphenol and dialkylthioether have more

example the patterns arylchloride
potential toxicity to FHM and HB because these

pattern  can  covalent bind  with  biological
macromolecules or can react with nucleophilic groups

( _NHz

such as DNA and proteins and result in narcosis or

- OH -SH) in biological macromolecules
electrophile /proelectrophile reactivity toxicity »* * .
As listed in Table 6 the pattern of phosphoric_ acid_
derivative was on represent in high acute BHT
which was in agreement with

compounds class

findings of Christine et al. that phosphoric _acid _
derivative easily take place oxidative phosphorylation
uncoupling with organisms >' . These meaningful
substructures can potentially provide scaffolds and be
interpreted by chemists to gain understanding and
guide modification information to reduce FHMT and
HBT. Thus our had higher

content  than descriptors

models information

historical employing

exhaustive structural features.

2. 5

models

Comparison with previous reported

A direct comparison of our results with previous
studies is inappropriate because the data set used data
description methods were different between the
various models. Nevertheless a simple comparison of
the model statistics could provide some basic
information about the accuracy of the various FHMT
and HBT prediction methodologies. As listed in Table
2 the same training set and test set in the work of
Michielan et al. were used in this work. Comparing
the results of our models with Michielan et al. ’ the
performance of our models was better than Michielan’
work. The overall predictive accuracy of 99.3% and
the SP of 99.0% using k-NN and MACCS structural
keys were significantly higher than 89. 2% and
81.8% in the work of Michielan et al.
Tan et al. reported a SVM model for FHMT using 611
compounds which gave an average SE 95. 5% SP
79.3% and Q 91.0% ° . The SE SP and Q value of

our SVM model using the MACCS structural keys for

respectively.
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FHM test set were 98. 0% 91. 9% and 95. 9%
respectively which was obvious better than models

performance of Tan et al. .
3 Conclusion

In this study the robust classification and
regression models for FHMT and HBT prediction
were developed wusing different machine learning
methods and substructure pattern recognition method.
All models were validated by independent test set and
the performances of our methods were better than
literature reports. Five different machine learning
methods including SVM C4.5 DT kNN RF and NB
were evaluated here. The performances of FHMT and
HBT classification models showed that SVM and k-
NN algorithms were the superior algorithms than
others. The average predictive accuracy of the FHMT
classification models to test set with MACCS
structural keys was 95.9% and 99.3% for SVM and
E-NN algorithms respectively. The average predictive
accuracy and AUC of ROC curve for HBT test using
SVM with MACCS structural keys was 95. 0% and
0.973
coefficient of regression models were 0. 878 for
FHMT test set and 0. 663 for HBT test set using
MACCS

regression algorithm. Moreover some representative

respectively. The square of correlation

structural keys and support machine

substructure patterns for FHMT and HBT compounds

were identified which can be applied to guide

modification information for chemical detoxification.
This study provided a useful strategy and robust tool
for evaluating toxicological properties of industrial
chemicals and pesticides in the environmental hazard

assessment.
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