黄河入河沙漠颗粒物对磷酸盐的吸附特征

杨宏伟 郭博书 邰朝鲁门 牧仁 斯琴高娃 吕卫华

(内蒙古师范大学化学与环境科学学院,呼和浩特 010022)

摘要:研究了黄河入河沙漠颗粒物在天然水(河水和海水)中对磷酸盐的吸附行为,用改进的 Langmuir 和 Freundlich 等温吸附 模型对实验数据进行了拟合.结果表明,①改进的 Langmuir 等温吸附模型更适用于描述黄河入河沙漠颗粒物对磷酸盐的吸附 特征,其物理意义更明确,得到的拟合参数更合理;②颗粒物对磷的最大吸附容量 Q_{max}变化范围为 41.322 ~ 357.143 mg•kg⁻¹,其中居延海颗粒物 Y2 的 Q_{max}最大. Q_{max}与颗粒物(Y1 ~ Y5)的有机质有着极显著的正相关关系;③除巴丹吉林沙漠 颗粒物 Y1 外,颗粒物的临界磷平衡浓度 EPC₀ 值均大于其相应水体的磷浓度.Y1 在黄河水中吸附磷的 EPC₀ 小于相应水体的 磷浓度 0.010 < 0.053 mg•L⁻¹,而在渤海海水中却大于相应水体的磷浓度 0.109 > 0.074 mg•L⁻¹,表明 Y1 吸附了黄河水中的 磷,进入渤海后 Y1 原有吸附可交换态磷 NAP 转移到 海水中.其它颗粒物与相应水体进行磷交换的过程中存在着解吸磷的现 象,具有向相应水体释放磷的能力;④黄河入河沙漠颗粒物对磷酸盐的吸附等温线是过溶液浓度轴 0.00 的交叉型等温线,这 种新型交叉型吸附-解吸模型较好地解释了其吸附特征和天然粒子的双重性作用.

关键词:黄河;沙漠颗粒物;磷;吸附; EPC_0

中图分类号:X143 文献标识码:A 文章编号:0250-3301(2010)08-1890-07

Phosphate Adsorption Characteristics on the Desert Particulates of Inflow Yellow River

YANG Hong-wei ,GUO Bo-shu ,TAI Chao-lu-men ,MU Ren ,SI Qin-gao-wa ,LÜ Wei-hua

(Chemistry & Environment Science College, Inner Mongolia Normal University, Huhhot 010022, China)

Abstract: Adsorption behaviors of phosphate on the desert particulates of inflow Yellow River were investigated in natural water (river water and sea water) and the experimental data was fitted by both the improved Langmuir and Freundlich isotherm adsorption models. The results show that ①With more clear physical meaning and more reasonable fitting parameters , the improved Langmuir isotherm adsorption model is much better for describing phosphate adsorption on the desert particulates than the improved Freundlich isotherm adsorption model; (2) The maximum phosphorus (P) adsorption capacity Q_{max} is in the range of 41. 322-357. 143 mg·kg⁻¹, which is the biggest in Y2 (Juyanhai Lake particulates). There is remarkable positive correlation between Q_{max} and organic matter of the particulates (Y1-Y5); 3 Except for Y1 (Badain Jaran Desert particulates), the EPC₀ (zero equilibrium P concentration) of the particulates are higher than the concentration of P in corresponding water. The EPCo of P adsorption on Y1 in Yellow River is lower than P concentration in corresponding water (0.010 mg \cdot L⁻¹ < 0.053 mg \cdot L⁻¹), while the EPC₀ of P adsorption on Y1 in Bohai Sea water is higher than the P concentration in their corresponding water (0. 109 $mg \cdot L^{-1} > 0.074 mg \cdot L^{-1}$), which shows that Y1 adsorbs P from the water of the Yellow River, then it releases its NAP (native adsorbed exchangeable phosphorus) into Bohai Seawater. However, in the process of the P exchange between other desert particulates and their corresponding water, only desorption phenomenon were observed , which means all other desert particulates release P to their corresponding water; ④ The adsorption isotherms of phosphate on the desert particulates of inflow Yellow River are cross-axis-type with over 0.00, a new cross-axis-type adsorptiondesorption model, which provide a better explanation for adsorption characteristics of P and for the dual role of natural particulates. Key words: Yellow River; desert particulate; phosphorus; adsorption; EPC.

磷既是限制水生生态系统初级生产力的关键因素,又是水体富营养化的重要控制因素.磷在海-陆相互作用中的迁移与循环会直接影响到水体的初级生产力,并且因此影响到全球碳的循环^[1,2].海洋中的磷由河流和沙尘输入.黄河是我国第二大河,是举世闻名的高含沙量河流,而且是水沙异源河流,黄河在携带大量的水沙入海的同时也将大量营养物质带入海洋,其中磷的入海量为14.8×10⁶ mol/a^[3],对维持渤海至东太平洋生态系统的平衡起着重要作

用^[4].内蒙古西部黄河上游地区分布着巴丹吉林沙 漠、腾格里沙漠、乌兰布和沙漠、库布齐沙漠和毛乌 素沙地,这些沙漠也是黄土高原黄土的主要源区,沙 漠及黄土高原每年借水力和风力向黄河输送16亿t 沙泥^[5],其中黄河西岸的乌兰布和沙漠主要借风力

收稿日期:2009-09-23;修订日期:2010-02-02

基金项目:国家自然科学基金项目(20467002)

作者简介:杨宏伟(1961~),女,副教授,主要研究方向水环境化学, E-mail:nsdyhw@126.com

使大量流沙入河 南岸库布齐沙漠 冬季西北风将沙 漠颗粒物吹入黄河支流十大孔兑(沟谷)并堆积^[6], 汛期山沟洪水将孔兑内大量的泥沙输入黄河;另一 方面,每年的3、4月份西北风向的沙尘暴活动向黄 河中下游输送了大量的沙漠颗粒物.内蒙古西部沙 漠是我国沙尘暴主要源地之一,由巴丹吉林沙漠、经 腾格里沙漠、乌兰布和沙漠至库布齐沙漠和毛乌素 沙地构成一条沙尘暴传输线^[6,7].对 2000 年我国发 生的 12 次沙尘天气沙源地的研究表明,其中起源于 上述五大沙漠的沙尘占 48.6% [8],这些沙尘会影响 到我国西北,华北和江淮等广大地区,部分沙尘粒子 在强沙尘暴活动时还会经高空西北气流的长距离输 运到达我国东部海域甚至太平洋,从而直接为海洋 输送磷[7]8].这是我国北部海域内蒙古西部沙漠-沙 尘暴-黄河-黄河口-渤海(黄海)-太平洋构成的全球 磷循环的重要组成部分.

然而,人们对上述沙漠颗粒物直接落入渤海或 黄海,或者先进入黄河中下游,经黄河口进入渤海和 黄海后对磷的吸附--解吸行为知之甚少,也缺乏系统 报道.本实验是在对位于中蒙边境额济纳旗的居 延海(位于巴丹吉林沙漠西北方向,是我国沙尘暴 和扬沙天气的主要源区之一)^[4,8~10]、巴丹吉林沙 漠、腾格里沙漠、乌兰布和沙漠、库布齐沙漠颗粒 物中磷的存在形态进行了系统分析的基础上采用 平衡振荡法对黄河入河沙漠颗粒物在不同水体中 对磷酸盐的吸附特征进行了研究,探讨了其在影 响水域磷循环中所扮演的角色,这对干深入探讨

黄河入河沙漠颗粒物对维持黄河、渤海、太平洋的 生态平衡以及在全球磷循环过程中所起的作用具 有重要意义.

1 材料与方法

1.1 样品的采集

在强风条件下,沙漠内部的颗粒物由于密度大, 呈整体沿风的方向向前推进,这样在沙漠边缘地区, 地面沙尘粒子粒径小 厚度薄 在风力作用下容易被 卷到高空并随高空气流长距离飘移^[4,10]. 所以对于 深居内陆通过沙尘暴向黄河中下游地区或海洋输沙 的腾格里沙漠、巴丹吉林沙漠以及居延海颗粒物 在 其边缘采集样品,选择了粒径 < 63 µm、63 ~ 84 µm (只有巴丹吉林沙漠颗粒物过筛分目后未找到粒径 <63 µm的,采用了其中最小粒径 63~84 µm)的沙 漠颗粒物,采用了黄河下游柳林段河水或渤海海水 进行吸附实验;对于直接向黄河输送泥沙的两岸沙 漠乌兰布和沙漠和库布齐沙漠,采用沙漠颗粒物原 样和其相邻河段河水,即黄河三盛公段河水、黄河清 水河段河水进行吸附实验.采样点位置、状况、样品 代号等见表 1、图 1.

样品的采集利用全球卫星定位系统(GPS)定 位.水样加入叠氮化钠保存,运回实验室后用 0.45μm 滤膜过滤,测定其溶解态活性磷 SRP 含 量^[11,12],其余水样4℃冷藏保存备用;收集好的沙漠 颗粒物分目后冷冻保存备用,颗粒物的磷形态分析 采用改进的化学连续提取法[13~15].

化 I 不什 示 力 师 及 1寸 证	表 1	采样点分布及特征
----------------------------	-----	----------

Table 1 Distribution and characteristics of sampling sites											
样品名称	样品编号	采样地点	海拔高度/m	纬度(N)	经度(E)	采样时间(年-月)					
巴丹吉林沙漠颗粒物	Y1	巴丹吉林沙漠	914.8	42°01.834′	101°18.007′	2006-09					
居延海颗粒物	Y2	额济纳旗北部	902.4	42°23.766′	101°07.310′	2006-09					
腾格里沙漠颗粒物	Y3	腾格里沙漠	1 293.0	38°27.774′	105°17.274′	2006-09					
乌兰布和沙漠颗粒物	Y4	巴彦淖尔市磴口	1 053.0	40°15.424′	106°56.536′	2007-09					
库布齐沙漠颗粒物	Y5	呼市托克托县	1 002.0	40°10.722′	110°12. 544′	2007-09					
黄河下游柳林段水样	LS	黄河下游柳林段	615.0	37°18. 263′	110°41.608′	2008-04					
黄河清水河段水样	QS	喇嘛湾黄河大桥东	978.5	40°02.165′	111°24.488′	2009-06					
黄河三盛公段水样	SS	黄河三盛公上游	1 048.0	40°18.356′	$107^{\circ}01.728'$	2008-09					
渤海海水	BS	渤海	-2.0	37°43.929′	119°17.059′	2008-09					

1.2 仪器与试剂

722N型可见分光光度计,pHS-3C型酸度计(上 海精密科学仪器制造有限公司)等仪器;实验所用 试剂均为分析纯或分析纯以上,实验仪器使用前均 用 3 mol·L⁻¹ HNO₃ 浸泡过夜. 1.3 吸附动力学实验

准确称取 0.8 g 颗粒物样品 Y5 到 500 mL 锥形 瓶中,加入50mL过滤了的黄河清水河段河水,浸泡 24 h,再加入一定量的磷酸二氢钾储备液及河水,使 总体积为 200 mL,初始磷酸根浓度为0.4533 $mg \cdot L^{-1}$,固体浓度 2 $g \cdot L^{-1}$;调节上述体系的 pH 为 8.30 ± 0.02,然后拧紧瓶塞,(30 ± 1)℃下恒温振

图1 采样站位分布示意 Fig.1 Location of the samples

荡,在 0.5、2、4、6、8、10、12、24、48、72 h 时各 取 1 次上清液,每次大约 7 mL,3 000 r/min离心 20 min,然后用 0.45 μm 滤膜超滤,以消除胶体及有机 大分子等因素对吸附的影响,然后准确移取滤液 5.00 mL,采用标准方法测定磷酸盐的含量^[11,12].每 条动力学曲线在相同的实验条件下作3组平行样, 相对误差 > 5%.

Y1 在渤海海水中吸附磷酸盐的动力学曲线实 验需要调节体系的 pH 为 8.00 ± 0.02,其它实验方 法同上.

1.4 吸附实验

在一系列 50 mL 聚乙烯离心管中,分别加入 0.12 g 沙漠颗粒物和 10 mL 河水(或海水),浸泡 24 h 后,分别加入用不同量磷酸二氢钾储备液调好的 相应水样 20 mL,使总体积为 30 mL,得到磷酸根初 始浓度分别为 0.1、0.2、0.3、0.4、0.5、0.6、0.8、 1.0 mg•L⁻¹,固体浓度为 4g•L⁻¹的系列溶液;调节 黄河水-沙漠颗粒物体系 pH 为 8.30 ±0.02,海水-沙 漠颗粒物体系 pH 为 8.00 ±0.02,然后离心管加盖, 在(30 ±1)℃下振荡 24 h 至吸附平衡(根据吸附动 力学实验结论),取上清液离心、超滤,然后准确移 取滤液 20.00 mL 测定其中磷酸盐的浓度.每条等温 线在相同的实验条件下作 4 组平行样,相对误差 < 5%.根据起始浓度与平衡浓度之差,扣除空白,计算 颗粒物对磷酸盐的吸附量.

2 结果与讨论

2.1 反应平衡时间的确定

由图 2 可见,巴丹吉林沙漠颗粒物 Y1 在渤海 海水 BS 中的吸附反应主要发生在 0~2 h 之内,开 始反应迅速进行 2 h 时吸附量达最高点,之后略有 下降 6 h 后基本不变;库布齐沙漠颗粒物 Y5 在黄 河清水河段河水 QS 中的吸附反应主要发生在 0~ 12 h 之内 20 h 后基本达到吸附平衡.

总之,在 BS-Y1和 QS-Y5体系中颗粒物对磷酸盐的吸附具有一个共同点,即吸附反应主要发生在 12 h之内,12 h时分别达到了平衡吸附量的100% 和84%,并且在0~0.5 h内迅速吸附,吸附速率最大,只是海水中吸附反应更迅速,2 h内达到了最高点.因此,吸附实验的平衡时间选择在24 h.

2.2 吸附模型

Langmuir 模型:
$$Q = \frac{Q_{\text{max}}c_{\text{eq}}}{K_1 + c_{\text{eq}}}$$
 (1)

Freundlich 模型: $Q = K_{\rm F} \cdot (c_{\rm eg})^n$ (2)

式中 Q 为体系达到平衡时磷在颗粒物上的吸附量 , mg•kg⁻¹; Q_{max} 为最大吸附容量 , mg•kg⁻¹; c_{eq} 为溶液 中磷的平衡浓度 , mg•L⁻¹; K_L 为 Langmuir 吸附系 数; K_F 是 Freundlich 吸附系数 p 为常数.

Langmuir 和 Freundlich 等温吸附模型被广泛用 于描述磷在河流、湖泊沉积物、黏土矿物和土壤上的 吸附特征^[16,17]. 然而简单的 Langmuir 和 Freundlich 等温吸附模型忽略了已经吸附在天然颗粒物上的可 交换态磷.在吸附实验中应该考虑这部分磷同样参 与了吸附平衡^[18~21] 吸附实验中所测到的实际上是 表观吸附量,它应该包含吸附-解吸性质/行为不同 的两部分,即一部分是吸附实验前结合在颗粒物上 的在吸附实验条件下可解吸的磷 $NAP(mg \cdot kg^{-1})$, 另一部分是真正在吸附实验中被吸附的磷^[19].可 见 颗粒物对磷的吸附行为十分复杂 ,可能受到多种 因素的影响,不能用简单的 Langmuir 和 Freundlich 等温吸附模型来描述,需要对方程(1)、(2)进行修 正. Zhou 等^[22]考虑了颗粒物原有吸附可交换态磷 NAP 推导了 Langmuir 等温吸附模型的系列公式, 其主要结果如式(3)~(5)、式(9);田建茹等^[23]依 据文献 [22] 推导了 Freundlich 等温吸附模型的系列 公式,其主要结果如式(6)~(8).

$$Q = Q_{\text{apparent}} - \text{NAP}$$

对方程(1)进行修正:

$$(c_{add} - c_{eq}) \cdot \frac{V}{m} = \frac{Q_{max} \cdot c_{eq}}{k_{L} + c_{eq}} - NAP$$
 (3)

$$NAP = \frac{Q_{max} \cdot c_{eq}^0}{k_L + c_{eq}^0} + c_{eq}^0 \cdot \frac{V}{m}$$
(4)

根据 EPC₀ 的定义,当 $c_{eq} = c_{add} = EPC_0$, Q = 0时将式(4)代入式(3),整理得:

$$EPC_{0} = \frac{K_{L} \cdot Q_{max} \cdot c_{eq}^{0} / (K_{L} + c_{eq}^{0}) + K_{L} \cdot c_{eq}^{0} \cdot V/m}{K_{L} \cdot Q_{max} / (K_{L} + c_{eq}^{0}) - c_{eq}^{0} \cdot V/m}$$
(5)

对式(2)进行修正:

$$(c_{add} - c_{eq}) \cdot \frac{V}{m} = K_F \cdot (c_{eq})^n - NAP$$
 (6)

$$NAP = K_{F} \cdot (c_{eq}^{0})^{n} + c_{eq}^{0} \cdot \frac{V}{m}$$
(7)

$$EPC_{0} = \sqrt[n]{(c_{eq}^{0})^{n} + \frac{c_{eq}^{0} \cdot V}{K_{F} \cdot m}}$$
(8)

固-液分配系数可用式(9)计算:

$$K_{\rm p} = \frac{\rm NAP}{\rm EPC_0} \tag{9}$$

式中, c_{add} 为吸附实验中加入磷的初始浓度, mg•L⁻¹;V为溶液的体积,L;*m*为吸附实验中加入 颗粒物(干样)的质量, $kg;c_{eq}^{0}$ 为初始加入的磷浓度 为0时溶液中磷的平衡浓度,mg•L⁻¹;EPC₀为临界 磷平衡浓度,即吸附实验处在动态平衡时溶液中的 磷浓度,此时颗粒物既不吸附也不解吸磷,mg•L⁻¹; K_{a} 为固-液分配系数,L•g⁻¹.

2.3 颗粒物对磷酸盐的吸附等温线

水样溶解态活性磷 SRP、颗粒物的总磷 TP、可 交换态 Exch-P、钙磷 Ca-P、有机磷 Org-P 和有机质 的测定值列于表 2,实验测得黄河水和渤海海水中 颗粒物对磷的吸附等温线如图 3、4 所示,根据式 (3)~(9)计算所得相关参数列于表 3.

Table 2 Concentrations of organic mater , phosphorus forms in the particulates and SRP of overlying water										
样品编号	有机质/%	$TP/mg \cdot kg^{-1}$	Exch-P/mg•kg ⁻¹	Ca-P/mg•kg ⁻¹	$Org-P/mg \cdot kg^{-1}$	SRP/mg•L ⁻¹				
Y1	0.15	681.65	8.29	559.90	23.16					
Y2	0.80	870.50	6.20	775.70	57.40					
¥3	0.18	278.10	5.30	197.70	48.70					
Y4	0.18	394.20	17.22	304.00	20.80					
¥5	0.14	779.30	10.86	689.90	9.51					
LS						0.053				
QS						0.047				
SS						0.048				
BS						0.074				

表 2 颗粒物的有机质、各形态磷含量和水样 SRP 浓度

100

80

60

40

20

吸附量/mg·kg⁻¹

图 3 黄河水中沙漠颗粒物对磷酸盐的吸附等温线 Fig. 3 Adsorption isotherms of phosphate on the desert particulates in Yellow Rive

磷平衡浓度/mg·L⁻

根据 R^2 (相关系数)最大原则^[23],由表 3 数据 可知,改进的 Langmuir 模型拟合效果要优于用改进 的 Freundlich 模型,因为前者拟合的相关性好($R^2 > 0.92$),大于改进的 Freundlich 等温吸附模型拟合的 值(R^2 为 0.70 ~ 0.91);用改进的 Freundlich 模型计 算的 NAP 远大于其 Exch-P(特别是 Y2)与实际情况

 0
 0
 0.1
 0.2
 0.3
 0.4

 0
 0.1
 0.2
 0.3
 0.4

 磁平衡浓度/mg·L⁻¹
 图 4
 渤海海水中沙漠颗粒物对磷酸盐的吸附等温线

 Fig. 4
 Adsorption isotherms of phosphate on the desert particulates in Bohai seawater

 不符
 表明上述颗粒物在天然水中对磷的吸附更符

 合改进的
 Langmuir 等温吸附模型各参数物理化学意义明确

- BS-Y1 - BS-Y2 - BS-Y3

故用其描述上述颗粒物在天然水中对磷的吸附解吸 行为更为合理.

由改进的 Langmuir 等温吸附模型计算可以得

表 3 颗粒物吸附磷的改进 Langmuir 和 Freundlich 等温吸附模型拟合参数

Гab	le 3	Fitting parameters	using the	improved [Langmuir an	nd Freundlich	isotherm adso	orption models	s for the sor	ption data of F	on the particulates

样品代号	改进的 Langmuir 拟合结果						改进的 Freundlich 拟合结果					
	$Q_{\rm max}$	$K_{\rm L}$	NAP	EPC_0	$K_{\rm p}$	R^2	K _F	n	NAP	EPC ₀	$K_{\rm p}$	R^2
LS-Y1	41.322	0.079	4.783	0.010	0.464	0.97	0.051	0.292	13.320	0.010	1.306	0.80
LS-Y2	131.579	0.921	33.770	0.318	0.106	0.98	0.211	0.542	78.987	0.587	0.211	0.90
LS-Y3	58.140	0.070	52.821	0.699	0.076	0.92	0.074	0.392	49.063	0.352	0.140	0.80
SS-Y4	47.619	0.081	40.420	0.159	0.254	0.92	0.060	0.333	41.930	0.337	0.124	0.75
QS-Y5	52.910	0.027	45.523	0.163	0.279	0.94	0.061	0.284	36.957	0.175	0.211	0.70
BS-Y1	68.493	0.096	33.879	0.109	0.310	0.98	0.078	0.372	51.573	0.333	0.158	0.88
BS-Y2	357.143	9.643	10.700	0.298	0.036	0.96	0.185	0.750	184.757	0.074	0.355	0.90
BS-Y3	80.000	0.240	47.654	1.221	0.039	0.98	0.088	0.968	47.313	0.344	0.256	0.91

到颗粒物对磷吸附的重要参数,即磷的最大吸附容 量 Q_{max} ,该值是颗粒物库容的一种标志,是反映颗粒 物吸附磷的容量因子.研究区域内颗粒物对磷的 Q_{max} 为41.322~357.143 mg•kg⁻¹(见表3),其中Y2 的 Q_{max} 最大.此外,Y2 的有机质为 0.80%,Ca-P 为 775.70 mg•kg⁻¹ Org-P 为 57.40 mg•kg⁻¹,TP 为 870.50 mg•kg⁻¹均为研究对象中最大(见表 2).

进一步分析发现, Q_{max}与沙漠颗粒物(Y1~Y5) 的有机质(见表 2)有着极显著的正相关关系,相关 系数为0.9747,见图 5;与 Org-P 也有较好的正相关 性 相关系数为 0.65,可见黄河入河沙漠颗粒物对 磷的 Q_{max}主要受颗粒物有机质含量的控制,与有机 磷含量也有密切关系.

由表 3 可知,研究对象 NAP 值大多数在 33.770 ~52.821 mg•kg⁻¹之间,表明颗粒物自带可解吸磷 较多.

此外 颗粒物 Y1、Y2、Y3 在渤海海水中的 Q_{max} 大于在黄河下游柳林段水中的 Q_{max} (见表 3),但是 顺序没有变 ,均为 Y2 > Y3 > Y1,只是整体增大了, 说明受到的影响是一致的. 沙漠颗粒物在海水与河 水中吸附磷的实验除离子强度不同,pH 略有不同 外,其它实验条件相同.吸附实验 pH 的选择是根据

天然水体的 pH 值决定的,渤海海水实验选择 pH =

8.00, 黄河下游柳林段水实验选择 pH = 8.30. 一般 pH 在 6.0~9.7 范围内有稳定的吸附 ,吸附量基本 不随 pH 的变化而变化^[24]. 由此可见吸附实验 pH 的微小差别不是影响黄河入河沙漠颗粒物对磷 Q_{max} 的主要因素 ,离子强度应该是主要影响因素 ,这与刘 敏等^[21]的研究结果相一致.

2.4 颗粒物对磷酸盐吸附-解吸平衡质量浓度

由图 3、4 可见,天然水(黄河或渤海)中,黄河 入河沙漠颗粒物对磷的吸附等温线是过溶液浓度轴 0.00 的交叉型等温线,也就是说体系中同时存在着 吸附和解吸的现象.在初始磷浓度较低时存在解吸 现象,随着磷浓度的增大逐渐进入吸附区.从表观上 看当可交换态磷在颗粒物表面上没有吸附也没有从 固体表面上解吸下来,即体系处于动态平衡时,溶液 中磷的浓度称为临界磷平衡浓度即 EPC₀,它是等温 线与平衡浓度坐标轴的交点,具有浓度的单位.潘 纲^[18,25-28]等在一定温度和固体浓度条件下,推导了 式(10):

$$\lambda = \frac{c_{\rm eq}^0}{\rm EPC_0} \tag{10}$$

式中 λ 是初始加入的磷浓度为0时溶液中磷的平衡 浓度 c_{eq}^{0} 与 EPC₀的比值.

当 $\lambda = 1$ 或 $c_{eq}^{0} = EPC_{0}$ 时Q = -NAP(EPC₀点上) 当 $\lambda > 1$ 或 $c_{eq}^{0} > EPC_{0}$ 时,Q > 0(吸附区) 当 $\lambda < 1$ 或 $c_{eq}^{0} < EPC_{0}$ 时,Q < 0(解吸区)

由此可见,天然颗粒物到底是吸附磷(汇)还是 解吸磷(源)决定于环境中磷的浓度以及当时介质 条件下的 EPC。值,当天然水中的磷浓度高于 EPC。 值,颗粒物就吸附天然水中的磷,是水体的磷汇;当 天然水中磷浓度低于 EPC。值时,则颗粒物向水体 释磷,是水体的磷源.因此,深入研究天然水中颗粒 物的 EPC。对认识水体-颗粒物界面磷的交换机制具 有重要意义.

结合表 2 上覆水的 SRP 浓度分析,研究体系 LS-Y1的 EPC。值小于相应水体黄河柳林段水样的 磷浓度其 $\lambda = \frac{0.053}{0.010} > 1$, Y1 表现为水体中磷的 "汇",实验条件下吸附水体中的磷;而对于 BS-Y1, 其 EPC。大于相应水体渤海海水的磷浓度其 λ = 0.074 0.109 < 1, Y1 表现为水体中磷的"源",实验条件 下向水体释磷,见图3、图4.本实验条件的设计尽 量模拟了自然环境,所以本项研究结果 Y1 在天然 水体中的吸附特征具有参考价值,在天然水中吸附 磷的 EPC。值具有重要意义,Y1 在渤海海水中的 EPC。值比在黄河水中大很多,即 0.109 mg•L⁻¹ > 0.010 mg•L⁻¹,说明巴丹吉林沙漠颗粒物 Y1 吸附 了黄河水中的磷,进入渤海后 Y1 的 NAP 转移到了 海水中.由此可见,Y1 在天然水体磷循环中具有两 重性,它在不同水体中能改变做磷汇和磷源的角色, 在该区域磷循环过程中起了重要作用.此外,Y2~ Y5 在不同水体中的 EPC。值为 0.159~1.221 $mg \cdot L^{-1}$ 均大于相应水体的 SRP 浓度 $\lambda < 1$ 在水体 中表现为磷的"源",实验条件下向水体释放磷. 2.5 黄河入河沙漠颗粒物对磷吸附的环境意义

不论是像黄河两岸沙漠乌兰布和沙漠与库布齐 沙漠那样直接向黄河输沙,还是像居延海、巴丹吉 林、腾格里沙漠通过沙尘暴活动沙尘沉降对黄河下 游或海洋输沙,进入黄河的沙漠颗粒物在水体中吸 附或解吸磷后,一部分随黄河水体移动进入海洋最 终成为海洋沉积物,另一部分则堆积在黄河河道,并 在黄河水动力条件改变时再次悬浮最终成为海洋沉 积物.总之,这些包括各种形态磷的沙漠颗粒物进入 海洋时,向海洋输送了营养物质磷,其中可交换态磷 及部分钙磷可能会直接或间接地被海洋生物利用, 从而促进海洋初级生产力的提高,另外通过生物泵 的作用将大气中的 CO₂ 转移到海底,进而影响气候 和环境的变化.

3 结论

(1) 在 BS-Y1 和 QS-Y5 体系中颗粒物对磷酸

学

(2) 改进的 Langmuir 等温吸附模型更适用于描述天然水中的黄河入河沙漠颗粒物对磷酸盐的吸附 特征,由其计算得到颗粒物对磷的最大吸附容量 Q_{max} 为41.322~357.143 mg•kg⁻¹,表明不同水体中 颗粒物 Y1~Y5 对磷的吸附行为差别较大.此外,颗 粒物对磷的 Q_{max} 主要受其有机质含量的控制.

(3) 巴丹吉林沙漠颗粒物 Y1 在天然水体磷循 环中具有两重性,在黄河水体中表现为磷"汇",实 验条件下吸附水体中的磷,而在渤海海水中表现为 磷"源",实验条件下向水体释磷;其它颗粒物 Y2 ~ Y4 在不同水体中均表现为磷"源",其 EPC。值为 0.109~1.221 mg·L⁻¹,均大于其相关水体的 SRP 浓度, $\lambda < 1$,实验条件下向水体释放磷.

(4)黄河入河沙漠颗粒物对磷酸盐吸附的等温 线是过溶液浓度轴 0.00 的交叉型等温线,这种新型 交叉型吸附-解吸模型较好地解释了其吸附特征和 天然粒子的双重性作用.

致谢:感谢内蒙师范大学地理科学学院院长海 春兴教授、周瑞荣同志,化学与环境科学学院塔娜老 师对本研究工作的支持和帮助!

参考文献:

- [1] 汤鸿霄. 微界面水质过程的理论与模式应用 [J]. 环境科学 学报 2000 **20**(1): 1-10.
- [2] Falkowski P, Scholes R J, Boyle E, et al. The global carbon cycle: A test of our knowledge of earth as a system [J]. Science, 2000, 290:291-296.
- [3] Zhang J. Nutrient elements in large Chinese estuaries [J]. Cont Shelf Res , 1996 , 16(8): 1023-1045.
- [4] 郭玉华,叶俊峰.内蒙河套灌区面源污染防治初步设想[J].内蒙古环境保护 2004,16(1):16-17.
- [5] 张凯 高会旺 涨仁健 等. 我国沙尘暴的来源、移动路径及对 东部海域的影响[J]. 地球科学进展 2005 20(6):627-636.
- [6] 王式功,董光荣,杨德保.中国北方地区沙尘暴变化趋势初探
 [J].自然灾害学报,1996 5(2):86-94.
- [7] 卢琦. 中国治沙启示录 [M]. 北京:科学出版社,2004.120-125.
- [8] 杨根生,托万全,戴丰年,等.风沙对黄河内蒙古河段河道泥 沙淤积的影响[J].中国沙漠 2003 23(2):152-159.

- [9] 孙金铸 陈山.内蒙古生态环境预警与整治对策[M].呼和浩特:内蒙古人民出版社,1994.7 9-15.
- [10] 庄国顺,郭敬华,袁蕙,等. 2000年我国沙尘暴的组成、来源、 粒径分布及其对全球环境的影响[J]. 科学通报,2001,46 (3):191-197.
- [11] 日本工业用水协会编著.陈履安译,水质分析法[M].北京: 中国环境科学出版社,1990.480-490.
- [12] 国家环境保护总局.水和废水监测分析方法[M].北京:中国 环境科学出版社 2002.120-125.
- [13] 刘素美, 涨经. 沉积物中磷的化学提取分析方法[J]. 海洋科 学 2001 25(1):22-25.
- [14] Ruttenberg K C. Development of a sequential extraction method for different forms of phosphorus in marine sediments [J]. Limnol Oceanogr, 1992, 37(7):1460-1482.
- [15] 张宪伟 潘纲 陈灏 ,等. 黄河沉积物磷形态沿程分布特征 [J].环境科学学报 2009 29(1):191-198.
- [16] Walling D E, Owens P N, Carter J, et al. Storage of sediment associated nutrients and contaminants in river channel and floodplain systems [J]. Appl Geochem, 2003, 18:195-220.
- [17] Stumm W , Morgan J. Aquatic Chemistry [M]. New York: J Wiley and Sons , 1981. 102-123.
- [18] 潘纲. 亚稳平衡态吸附(MEA)理论-传统吸附热力学理论面临的挑战与发展[J]. 环境科学学报 2003 23(2):156-173.
- [19] Aminot A, Andrieux F. Concept and determination of exchangeable phosphate in aquatic sediments [J]. Water Res, 1996, 30:2805-2811.
- [20] 安文超 李小明. 南四湖及主要入湖河流表层沉积物对磷酸 盐的吸附特征[J]. 环境科学 2008 29(5):1295-1302.
- [21] 刘敏,侯立军,许世远,等. 长江河口潮滩表层沉积物对磷酸盐的吸附特征[J]. 地理学报 2002 **57**(4):397-406.
- [22] Zhou A M, Tang H X, Wang D S. Phosphorus adsorption on natural sediments: Modeling and effects of pH and sediments composition [J]. Water Res, 2005, 39:1245-1254.
- [23] 田建茹,周培疆,胡超珍,等.汉江下游武汉段河漫滩沉积物 吸附磷的特征[J].武汉大学学报(理学版),2006,**52**(6): 717-722.
- [24] 王晓丽,潘纲,包华影,等.黄河中下游沉积物对磷酸盐的吸 附特征[J].环境科学 2008 **29**(8):2137-2142.
- [25] Pan G ,Liss P S. Metastable equilibrium adsorption theory II , Experimental [J]. Journal Colloid Interface Sci , 1998 , 201: 77-85.
- [26] Pan G ,Liss P S. Metastable equilibrium adsorption theory I. , Theoretical [J]. J Colloid Inter Sci , 1998 , 201: 71-76.
- [27] Pan G ,Krom M D , Herut B. Adsorption-desorption of phosphate on airborne dust and riverborne particulates in East Mediterranean Seawater [J]. Environ Sci Technol , 2002 , 36:3519-3524.
- [28] 张宪伟,潘纲,王晓丽,等.内蒙古段黄河沉积物对磷的吸附 特征研究[J].环境科学 2009 30(1):172-177.