

工作简报

高效液相色谱法测定 D 型丝氨酸的含量

于荣华, 谭娇颖, 乔浩, 刘存礼, 于文涛, 韦 萍

(南京工业大学 生物与制药工程学院,南京 210009)

摘 要: 提出了毋需柱前衍生化处理的高效液相色谱直接测定 D 型丝氨酸含量的方法。以 pH 1.0 的高氯酸溶液为流动相,流量为 0.3 mL·min⁻¹, Daicel CROWNPAK CR(+)色谱柱 (4 mm×150 mm)进行分离,柱温 0 $^{\circ}$ C。采用 170U 紫外检测器,检测波长为 200 nm, D-丝氨酸及其主要杂质 L-丝氨酸在 10 min 内完全分离,分离度为 2.09,其中 D-丝氨酸的质量浓度在 1.00~10.00 g·L⁻¹范围内呈线性。方法的检出限(3S/N)为 0.20 g·L⁻¹,回收率在 93.4%~95.7%之间,相对标准偏差(n=6)在 3.2%~3.6%之间。

关键词: 高效液相色谱法; 对映异构体; 丝氨酸

中图分类号: O652.63

文献标志码: A

文章编号: 1001-4020(2011)10-1184-02

HPLC Determination of D-Serine

YU Rong-hua, TAN Jiao-ying, QIAO Hao, LIU Cun-li, YU Wen-tao, WEI Ping

(School of Biological and Pharmaceutical Engineering, Nanjing University of Industry, Nanjing 210009, China)

Abstract: A direct method of HPLC without precolumn derivatization was proposed for determination of D-serine. Chromatographic column of Daicel CROWNPAK CR(+) (4 mm \times 150 mm) and mobile phase of pH 1.0 HClO₄ solution were used in the separation, with column temperature of 0 °C and flow-rate of 0.3 mL • min⁻¹. 170U UV-detector with wavelength of 200 nm was adopted in the detection. Under the given conditions, the D-serine and its main impurity L-serine were completely separated from each other within 10 min. The resolution factor (R_s) attained to a value of 2.09. Linearity of D-serine was found in the range from 1.00 to 10.00 g • L⁻¹. Detection limit (3S/N) found for the method was 0.20 g • L⁻¹. Tests for recovery and precision were made by standard addition method, values of recovery and RSD's (n=6) obtained were in the ranges of 93.4% – 95.7% and 3.2% – 3.6% respectively.

Keywords: HPLC; Enantiomers; Serine

D-丝氨酸(D-ser)作为一种重要的手性氨基酸, 是治疗耐药性肺结核及癫病新药的重要中间体。近 年来研究发现 D-丝氨酸不仅是一种重要的胶质细 胞递质[1-2],而且还可能参与了老年痴呆和精神分裂 症的发病机制[4-5]。

目前检测丝氨酸的主要方法有铬变酸比色法^[6]、Beckman 毛细管电泳法^[7]、离子交换柱层析法^[8]、薄层层析法^[9]及高效液相色谱法(HPLC)^[10]

收稿日期: 2010-08-18

作者简介:于荣华(1961一),男,江苏南京人,高级工程师,主要 从事海因类化合物等项目的开发及产业化工作。

• 1184 •

等。文献报道中关于 HPLC 检测丝氨酸的方法,多采用柱前衍生化方法,该法衍生后会产生多种衍生化合物,给色谱分离带来困难。本工作用 HPLC 测定 D-ser,样品不需要进行前处理,直接进样,不仅操作简便,可以快速分离 D-ser 及其主要杂质 L-丝氨酸(L-ser),并测定其含量。

1 试验部分

1.1 仪器与试剂

Dionex 高效液相色谱仪,包括 P680 四元泵, 170U 紫外检测器。

D-ser 标准储备溶液: 称取 D-ser 标准品

1.000 0 g置于 100 mL 容量瓶中,用 pH 1.0 的高氯酸溶液 超声溶解后并定容,此溶液质量浓度为 10.000 g• L^{-1} ,4 $^{\circ}$ C保存。

L-ser 标准储备溶液: 称取 L-ser 标准品 0.4000~g置于 100~mL容量瓶中,用 pH~1.0~n高氯酸溶液超声溶解后并定容,此溶液质量浓度为 $4.000~g \cdot L^{-1}$ 。4~C保存,用时稀释成所需浓度。

D-ser、L-ser、高氯酸均为分析纯;试验用水为重蒸水,所配制溶液均需经 $0.22~\mu m$ 微孔滤膜过滤。

1.2 色谱工作条件

Daicel CROWNPAK CR(+)色谱柱(4 mm× 150 mm),柱温为0 $^{\circ}$,流动相为 pH 1.0 的高氯酸溶液,流量为 0.3 mL·min⁻¹,进样体积 20 $^{\mu}$ L,检测波长为 200 nm。

1.3 试验方法

称取 D-ser 试样 0.4000 g,置于 100 mL 容量瓶中,加 pH 1.0 的高氯酸溶液超声溶解后并定容,此溶液的质量浓度为 4.000 g • L^{-1} 。在色谱工作条件下进样测定。

2 结果与讨论

2.1 检测波长的选择

按试验方法对 D-ser、L-ser 分别进行全波长扫描,紫外扫描图谱见图 1,结果表明:D-ser、L-ser 均在波长 200 nm 处有较大吸收,试验选择检测波长为 200 nm。

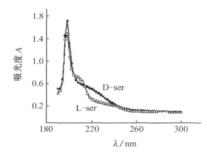


图 1 D-ser、L-ser 紫外扫描光谱图

Fig. 1 UV scanning spectra of D-serine and L-serine

2.2 流动相流量、柱温的选择

考察了流动相对柱效的影响。结果表明: 当流动相流量为 $0.3~\text{mL} \cdot \text{min}^{-1}$ 时,可达到快速分离而不影响柱效的效果。柱温升高,分离度降低,试验选择柱温为 0~℃。

2.3 色谱图

在色谱条件下 D-ser 和 L-ser 在 10 min 内达到基线分离,其分离度为 2.09,标准品的色谱图见图 2。

图 2 D-ser 和 L-ser 标准品的色谱图

Fig. 2 Chromatogram of standards of D-ser and L-ser

2.4 工作曲线和检出限

移取 10.000 g · L⁻¹ D-ser 标准储备溶液1.00, 2.00, 3.00, 4.00, 5.00, 6.00, 7.00, 8.00, 9.00, 10.00 mL分别置于 10 mL 容量瓶中,用流动相定容,摇匀,得到 1.00, 2.00, 3.00, 4.00, 5.00, 6.00, 7.00, 8.00, 9.00, 10.00 g · L⁻¹ D-ser 标准溶液系列,过滤,在色谱工作条件下进行测定,D-ser 的质量浓度在 $1.00\sim10.00$ g · L⁻¹范围内与峰面积呈线性关系,其线性回归方程为 y=22.887 $\rho+1.408$, 相关系数为 0.999 5。方法的检出限 (3S/N) 为 0.2 g · L⁻¹。

2.5 稳定性试验

将 $4.00 \text{ g} \cdot \text{L}^{-1} \text{ D-ser}$ 标准溶液,在色谱工作条件下,同一日内,分别于制备后 0,1,2,3,4,5 h 依次进样测定,6 次测定结果的相对标准偏差为2.2%,试验结果表明:样品溶液在 5 h 内基本稳定。

2.6 样品的定性分析

将样品 D-ser 用流动相溶解并稀释,在色谱条件下进样分析后,往上述样品溶液中加入适量的 D-ser标准溶液,按同样的方法进行色谱分离,比较加标前和加标后的色谱图,可以看出:D-ser 峰高和峰面积发生了变化,而其他均未发生变化,因此,可定性确定样品中主要物质为 D-ser。

2.7 回收试验

移取 D-ser 样品 3 份,加入 3 个浓度水平的 D-ser标准,按试验方法进行加标回收试验,回收率结果见表 1。

建立了高效液相色谱法测定 D-ser 含量的方法,通过试验优化了色谱条件,达到了比较理想的结(下转第1188页)

表 1 线性回归方程、相关系数和检出限

Tab. 1 Linear regression equations, correlation coefficients,

元素	线性回归方程	相关系数	检出限 ρ/(μg•L ⁻¹)
Bi	$y=38.408 \rho+41.296$	0.999 9	0.13
Sb	$y=36.492 \rho-11.108$	0.9998	0.03

2.7 回收试验

按试验方法对样品处理后进行测定,并做加标 回收试验,结果见表 2。

表 2 样品分析及回收试验结果

Tab. 2 Analytical results of samples and results of tests for recovery

样品	测定值 力 ρ/(μg・L ⁻¹) ρ/(μ			加标量 测得 μg•L ⁻¹)ρ/μg				收率 %
	Bi	Sb	Bi	Sb	Bi	Sb	Bi	Sb
钼制品1	0.28	5.06	10.00	10.00	9.41	14.46	91.3	94.0
钼粉 1	0.21	4.03	20.00	20.00	18.87	24.22	93.3	101.0
钼制品2	0.23	3.64	30.00	30.00	28.95	35.30	95.7	105.5
钼粉 2	0.18	2.97	50.00	50.00	46.54	53.27	92.7	100.6

2.8 样品分析

称取一定量 YSS 003-96 系列氧化钼光谱标准

样品,按试验方法进行测定,结果见表3。

表 3 标准样品中铋和锑的测定结果

谢明明等:氢化物发生-原子荧光光谱法测定钼粉及钼制品中铋和锑

Tab. 3 Results of det'n, of Bi and Sb in standard samples

样品	认定值	w/%	测定值 w/%		
7十 日日	Bi	Sb	Bi	Sb	
1#	0.000 092	0.000 18	0.000 095	0.000 19	
2 #	0.000 25	0.000 45	0.000 24	0.000 46	
3 #	0.000 64	0.001 2	0.000 64	0.0012	

采用氢化物发生-原子荧光光谱法测定钼粉及 其钼制品中铋和锑,具有检出限低,灵敏度高,重现 性好和干扰少等特点。试验表明:方法简单,无需分 离基体,精密度、回收率及检出限均能够满足钼粉及 其钼制品的分析要求。

参考文献:

- [1] 袁爱萍,黄玉龙,唐艳霞,等. 氢化物生成-原子荧光光谱法快速测定锑精矿中砷、汞、硒、铋和锡[J]. 应用化学,2009,26(2):229-233.
- [2] 李岩. 氢化物-原子荧光光谱法连续测定锌精矿中砷、锑、铋、锡[J]. 分析化学, 2004, 32(2): 205-208.

(上接第 1185 页)

表 1 回收试验结果(n=6)

Tab. 1 Results of test for recovery

测定值 ρ/(g•L ⁻¹)	标准加入量 ρ/(g•L ⁻¹)	测定总量 ρ/(g・L ⁻¹)	回收率 /%	RSD /%
1. 985 9	0.05	2.032 6	93.4	3.6
	0.10	2.081 6	95.7	3.2
	0.25	2.224 1	95.3	3.4

果,可用于 D-ser 的质量监控。

参考文献:

- [1] 何文娟,阮怀珍. D-丝氨酸在神经元胶质细胞间通讯的新进展[J]. 生理科学进展, 2009, 40(4): 303-307.
- [2] 李延海,王珏,张广军. D-丝氨酸对大鼠视皮层神经元 突触后 NMDA 受体功能的调节作用[J]. 第四军医大 学学报,2009,3(20):2098-2101.
- [3] 卢昕,刘承伟,卢洁,等. HPLC 测定帕金森模型小鼠脑中 D-丝氨酸的含量[J]. 广西师范大学学报,2009,27 (2):68-71.
- [4] HASHMOTO K, FUKUSHMA T, SHMIZU E, et al. Possible role of D-serine in pathophysiology of

- Alzheimer's disease [J]. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 2004,28:385-388
- [5] HASHMOTO K, ENGBERG G, SHMIZU E, et al. Reduced D-serine to total serine ratio in the cerebrospinal fluid drug nalve schizophrenic patients [J]. Progress in Neuro-Psycho-pharmacology & Biological Psychiatry, 2005,29:767-769.
- [6] 孙进,吴梧桐,吴震,等. SHMT 酶促反应液中 L-丝氨酸分离和有关组分分析[J]. 中国生化药物杂志, 2000,21(3):124-126.
- [7] 曹飞,荀志金,姚冰,等.甘氨酸铜法制备 DL-丝氨酸的 研究[J].精细化工,2001,18(4):232-233.
- [8] 孙进,吴梧桐,吴震,等. 酶法合成 L-丝氨酸及反应液中氨基酸的分离[J]. 中国药科大学报,2000,31(2): 135-138.
- [9] 成都科学技术大学分析化学教研室.分析化学手册 [M].北京:化学工业出版社,1984.
- [10] 傅莉,刘信洪,徐春燕,等. HPLC 法监测 DL-丝氨酸的合成研究[J]. 北京化工大学学报,2003,30(4):105-108.