基于叶片高光谱特性分析的树种识别

王志辉. 丽霞*

浙江农林大学,浙江省森林生态系统碳循环与固碳减排重点实验室,环境科技学院,浙江 临安 311300

摘 要 高光谱遥感技术的出现将为解决森林树种的精细识别难题提供有效的途径。利用高光谱遥感技术 进行树种鉴别时、光谱特征的选择及提取是个非常重要的过程。与多光谱数据相比、高光谱数据具有波段 多、数据量大、冗余度大等特点。该文利用光谱微分法对原始光谱数据进行处理、分析不同树种原始光谱、 光谱一阶微分和光谱二阶微分曲线图。从中选择差异较大的波段用于鉴别不同树种。最后利用欧氏距离对 所选择的波段进行检验识别不同树种的效果,检验的结果显示选择的波段能有效地区分不同树种。区分不 同树种的有效波段大都位于近红外波段、并且差异最大的波段也是近红外波段、其分别为1657~1666和 1 868~ 1 877 nm.

关键词 树种; 高光谱; 光谱微分; 欧氏距离 中图分类号: S771.8 文献标识码: A DOI: 10. 3964/ j issn 1000 0593(2010) 07-1825-05

言 引

高光谱遥感技术是 20 世纪 80 年代以来在对地观测方面 取得的重大技术突破之一,它具有波段窄、波段多的特点, 能够提供比多光谱遥感技术更细致的地物光谱信息间,为研 究地物的细微特征提供了有效的途径。 目前高光谱 遥感技术 已被广泛地用于植物研究, 与多光谱相比, 能有效地提高物 种分类精度^[2],而且能够估测各种植物化学成分,如植物叶 内的N、P、K、糖类、淀粉、蛋白质、纤维素和叶绿素等的估 测[3],进行植物长势评价、植被生物量估测[4]。在植物物种 的识别方面也有一些成功的实验。例如、浦瑞良等[4]利用小 型机载成像光谱仪(compact airborne spectrographic imager, 简称 CASI) 数据,采用变量相关、基于植被指数的估计方法 和多元回归预测方法对植物物种识别,张良培等[3] 利用高光 谱对植物物种进行识别, 但是对南方树种进行高光谱识别的 报道极少。本文分析不同树种的高光谱反射率信息及相关特 征参量的差异,探索高光谱遥感技术树种分类的可能性。

高光谱遥感技术波段多、波段窄的优势也带来了数据量 大、数据冗余度大的问题题。高光谱数据采样间距一般都在 纳米级,造成了相邻波段的高度相关性,冗余度也随之增 加。如何既有效地利用高光谱数据的最大信息、又能较快地

处理高光谱数据成为高光谱遥感的研究热点和未来的发展方 向。其中、有关光谱特征选择和特征提取的研究是一个重要 方向^[6]。范文义曾用方差、最大最小值、信噪比以及波段间 的相关性等作为指标进行选择波段,取得了较好的效果(参考 范文义(北京林业大学)的论文: 成像光谱遥感数据处理及对 荒漠化监测信息提取方法的研究,2000);刘建平[7]等在分 析利用信息量方法来选择波段局限性的同时、提出了基于类 间可分性的高光谱数据最佳波段选择理论模型、具有一定的 实用性; A lam 等提出了基于目标探测与分类的自适应进行 波段选择[8]。光谱微分可以增强光谱曲线在坡度上的细微变 化、并且其波形分析能消除部分大气效应。王渊等利用光谱 微分对油菜叶片的高光谱特征进行选择及提取、获得了良好 的效果^[9]。本文使用一阶微分和二阶微分等两种方法对原始 高光谱数据进行处理分析,从而选择区分不同树种的波段及 光谱特征参量。

1 数据与方法

1.1 数据获取

实验地点为浙江省临安市浙江林学院校内植物园、选择 了香樟、麻栎、马尾松、毛竹等4种南方常见的树进行试验, 每种树选取5棵树,每棵树采集10片向阳面的成熟叶,共

收稿日期: 2009 10-11, 修订日期: 2010 01 26

作者简介: 王志辉, 1979 年生, 浙江农林大学环境科技学院研究生 e mail: wzf20002@163 com

e mail: dlxlxy@126 com * 通讯联系人

© 1994-2011 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

基金项目:国家自然科学基金项目(30771725),国家高技术研究发展计划(863 计划)项目(2006A A 12Z109),浙江省林业厅项目(07 A16)和 浙江省教育厅项目(20060651)资助

50 个叶片样本。野外采样在晴朗的天气进行,选择生长茂盛 的树进行树叶采集放在保鲜箱里,并迅速带到室内利用 ASD FieldSpec Pro FR 野外光谱辐射仪进行光谱测量。该光谱仪 的波段范围为 350~2 500 nm,共2 151 个波段,为了光谱测 量的准确性和稳定性,利用该光谱仪配套的植被高密度探头 进行光谱测量,每测完 10 片树叶进行一次标准白板的校正。 将每棵树的 10 片树叶光谱反射率进行平均,求得每棵树的 光谱反射率;而后对每种树的5 棵树的光谱反射率值取平均 值,得到每种树的光谱反射率值。

1.2 微分法

光谱一阶微分、二阶微分是常用的光谱处理方法^[10]。一 方面,它能够有效地消除光谱数据之间的系统误差、削弱大 气辐射、散射和吸收等背景噪声对目标光谱的影响;另一方 面,光谱微分可以增强光谱曲线在坡度上的细微变化^[11],分 辨重叠光谱,便于提取可识别地物的光谱吸收峰参数^[1]。一 阶微分和二阶微分的计算公式分别为(1)和(2)式所示。

$$FDR_{\frac{\lambda}{\gamma}} = \frac{\mathrm{d}R}{\mathrm{d}\lambda} = \frac{R_{\frac{\lambda_{j+1}}{\gamma}} - R_{\frac{\lambda}{\gamma}}}{\Delta\lambda} \tag{1}$$

$$SDR_{\dot{\gamma}} = \frac{\mathrm{d}^2 R}{\mathrm{d}\lambda^2} = \frac{\mathrm{d}}{\mathrm{d}\lambda} \left(\frac{\mathrm{d}R}{\mathrm{d}\lambda} \right) = \frac{R_{\dot{\gamma}+2} - 2R_{\dot{\gamma}+1} + R_{\dot{\gamma}}}{\left(\Delta\lambda\right)^2}$$
 (2)

式中: λ_{j} 是第*j* 波段; *FDR*_{$\lambda_{j}} 是波段$ *j*和波段*j*+ 1 之间的光谱一阶微分;*SDR*_{<math>j} 是波段*j* 和波段*j* + 2 之间的光谱二阶微 分; *R*_j , *R*_{j+1} , *R*_{j+2} 是第*j*,*j*+ 1,*j*+ 2 波段的原始光谱反 $射率; <math>\Delta\lambda$ 是波段*j* + 1 和波段 *j* 之间的波长差距。</sub></sub></sub></sub>

2 结果与分析

2.1 原始光谱曲线分析

在图 1 里显示了 4 种树原始光谱反射率曲线,从图中可 看出这 4 种树具有相似的光谱曲线形状,但在一些波段里也 有差别,而这些差别反映了它们光谱特性的不同。从中选择 那些差异性比较显著的波段(波段范围为 10 nm,以下波段 选择的范围相同),共计 11 个波段并取之平均值进行比较 (如图 2)。从图中可看出在波段 883~ 892,970~979,1071 ~ 1080,1657~1666,1811~1820和2212~2221 nm之 间具有明显的差异。特别在波段1657~1666 nm之间,4 种 树光谱差异性最大。其余 5 个波段差异性稍小。

Waveband I-11: 548~ 557, 883~ 892, 970~ 979, 1 071~ 1 080, 1 193~ 1 202, 1 264~ 1 273, 1 443~ 1 452, 1 657~ 1 666, 1 811~ 1 820, 1 922~ 1 931, 2 212~ 2221 nm

2 2 光谱一阶微分分析

图 3 是 4 种树光谱一阶微分曲线图,选择差异性比较明 显的波段,共计11 个波段,并计算其光谱一阶微分值的平均 值如图 4 所示,从图中可看出光谱一阶微分曲线有 3 个差异 性比较大的位置,其波段分别位于 714~723,1136~1145 和 1 868~1 877 nm。其他 8 个波段差异性稍小,由此可知这 些波段都可用于树种识别。

Fig 4 The comparison of the average of the first derivative reflectance of different bands of four species trees

Waveband 1-11: 516~ 525, 565~ 574, 714~ 723, 946~ 955, 1 009 ~ 1 018, 1 136~ 1 145, 1 325~ 1 334, 1 383~ 1 392, 1 510~ 1 519,

第 30 卷

© 1994-2011 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

4种树的光谱二阶微分曲线如图 5 所示,差异较大的波 段都位于二阶微分曲线的波峰或波谷,选择其中差异较大的 波段,取其二阶微分值的平均值,如图 6 所示。由图中可见, 各树种的光谱二阶微分值的差异比一阶微分值的差异更加明 显;其中位于 402~411,758~767,972~981 和 1 868~ 1 877 nm 等 4 个波段的光谱二阶微分值差异显著,差异最大 在波段 1 868~1 877 nm 之间;差异性稍小波段有 7 个,分 别是 443~452,648~657,1009~1018,1367~1376, 1 441~1450,1749~1758 和 1792~1801 nm。从上面的 分析比较可知,这些波段都可用来识别 4 种树的光谱特性及 其鉴别。

Waveband F11: 402~ 411, 443~ 452, 648~ 657, 758~ 767, 972~ 981, 1 009~ 1 018, 1 367~ 1 376, 1 441~ 1 450, 1 749~ 1 758, 1 792~ 1 801, 1 868~ 1 877 nm

3 结果分析与检验

为检验以上方法所选波段识别树种的效果,本文使用欧 氏距离法^{12]}。以一阶微分法所选波段检验为例,首先计算所 选波段的每树种 50 个样本的一阶微分平均值,然后以任一 种树为比较树种,分别计算每树种每个样本与比较树种的平 均值之间的欧氏距离,如(3)式所示,最后计算这 50 个样本 的欧氏距离平均值,如(4)式所示。如果不同树种间欧氏距 能够有效区分不同树种。其他方法所选波段的检验过程相同。

$$d_{M_iN} = \sum_{k=1}^{n} (x_{M_ik} - \bar{x_{Nk}})^2$$
(3)

$$D_{MN} = \frac{1}{K} \sum_{i=1}^{K} d_{M_i N}$$
(4)

式中: $d_{M_i^N}$ 是树种 M 第 i 个样本与比较树种 N 之间的欧氏 距离; D_{MN} 是树种 M 与树种 N 之间欧氏距离的平均值; $x_{M_i k}$ 是树种 M 第 i 个样本第 k 波段光谱反射率、一阶微分、二阶 微分值; $\overline{x_{Nk}}$ 是比较树种 N 第 k 波段 50 个样本光谱反射率、 一阶微分、二阶微分值的平均值; i 是样本个数 (i= 1, 2, 3, …, 50); n 是波段总数; K 样本总数(K= 50)。

由表 1~表4 可看出,原始光谱、光谱一阶微分和光谱 二阶微分所选波段的不同树种间欧氏距离的平均值都大于同 树种欧氏距离的平均值。只是表2 中比较树种麻栎的光谱二

 Table 1
 The comparison of Euclidean distance of selected band of the three methods of Xiangzhang and other three

tr	ee species			
	香樟与 香樟	麻栎与 香樟	马尾松 与香樟	毛竹与 香樟
原始光谱	0.084 7	0 177 1	0 393 7	0 358 5
一阶微分	0.001 3	0 002 1	0 008 8	0 008 9
二阶微分	0 000 17	0 000 20	0 000 19	0 000 26

 Table 2
 The comparison of Euclidean distance of selected band of the three methods of MaLi and other three tree species

	麻栎与 麻栎	香樟与 麻栎	马尾松 与麻栎	毛竹与 麻栎
原始光谱	0.058 2	0 190 1	0 493 4	0 271 0
一阶微分	0.0009	0 002 3	0 008 9	0 008 7
二阶微分	0 000 18	0 000 19	0 000 17	0 000 25

Table 3 The comparison of Euclidean distance of selected band of the three methods of Ma WeiSong and other thsee tree species

u ·	et spears				
	马尾松与 马尾松	香樟与 马尾松	麻栎与 马尾松	毛竹与 马尾松	
原始光谱	0.0954	0 383 4	0 480 0	0 454 3	
一阶微分	0.001 5	0 008 7	0 008 8	0 006 8	
二阶微分	0 000 11	0 000 24	0 000 23	0 000 21	

Table 4The comparison of Euclidean distance of selected band
of the three methods of MaoZhu and other three tree

sp	ecies			
	毛竹与 毛竹	香樟与 毛竹	麻栎与 毛竹	马尾松 与毛竹
原始光谱	0.1071	0 352 5	0 268 9	0 458 5
一阶微分	0.0014	0 008 8	0 008 7	0 006 9
二阶微分	0 000 13	0 000 29	0 000 28	0 000 20

窩的平均值太于同树种欧氏距离的平均值,则说明所选波段 してジューンの11 China Academic Journal Electromic Publishing House. All rights reserved. http://www.cnki.net 阶微分马尾松与麻栎欧氏距离的平均值 0.000 17,小于麻栎 与麻栎欧氏距离的平均值 0.000 18。经欧氏距离检验分析可 知,初步根据原始光谱、光谱一阶微分和光谱二阶微分曲线 图的差异性所选择的波段能够有效区分不同树种。

4 结 论

与多光谱数据相比,高光谱数据具有 波段多及 波段连续 的特性,能够为不同树种提供更多的光谱反射率信息。光谱 微分分析充分利用高光谱的连续性,将原 始光谱里的微小变 化与差异进行扩大,从而被用来树种鉴别。

本文分析了4个不同树种的实测光谱曲线,结果表明不同的树种有类似的光谱特点,比如其原始光谱曲线图形状大 致相同(如图1所示),然而不同树种的光谱曲线也存在着微 小差异。利用光谱一阶微分和光谱二阶微分等两种方法对高 光谱数据进行处理,能够增强这些差异,从而方便地从上千 个波段中选择出十几个区分不同树种的最佳波段。利用欧氏 距离检验这些方法选择的波段区分不同树种的效果,结果证 明所选择的波段都能很好地区分4个树种。

不同方法选择的波段有些不同,但也有共同特点。根据 原始光谱的差异所选取的11个波段中,绿光波段有1个,波 长为 548~ 557 nm; 其余 10 个波段都分布在近红外波段, 差 异最大的波段为 1 657~ 1 666 nm。光谱一阶微分法所选择 的波段中,绿光、黄光、红光波段各有1个,分别为516~ 525. 565~ 574 和 714~ 723 nm: 其余 8 个波段属于近红外波 段,差异最大的波段为1868~1877 nm。光谱二阶微分所选 取的波段中紫光、蓝光、红光波段各1个.其波长为402~ 411, 443~ 452 和 648~ 657 nm; 其余 8 个波段是近红外波 段,差异最大的波段是1868~1877 nm。可见,用于识别不 同树种的波段大都位于近红外波段, 且差异最大的波段也出 现在近红外波段。目前已有一些高光谱遥感卫星数据能够提 供波段足够窄的图像数据,且覆盖红光、近红外等波段,如 MODIS 的有9个近红外波段, hyperion 有 216个近红外波 段。本文的研究结果将为利用图像数据进行大面积森林树种 的高光谱遥感识别与监测提供理论支撑。

参考文献

- [1] Salehia B, Zoej M J V. Remote Sens. Environ., 2002, 36: 332.
- [2] TAN Bing xiang(谭炳香). World Forestry Research(世界林业研究), 2003, 16(2): 33.
- [3] ZHANG Liang pei, ZHENG Laur fen, TONG Qing xi(张良培, 郑兰芬, 童庆禧). Journal of Remote Sensing(遥感学报), 1997, 1(2): 111.
- [4] PU Ruiliang, GONG Peng(浦瑞良, 宫 鹏). Hyperspectral Remote Sensing and Its Applications(高光 谱遥感及其应用). Beijing: Higher Education Press(北京:高等教育出版社), 2000.
- [5] SU Hong-jun, DU Peijun(苏红军,杜培军). Remote Sensing Technology and Application(遥感技术与应用), 2006, 21(4): 288.
- [6] SU Hong jun, DU Pei jun, SHENG Ye hua(苏红军, 杜培军, 盛业华). Application Research of Computer(计算机应用研究), 2008, 25 (2): 390.
- [7] LIU Jian ping, ZHAO Shi ying, SUN Shur ling(刘建平,赵时英,孙淑玲). Remote Sensing Technology and Application(遥感技术与应用), 2001, 16(1): 7.
- [8] Alamm S, Ochilov S. SPIE The International Society for Optical Engineering, 2005, 908(9): 10.
- [9] WANG Yuan, HUANG Jing-feng, WANG Furmin, et al(王 渊, 黄敬峰, 王福民, 等). Spectroscopy and Spectral Analysis(光谱学与 光谱分析), 2008, 28(2): 273.
- [10] LI Ming-zhou(李明州). Technologies and Applications of Spectral Analysis(光谱分析技术和应用). Beijing: Science Press(北京:科学出版社), 2006. 122, 163.
- [11] TONG Qing-xi, ZHANG Bing, ZHENG Lar fen(童庆禧,张 兵,郑兰芬). Hyperspectral Remote Sensing Principle, Technology and Application(高光谱遥感—原理,技术与应用). Beijing: Higher Education Press(北京:高等教育出版社), 2006. 158.
- [12] SONG Yurr hong, LI Zherr xiang, SUN Liarr hui, et al(宋运红,李振祥,孙连辉,等). Jilin Geology(吉林地质), 2008, 27(4): 117.

Tree Species Discrimination Based on Leaf-Level Hyperspectral Characteristic Analysis

WANG Zhi hui, DING Li xia*

Zhejiang Provincial Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration, College of Environmental Science and Technology, Zhejiang Agriculture and Forestry University, Lin' an 311300, China

Abstract The emergence of hyperspectral remote sensing technology will provide chance for solving problems of identifying forest tree species precisely. For discrimination of tree species with hyperspectral remote sensing technology, extraction and selection of the spectral characteristics is a very important process. Compared with multispectral data, hyperspectral data have the characteristics of more bands, larger amount of data and larger redundancy degree. The method of derivative reflect ance was used to deal with the original spectral data, analyze and compare curves of the original spectrum, the first derivative reflect ance and second derivative reflectance of the different tree species, and the bands with bigger difference were selected to identify the different tree species. Then the Euclidean distance method was used to test the selective bands identifying different tree species, and the results showed that the selective bands could identify different tree species effectively. The bands for identifying different tree species were most near infrared bands, and the bands with maximum difference derived from the three methods are 1 657-1 666, 1 868 1 877 and 1 868 1 877 nm respectively.

Keywords Tree species; Hyperspectral; Derivative reflectance; Euclidean distance

(Received Oct. 11, 2009; accepted Jan. 26, 2010)

* Corresponding author