应用Tail-PCR扩增蓝猪耳T-DNA侧翼序列^{*}

侯雷平1,2 王小菁1 李洪清1** 李梅兰2

(¹华南师范大学生命科学院,广东省植物发育生物工程重点实验室 广州 510631) (²山西农业大学园艺学院 太谷 030801)

摘 要 蓝猪耳是一种重要的具有观赏和科研价值的花卉植物.采用TAIL-PCR成功扩增了转基因蓝猪耳T-DNA插入 位点的侧翼序列, 扩增片断长度为200~2 000 bp, 大多数片段在400 bp和800 bp左右, 其中36%的序列含有植物的同源 序列. 通过与GenBank数据库比对, 确定了部分T-DNA插入位点周边序列编码的可能蛋白, 并提交序列7条; 另外还对 T-DNA转化植物时整合的位点进行了分析, 发现断裂位点集中在距右边界15~18 bp和右边界外234 bp处, 分别占总扩增 片段的47.62%和38.10%. 这为利用T-DNA标签进行蓝猪耳基因克隆和功能分析提供了实验技术上的保证. 图2 表2 参24 关键词 蓝猪耳; TAIL-PCR; T-DNA; 整合位点; 侧翼序列 CLC Q943.2

Amplification of Tail-PCR in Amplifying Flanking Sequence of T-DNA in Torenia*

HOU Leiping^{1, 2}, WANG Xiaojing¹, LI Hongqing^{1**} & LI Meilan²

(¹Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631, China) (²College of Horticulture, Shanxi Agricultural University, Taigu 030801, Shanxi, China)

Abstract Torenia *(Torenia fournieri* Lind.) is an important flowering plant for scientific research with ornamental values. The flanking sequence of T-DNA insertion site was successfully amplified using TAIL-PCR in torenia, and the length of the amplified products ranged about from 200 bp to 2 000 bp and most of them were about 400 bp and 800 bp. Among them, 36% had homologous plant sequences. By BLAST analysis in NCBI, the predicted protein encoded by the flanking sequence of T-DNA insertion site was determined and seven gene sequences were submitted to GenBank. In addition, the rule was analyzed for T-DNA integrated into plant genome, and it suggested that the T-DNA integration occurred in the T-DNA region 15~18 bp from right border (RB) and 234 bp from outside of the RB, and the percentages of total fragments were 47.62% and 38.1% respectively. These provide the guarantee in experimental techniques for gene cloning and functional study of torenia by T-DNA tagging. Fig 2, Tab 2, Ref 24

Keywords torenia; TAIL-PCR; T-DNA; integrated site; flanking sequence **CLC** Q943.2

蓝猪耳是一种原产于热带和亚热带地区的一年生草本 植物,由于花期长,花朵繁茂,特别适合作为花坛和地被植 物用于夏季花卉的栽培.此外,蓝猪耳再生容易,且具备特殊 的裸露胚囊^[1],还是一种理想的植物细胞分化、花器官发育 和授粉受精研究的模式植物^[2,3].因此,蓝猪耳不仅在园艺生 产中占有重要的地位,而且还具有很高的科研价值.

随着分子生物学技术的进一步发展,许多植物的基因序列已经测得^[4-6],但有关基因功能的了解却远远落后于此,因此基因功能的研究就成为一项艰巨而迫切的任务.在植物的基因克隆和功能分析研究中,插入突变已经成为一种有效的识别基因并进行基因功能分析的工具^[7-8].由于T-DNA转化具有高效、重复性好、简便易行和表达稳定等优点^[9],而且技术已经非常成熟,大多数植物都可以使用.因此使用T-DNA 作为插入突变源进行突变体的筛选并进行基因功能的研究 在许多植物中应用并取得成功^[10-11].当人们得到转基因植株 后,如果要进行基因结构和功能的研究,就有必要对该植株 外源基因插入位点的侧翼序列进行分析.分析方法一般都 基于PCR设计而成,有反向PCR法^[12]和TAIL-PCR法^[13],其中 TAIL-PCR法由于具有简便、高效而且准确的特点,在分析中 被人们广泛应用^[11].本研究采用TAIL-PCR对转基因蓝猪耳 T-DNA插入位点侧翼序列进行扩增并通过与GenBank数据 库比对,确定了部分T-DNA插入位点周边序列编码的可能蛋 白,另外还总结了T-DNA转化植物时整合位点的规律.这为 利用T-DNA标签进行蓝猪耳基因克隆和功能分析建立了一个 系统,也为其他植物的研究提供了一个可以借鉴的方法.

1 材料与方法

1.1 材料

植物材料为以含双元载体pCAMBIA1301的根癌农杆菌 菌系LBA4404成功转化获得的转基因蓝猪耳植株^[14].该载体 带有潮霉素抗性基因和GUS基因,基因表达由组成型启动子 CaMV 35S调控,GUS基因包含一个内含子.

1.2 DNA提取

取转基因植株生长旺盛的叶片200 mg,按照CTAB法提取DNA,并进行进一步的提纯^[15].

收稿日期: 2009-01-15 接受日期: 2009-03-10

^{*}广东省自然科学基金项目(No. 003062)和中国博士后科学基金项目 (No. 2004036504)资助 Supported by the Natural Science Foundation of Guangdong, China (No. 003062) and the Postdoctoral Science Foundation of China (No. 2004036504)

^{**}通讯作者 Corresponding author (E-mail: hqli@scnu.edu.cn)

TAIL-PCR参照Liu等的方法¹⁶¹稍加改进. 先以左右边界 引物与随机引物进行不同组合的扩增,比较不同组合的扩增 效果,从中选择最佳的引物组合进行大量植株的扩增分析. 1.3.1 **引物设计** 特异引物按照双元载体pCAMBIA1301的 T-DNA左右两个边界(L、R)进行设计,引物1(Pr1)与引物2 (Pr2)有3个碱基的重合,引物3与引物2之间相距60个碱基. 左边界和右边界特异引物如下:

LPr1: 5'TCT gTC gAT CgA CAA gCT CgA gT 3' LPr2: 5'gAg TTT CTC CAT AAT AAT gTg Tg 3' LPr3: 5'CgC TCA TgT gTT gAg CAT ATA Ag 3' RPr1: 5'AAg ATT gAA TCC TgT TgC Cgg TC 3' RPr2: 5'gTC TTg CgA TgA TTA TCA TAT AA 3' RPr3: 5'gCA TgA CgT TAT TTA TgA gAT gg 3' 随机引物直接采用文献Liu等中的3条随机引物(AD)^[16].

1.3.2 TAIL-PCR反应体系 在TAIL-PCR扩增中,右边界引物和AD2、AD1组合进行扩增获得成功,以AD2扩增效果最 佳,因此反应体系为RPr+AD2组合的反应体系.第一轮PCR (TAIL-PCR 1)以10 ng的DNA作为模板,在20 μL的反应体 系中,包含1×Tag酶缓冲液,200 μmol/L的dNTP,0.15 μmol/L 的特异引物,3 μmol/L的随机引物和0.2U的Tag酶(TaKaRa). 特异引物为左右边界的第一条引物LPr1(RPr1),随机引物 其中的一条作为反向引物.在第2轮PCR(TAIL-PCR 2)中, 将第一轮的产物稀释50倍,取1 μL作为模板.特异引物采用 LPr2(RPr2),随机引物同前.在20 μL的反应体系中,含特 异引物0.2 μmol/L,随机引物1.8 μmol/L,其它成分同前.第 3轮(TAIL-PCR 3)的反应体系与第2轮完全相同,只是模 板为TAIL-PCR 2的产物,特异引物由LPr2(RPr2)换为LPr3 (RPr3),随机引物不变.

当采用随机引物AD1扩增时, TAIL-PCR 1反应体系中 ADI终浓度为2 μmol/L, TAIL-PCR 2、3为1.5 μmol/L. 其它成 分与AD2完全相同. 1.3.3 TAIL-PCR反应参数 在左右边界引物与随机引物进行不同组合的扩增时,以右边界引物和AD2、AD1组合扩增效果最好,因此反应参数为RPr+AD2(AD1)组合采用的反应条件(表1).在采用左边界引物扩增时,第一次使用的退火温度分别为62 ℃和68 ℃,第2次和第3次的反应程序与右边界引物扩增时相同.

1.3.4 电泳检测及测序 当3轮PCR进行完毕,取TAIL-PCR 2、3的产物各15 μL进行电泳检测,比较两次产物的电泳迁移距离,如果二次的产物稍滞后于三次的产物,说明扩增的产物就是所要的目的扩增片段.扩增100 μL TAIL-PCR 3产物,琼脂糖凝胶电泳检测后用TaKaLa Agarose Gel DNA Purification Kit Ver. 2.0试剂盒按照说明书步骤进行割胶回收,回收后的PCR产物用50 μL水溶解,点样7 μL检测后,取30 μL送生工测序公司直接进行测序.

2 结果与分析

2.1 TAIL-PCR扩增及测序结果

用左边界引物、右边界引物和3种随机引物进行不同组合TAIL-PCR扩增的结果表明,右边界引物和AD2组合扩增效果最好,和AD1组合次之.因此本试验一般先以右边界引物和AD2组合进行扩增,如果扩增结果不理想,再采用右边界引物和AD1组合再次扩增.22株转基因植株中有3株没有成功扩增出产物,其它植株都扩增出了相应的产物.扩增条带有的1条,有的2条以上.片段大小范围为200 bp~2 000 bp,大多数片段在400 bp和800 bp左右(图1).

对扩增的PCR产物测序的结果显示,扩增片段长度为 400 bp的片段多数为载体序列,不过800 bp左右的片段多数 测出的植物序列比较长,有少数扩出的仍为载体序列,说明 这些转基因植株插入的T-DNA为串联的重复结构.分析总的 扩增片段和测序结果,扩增的成功率为36.37%(含植物序列 片段数/转基因植株数).

Table 1 Reaction cycle settings used for TAIL-PCR			
PCR	反应步骤 Procedure	循环数 Cycles	反应条件 Reaction condition
	1	1	94 °C, 2 min; 95 °C, 1 min
	2	5	94 °C, 1 min; 61 °C, 1 min, 72 °C, 2.5 min
第一轮 Round 1	3	1	94 °C, 1 min; 25 °C, 3 min, 0.2/s ramping to 72 °C 72 °C, 2.5 min
	4	15	94 °C, 30 s, 67 °C, 1 min, 72 °C, 2.5 min 94 °C, 30 s, 67 °C, 1 min, 72 °C, 2.5 min 94 °C, 30 s, 44 °C, 1 min, 72 °C, 2.5 min
	5	1	72 °C, 7 min 8 °C, for ever, End
	1	1	94 °C, 30 s
第二轮 Round 2	2	12	94 °C, 30 s, 60 °C, 1 min, 72 °C, 2.5 min 94 °C, 30 s, 60 °C, 1 min, 72 °C, 2.5 min 94 °C, 30 s, 44 °C, 1 min, 72 °C, 2.5 min
	3	1	72 °C, 7 min 8 °C, for ever, End
第三轮 Round 3	1	20 or 24	94 °C, 1 min; 44 °C, 1 min, 72 °C, 2.5 min
	2	1	72 °C, 7 min 8 °C, for ever, End

表1 TAIL-PCR反应参数设置 able 1 Reaction cycle settings used for TAIL-PCR

图1 转基因蓝猪耳TAIL-PCR产物琼脂糖凝胶电泳分析 Fig. 1 Agarose gel analysis of TAIL-PCR products amplified from transgenic torenia

M: 1 kb DNA ladder marker; Ⅱ、Ⅲ: Tail-PCR2、3产物; 10~16: 转基因植株编号; CK: 非转基因植株

M: 1 kb DNA ladder marker; II, III: Secondary and tertiary round products in TAIL-PCR; 10~16: Transgenic plants; CK: Non-transgenic plants.

图2 转基因蓝猪耳T-DNA整合位点示意图

Fig. 2 T-DNA inserting sites of transgenic torenia

2194~2394: 在载体上的碱基序列号; CTAG: 断裂点碱基种类; 15~234: 距右边界的距离(bp); 1~10: 该断裂位点扩增片段数

2194~2394: Nucleotide sequence number in vector; CTAG: Nucleotide in cut end; 15~234: Distance from right border (bp); 1~10: Fragments amplified at this cut site

2.2 T-DNA整合的特点

对转基因植株TAIL-PCR扩增产物测序后的序列进行分析和比较,发现T-DNA右边界与不同转基因株系基因组DNA 连接点断裂的序列不完全相同,有的连接点位于右边界内, 有的在右边界外,大致范围从右边界内46 bp到右边界外234 bp.不过尽管不同的转基因株系T-DNA整合时的断裂点不完 全相同,但其位置主要集中在几个区域,具有一定规律.断 裂位点集中在距右边界15~18 bp处的扩增片段占总扩增片段 的47.62%;另一个区域主要集中在右边界外234 bp处,占总扩 增片段的38.1%(这种插入位点的植物进行TAIL-PCR扩增时 扩增的片段大多为400 bp的片段,多数为载体序列,扩到的植 物序列只有10~20 bp).另外在距右边界33 bp和46 bp处和右边 界外163 bp处断裂各有一个片段.插入位点在碱基的喜好上 没有发现规律,各种碱基都有,以上结果总结如图2.

2.3 T-DNA插入位点植物基因序列BLAST分析

将TAIL-PCR扩增的具有较长植物序列的片段通过 GenBank进行核苷酸和氨基酸序列比对的结果显示,多数片 段与拟南芥和水稻有同源的核苷酸和氨基酸序列,有的片段 同源的序列比较长,有的片段同源的序列比较短(表2).5号 转基因植株扩增序列编码的氨基酸与拟南芥富含亮氨酸跨 膜蛋白激酶和类受体蛋白激酶具有142 aa的同源序列,同源 性高达72%;与水稻和其它植物富含亮氨酸的类受体蛋白激 酶也具有很高的同源性.说明扩增的5号序列为蓝猪耳类似 蛋白的编码基因序列,T-DNA正好插入在该基因的阅读框内. 将扩增的蓝猪耳基因组序列通过GenBank提交序列共7条: AY922977~AY922983.

3 讨论

TAIL-PCR是一种简便、高效、特异性比较强的扩增已 知基因侧翼序列的方法,但在具体的TAIL-PCR操作中,有时 TAIL-PCR 3的产物很明显,但TAIL-PCR 2的产物量很小,这 样就很难根据电泳条带的迁移率差异来确定目的条带.在这 种情况下,可以用TAIL-PCR 2的产物为模板,在TAIL-PCR 3 的反应条件下进行TAIL-PCR 2产物的扩增(引物为TAIL-PCR 2的特异引物RPr2),一般可以得到理想的结果.另外如 果TAIL-PCR 3的产物量比较少,也可以按照同样的原理,用 TAIL-PCR 3的产物为模板进行TAIL-PCR 3产物的扩增.而且 增加TAIL 3反应中扩增的循环数也可以增加扩增的产量.此 外TAIL-PCR 2和TAIL-PCR 3的反应模板可以根据扩增的结 果降低稀释倍数或不加稀释直接应用.我们的实验结果证

表2 TAIL-PCR扩增产物植物序列BLAST分析 Table 2 BLAST analysis of torenia genomic sequence produced by TAIL-PCR

Table 2 BLAST analysis of tofenia genomic sequence produced by TATL-TCK				
GenBank提交序列及片断长度 Name and length of sequence submitted by GanBank	BLAST分析结果 Analysis results by BLAST			
AY922977 (639 bp)	与拟南芥和水稻有20 bp的同源核苷酸序列, 没有氨基酸同源序列 Has 20 bp identical nucleic acid sequence with <i>Arabidopsis</i> and rice, but has no homozygous amino acid sequence			
AY922978 (550 bp)	与拟南芥T24H18.90蛋白和水稻的一个推测蛋白同源30 aa, 同源性56% Similar in 30 aa to T24H18.90 in Arabidopsis and putative protein in rice, identity is 56%			
AY922981 (562 bp)	与拟南芥富含亮氨酸跨膜蛋白激酶和类受体蛋白激酶具有142 aa的同源氨基酸序列, 同源性高达72%. 与水稻和其 它植物的富含亮氨酸的类受体蛋白激酶也具有很高的同源性 Similar to <i>A. thaliana</i> receptor-like protein kinasek in amino acid for 142 aa, identity is up to 72%; also similar to leucine-rich receptor-like protein kinase in other plants			
AY922982 (545 bp)	与 <i>Haemophilus</i> 的RecB 家族预测的核酸酶同源33 aa, 同源性为44% Homozygous to RecB in <i>Haemophilus</i> in amino acid for 33 aa, identity is 44%			
AY922983 (641 bp)	与拟南芥和水稻有20 bp的同源核苷酸序列, 没有氨基酸同源序列 Has 20 bp identical nucleic acid sequence with <i>Arabidopsis</i> and rice, but has no homozygous amino acid sequence			
AY922980 (949 bp)	与水稻基因组DNA具有60 bp的同源核苷酸序列, 没有氨基酸同源序列 Has 60 bp identical nucleic acid sequence with rice, but has no homozygous amino acid sequence			
AY922979 (626 bp)	与锌指蛋白451同源50 aa, 同源性33% Homozygous to zinc finger 451 in 50 aa, identity is 33%			

实, 通过TAIL-PCR可以高效扩增T-DNA插入位点的周边序 列, 扩增成功率为36.37%.

T-DNA标签是一种产生插入突变的有效方法^[17],插入 的T-DNA不仅可以产生突变,还可以通过T-DNA进行突变基 因的克隆和功能分析,因此该方法已经成为基因和启动子 诱捕的一种重要工具^[18-20],但是进行转基因植物序列的分析 是其中一个重要步骤.前人的研究大多是在拟南芥等模式植 物中进行^[18-24],在花卉植物中的应用还少见报道.本试验中 我们成功地通过TAIL-PCR对转基因蓝猪耳植株T-DNA插入 位点的侧翼序列进行了分析,进一步证实通过T-DNA标签和 TAIL-PCR可以成功进行植物基因的克隆和功能分析,而且 将该方法首次应用到了花卉植物中,这为利用T-DNA插入突 变进行蓝猪耳基因克隆和功能分析提供了实验技术上的保 证,也为其他植物的研究提供一个可以借鉴的方法.不过在 本实验中,由于获得的转基因植物规模不是很大,而且获得 的转基因蓝猪耳植株没有进行后代的纯化,因此没有获得突 变表型明显的突变体,还有待于今后的进一步深入研究.

References

- Tetsuya H, Kuroiwa H, Kawano S. Guidance in vitro of the pollen tube to the naked embryo sac of *Torenia fournieri*. *Plant Cell*, 1998, 10: 2019~2031
- 2 Cantrill LC, Overa RL, Goodwin PB. Cell-to-cell communication via plant endomembranes. *Cell Biol Intern*, 1999, 23 (10): 653~661
- 3 Higashiyama T, The synergid cell: attractor and acceptor of the pollen tube for double fertilization. *J Plant Res*, 2002, **115** (1118): 149~160.
- 4 The arabidopsis genome initiative. Analysis of the genome sequence of the flowering plant *Arabidopsis thaliana*. *Nature*, 2000, **408**: 796~815
- 5 Palm CJ, Federspiel NA, Davis RW. DAtA: Database of *Arabidopsis thaliana* annotation. *Nucleic Acids Res*, 2000, **28** (1): 102~103
- 6 Yang TJ, Yu Y, Nah G, Atkins M, Lee S, Frisch DA, Wing RA. Construction and utility of 10-kb libraries for efficient clone-gap closure for rice genome sequencing. *Theor & Appl Genet*, 2003, **107** (4): 652~660
- 7 Pereira A. A transgenic perspective on plant functional genomics. Transgenic Res, 2000, 9 (4~5): 245~260
- 8 Tani H, Chen X, Nurmberg P. Activation tagging in plants: a tool for gene discovery. *Functional & Integrative Genomics*, 2004, 4 (4): 258~266
- 9 Azpiroz LR, Feldmann KA. T-DNA insertion mutagenesis in Arabidopsis: Going back and forth. Trends Genet, 1997, 13: 152~156
- 10 Jeon JS, Lee S, Jun KH. T-DNA insertional mutagenesis for functional genomics in rice. *Plant J*, 2000, **22**: 561~570
- 11 Sessions A, Burke E, Presting G. A high-throughput arabidopsis reverse

genetics system. Plant Cell, 2002, 14: 2985~2994

- 12 Ochman H, Gerber AS, Hartl DL. Genetic application of an inverse polymerase chain reaction. *Genetics*, 1988, **120**: 621~623
- 13 Liu YG, Whittier RF. Thermal asymmetric interlaced PCR: Automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. *Genomics*, 1995, 25: 674~681
- 14 Li ML (李梅兰), Wang XJ (王小菁), Li HQ (李洪清). Establish of agrobacterium-mediated transformation system of torenia. *Acta Horticult Sin* (园艺学报). 2006, **33** (1): 105~110
- 15 Fang MC (房迈莼), Li MR (李美茹), Li HQ (李洪清). A simple and highly efficient method for cloning telomere associated sequences from Oryza sativa. Plant Physiol Commun (植物生理学通讯), 2004, 40 (6): 729~730
- 16 Liu YG, Mitsukawa N, Oosumi T. Efficient isolation and mapping of *Arabidopsis thaliana* T-DNA insert junction by thermal asymmetric interlaced PCR. *Plant J*, 1995, 8 (3): 457~463
- 17 Hou LP (侯雷平), Li ML (李梅兰). Application of T-DNA tagging in plants for gene isolation and functional analysis. Acta Bot Bor-occid Sin (西北植物学报), 2006, 26 (5): 1066~1070
- 18 Puzio PS, Lausen J, Almeida-engler J, Cai D, Gheysen G, Grundler FMW. Isolation of a gene from *Arabidopsis thaliana* related to nematode feeding structures. *Gene*, 1999, **239** (1): 163~172
- 19 Babiychuk E, Fuangrhong M, Montagu MV. Efficient gene tagging in Arabidopsis thaliana using a gene trap approach. Proc Natl Acad Sci USA, 1997, 94: 12722~12727
- 20 Greve HD, Nguyen KV, Deboeck F, Thia-toong L, Karimi M, Hernalsteens JP. T-DNA tagging of the translation factor eIF-4Al of *Arabidopsis Thaliana. Plant Sci*, 2001, 161: 685~693
- 21 Feldmann KA, Marks MD, Christianson ML, Quatrano RS. A dwarf mutation of *Arabidopsis* generated by T-DNA insertion mutagenesis. *Science*, 1989, 243: 1351~1354
- 22 Deena E, Patton D, Castle L, Mickelson L, Hansen K, Schnall J, Feldmann K, Meinke D. Embryonic lethal and T-DNA insertional mutagenesis in *Arabidopsis. Plant Cell*, 1991, 3: 149~157
- 23 Marks MD, Feldmann KA. Trichome development in Arabidopsis thaliana. I.T-DNA tagging of the GLABROUSI gene. Plant Cell, 1989, 1: 1043~1050
- 24 Herman RL, Marks MD. Trichome development in Arabidopsis thaliana. II. isolation and complementation of the GLABROUSI gene. Plant Cell, 1989, 1: 1051~1055