臭氧氧化脱除硫化氢的动力学*

魏林生! 章亚芳! 胡兆吉! 王智化2

(1 南昌大学环境与化学工程学院, 南昌, 330031, 2 浙江大学能源清洁利用国家重点实验室, 杭州, 310027)

摘 要 本文探讨了臭氧氧化法脱除硫化氢,构建了详细的臭氧氧化硫化氢的反应机理,包含 24个物种和 74个基元反应.通过臭氧热分解和臭氧低温氧化硫化氢的实验结果进一步验证了本反应机理的可靠性.实 验发现,在温度为 25C,物质的量之比为 3时,硫化氢的脱除效率达到 93%.由模拟结果看出,在停留时 间为 2₈物质的量之比为 1时,氧化最佳温度为 150°C - 200°C.反应温度为 25°C,物质的量之比为 1时, 把反应时间延长到 20₈ H₂S的脱除率能达到 90.9%.

关键词 臭氧,硫化氢,反应机理,氧化.

工业上有效的脱硫方法很多,总的可分为湿法和干法两大类.湿法脱硫是利用特定的溶剂与气体 逆流接触而脱除其中的 H₂S,溶剂通过再生后重新进行吸收,根据吸收机理的不同,又分为化学吸收 法、物理吸收法、物理化学吸收法以及湿式氧化法.干法脱硫常用低含硫化氢 气体的处理,常用的 方法有膜分离法、分子筛吸附法、变压吸附法、不可再生的固定床吸附法、低温分离法.微生 物分解法^[1,2]和脉冲放电法^[3,4]等硫化氢脱除技术正受到广泛的关注,但微生物培养的困难制约 了生物脱硫技术的发展.脉冲电晕放电非平衡等离子体能够在常温下实现处理有害气体,但该 方法能量消耗较大.利用臭氧净化大气中污染物是较为活跃的研究领域,在烟气脱硫脱硝方面 已取得较大进展^[5,6],并已有工业应用的示范实例.

本文探索利用臭氧氧化脱除硫化氢气体的新方法,构建了详细的臭氧氧化 H₂S的反应机理, 对臭氧氧化硫化氢的氧化特性进行探讨.

1 实验部分

实验装置主体由臭氧发生系统、接触反应、浓度检测及尾气处理组成.空气由钢瓶经减压阀、流量 计和臭氧发生器产生一定浓度的臭氧,臭氧与从钢瓶中出来的硫化氢 (体积分数为 50×10⁻⁶,背景气体 为 N_2)混合后同时进入置于恒温油浴锅中 U 型玻璃管,反应完成后立即对其冷却并进行尾气处理排放. 在 U 型玻璃管沿程上有 13个气体取样口,改变气体取样口位置来获得不同的停留时间.臭氧浓度通过 调节空气流速来获得. O_3 检测采用 IN USA 公司的 N2000型臭氧分析仪,量程 0-2.14g•m⁻³,精度 2.14mg•m⁻³.H₂S气体浓度由亚甲基蓝法测量.

2 模型构建

本文构建的反应机理采用 O₃, O₂, H, O, OH, H₂O, H₂O₂, HO₂, N₂, H₂, N, NO, NO₂, NO₃, N₂O, HNO₂, HNO, HNO₃, N₂O₅, SO, SO₂, SO₃, H₂S, S共 24种物种, 相关的基元反应共 74个, 计算采用美国 Sandia国家实验开发的 CHEMKN 软件包中的 AURORA 模块进行动力学模拟.

3 结果与讨论

对臭氧氧化硫化氢程度的模拟结果和实验结果进行了对比.当温度为 25℃, H₂S体积分数约为 50×10^{-6} , 停留时间为 2s时, 模拟结果与实验结果比较如图 1所示, 计算结果与实验结果吻合非常 好.在 $[O_3]_0/[H_2S]_0$ (物质的量之比)为 3时, H₂S的脱除率达 9*3*%.

2008年 10月 8日收稿.

* 国家自然科学基金资助项目 (No. 50476059);国家重点基础研究发展规划 973资助项目 (No. 2006CB200303);国家杰出青年科

O₃的化学性质极不稳定,具有自发分解特性,与H₂S的反应时,若分解过快,就会失去工程应用价值,根据上述实验装置对O₃热分解进行研究.试验结果如图 2,其中 [O₃]₀ut/[O₃]₀表示臭氧测量浓度与初始浓度之比,其值为 1.0表示分解率为 0,分解率可表示为:

$$\eta = (1 - [O_3]_{out} / [O_3]_0) \times 100\%$$
(1)

臭氧初始体积分数为(4400 ±250) × 10⁻⁶. 从图 2中可以看到在 150℃的条件下,分解速率不高, [0₃]_{out}/[0₃]_o随时间几乎呈线性下降趋势,至 10_s时,[0₃]_{out}/[0₃]_o值降为 0.72,分解率为 28%. 200℃时,分解明显加快,至 10_s时,[0₃]_{out}/[0₃]_o已降至 0.133,分解率为 86.7%. 温度升至 250℃ 时,在 2s之内已基本分解完全.

图 2 臭氧无催化热分解试验结果

在氧化过程中,式(2)和式(3)为消耗 O₃的关键基元反应,一个为臭氧的热分解,一个为臭氧对 硫化氢的氧化.由于两者对温度都比较敏感,当温度太低,臭氧的热分解减少,但是反应(3)也由于 温度降低而变得缓慢;当温度太高,臭氧热分解成为主要的臭氧消耗过程.

$$O_3 + O = 2O_2$$
 (2)

$$O_3 + H_2S = H_2O + SO_2$$
 (3)

对不同温度下臭氧氧化硫化氢进行模拟,结果如图 3. 从图 3中可以看出,物质的量之比为 1,停 留时间为 2s时,H₂S浓度在 150-200℃时达到最低,脱除率为 92.88%.

为了更准确地表明各基元反应在不同温度下的重要程度,对上述基元反应进行敏感性分析,确定 O_3消耗的关键步骤.结果如图 4所示,在该反应体系当中,当反应温度为 50°C时,反应 3对于 O_3的 消耗起主要作用,O_3的自身热分解以及与其它物种的反应程度远远低于该基元反应;当反应温度为 250°C时,反应(2)和反应(3)对于 O_3的消耗起着几乎同等的作用,因此部分 O_3由于热分解而被消耗 并未起到氧化硫化氢的作用.

由图 5可知,延长反应时间也能达到提高硫化氢脱除率的目的,当物质的量之比为 1时, 20s内 H₂S的脱除率也能达到 90.9%,因此可以通过延长停留时间来减少臭氧需求量,从而降低成本 . © 1994-2012 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

Fig 5 Variations of hydrogen sulfide concentration with residence time

综上所述,(1) 当温度为 25℃,停留时间为 2s, 当量比为 3时,H₂S的脱除率达 93% . 结果表 明该模型有良好的预测精度,能预测臭氧氧化硫化氢的氧化特性 .

(2) 臭氧初始体积分数为(4400 ±250) × 10⁻⁶, 在 150℃的条件下,分解速率不高, 10s后分解
 率为 28% . 200℃时,分解明显加快,至 10s后分解率为 86.7% . 温度升至 250℃时,在 2s之内已基本分解完全.

(3) 通过敏感性分析和动力学计算得出停留时间为 2₈ 物质的量之比为 1时 H₂S的浓度在 150-200℃时达到最低,脱除率为 92.88%.提高物质的量之比和延长停留时间均可提高硫化氢脱除率.

参考文献

- [1] Pak D H, Cha JM, Ryu H W et al, Hydrogen Sulfide Removal Utilizing Immobolized Thioba cillus sp. W with Ca-alginate Bead Biochemical Engineering Journal, 2002, 11: 167–173
- [2] 朱建斌,陈绍伟,用微生物脱除硫化氢恶臭气体的研究.上海应用技术学报,2004,4(3):214-217
- [3] 王晓鹏,晏乃强,贾金平等,脉冲电晕放电处理低浓度硫化氢气体.化工进展,2005,24(3):278-282
- [4] Jarvis J B, Day A T, Su chak N J. LoTOxTM Process F lex ibility and Multi-Pollutant Control Capability. The Mega Symposium and A ir & WasteM anagement A ssociation's Specialty Conference, 2003, 19–22
- [5] Mok Y S, Lee H J Removal of Sulfur Dioxide and Nitrogen Oxides by Using Ozone Injection and Absorption-Reduction Technique, Fuel Processing Technology, 2006, 87 (7): 591-597

[6] 魏林生,周俊虎,王智化等,臭氧氧化结合化学吸收同时脱硫脱销的研究.动力工程,2006,26(4):563-567

K INETIC MODELING OF HYDROGEN SULFIDE REMOVAL BY OZONE OX IDATION

WE I Lin-sheng¹ ZHANG Ya-fang¹ H U Zhao-ji¹ WANG Zhi-hua²

(1 School of Environmental& Chemical Engineering Nanchang University, Nanchang 330031, China,

2 State K ey Laboratory of Clean Energy Utilization Zhejiang University, Hangzhou, 310027, China)

ABSTRACT

A new removal technology of hydrogen sulfide by ozone oxidation is investigated. A detailed kinetic model considering 24 species and 74 reactions was constructed for hydrogen sulfide oxidation by ozone. The agreement between the results predicted by the model and the experimental data is satisfactory. The model provides better insight into the oxidation process. The experimental results show that H_2S oxidization efficiency is about 93% at 25°C and $[O_3]_0 / [H_2S]_0 = 3$. The simulated results show that the optimum temperature is $150^\circ\text{C} - 200^\circ\text{C}$ at $[O_3]_0 / [H_2S]_0 = 1$ in 2s and the H_2S oxidization efficiency is 90.9% at 25°C and $[O_3]_0 / [H_2S]_0 = 1$ in 2s.

Keywords ozone, hydrogen sulfide, reaction mechanism, oxidation

© 1994-2012 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

28卷