March , 2 0 1 1

Chinese Journal of Spectroscopy Laboratory

牛磺酸 Schiff 碱及其 Cu(II) 配合物的 合成与表征^①

解庆范^② 陈延民 黄妙龄

(泉州师范学院化学与生命科学学院 福建省泉州市东海滨城 362000)

摘 要 用牛磺酸与 2-吡啶甲醛反应合成了一种牛磺酸 Schiff 碱, 并制备了它与 Cu(II) 的配合物 [$CuL(H_2O)$] • NO_3 , 其中 $HL=C_8H_{10}N_2O_3S$, 利用元素分析, 红外光谱, 紫外光谱, 差热-热重分析及摩尔电导的测定等方法对 Schiff 碱及金属配合物进行了表征。

关键词 牛磺酸 Schiff 碱; Cu(II)配合物; 合成; 表征

中图分类号: 0 657. 61 文献标识码: A 文章编号: 1004-8138(2011) 02-0755-04

1 引言

含硫席夫碱及其金属配合物具有抑菌、抗癌和抗病毒的生物活性 $^{[1-3]}$ 。铜是人体必需的痕量元素,是人体内 30 余种酶的活性成分 $^{[4]}$ 。牛磺酸(T aurine) 是名贵中药 "牛黄"的主要成分之一,是动物内含量最丰富的自由氨基酸 $^{[5]}$,也是人体必需的氨基酸之一,具有明显的生物活性。有关牛磺酸及其席夫碱配合物的研究已有一些报道 $^{[6-10]}$ 。本文选取牛磺酸、2--吡啶甲醛合成牛磺酸 Schiff碱,并以此为配体合成了 Cu(II) 的配合物,通过红外光谱,紫外光谱,差热--热重分析及摩尔电导的测试等手段对配合物进行了表征。

- 2 实验部分
- 2.1 仪器和试剂
- 2.1.1 试剂

2-吡啶甲醛(美国阿法-埃莎公司);牛磺酸、无水乙醇、硝酸铜、二甲亚砜(上海润捷化学试剂有限公司)。所用试剂均为分析纯。

2.1.2 仪器

UV-2401PC 紫外分光光度计(日本岛津公司); STA 409PC 热重-差热分析仪(德国耐驰公司); AVATAR-360 型傅里叶红外光谱仪(美国尼高力公司); EL 元素分析仪(德国 Elementar Vario 公司); BS224S 电子天平(北京赛多利斯仪器有限公司); DDS-320 型电导率仪(上海康仪仪器有限公司)。

2. 2 配体牛磺酸缩 **2**-吡啶甲醛 **Schiff** 碱(**HL**)的合成

准确称取 0.2508g(2mmol)牛磺酸和 0.1114g(2mmol)氢氧化钾以及 0.2142g(2mmol)2-吡啶

① 福建省教育厅科技项目(JA08212)

② 联系人, 手机: (0) 13599103207; E-mail: xqf360@ soh u. com

作者简介:解庆范(1965一),女,黑龙江省牡丹江市人,副教授,主要从事配位化学等研究工作。

收稿自期 2610 207-23 接受自動 2016 108 in Journal Electronic Publishing House. All rights reserved. http://www.c

甲醛溶于 20_mL 无水乙醇中, 60—70℃左右条件下加热搅拌回流 120_{min} 左右, 静置一周后得到橙 黄色粉末, 用少量无水乙醇洗涤后, 于 50℃下真空干燥。

2. 3 配合物[CuL(H2O)]·NOs的合成

将含有 2mmol Cu(NO₃)₂ • 3H₂O 的无水乙醇溶液与含 2mmol 的牛磺酸 Schiff 碱配体的无水乙醇溶液混合,在 60-70 °C条件下,回流搅拌 5h,室温下静置一周后得到黄绿色粉末,经过滤后,用无水乙醇洗涤,于 50 °C下真空干燥。

3 结果与讨论

3.1 红外光谱分析

红外光谱分析参照文献[11—13]进行。以KBr压片,在400—4000em⁻¹范围内对牛磺酸 Schiff 碱及配合物进行红外光谱仪扫描,主要吸收峰数据列于表 1。

在 Schiff 碱的 IR 谱图中,在 $1700_{\rm cm}^{-1}$ 左右归属于吡啶甲醛的羰基伸缩振动 κ =0的强吸收峰消失,取而代之的是在 $1650_{\rm cm}^{-1}$ 出现了归属于亚胺基 κ =1的强吸收峰,且在 1606、1586、1566、 $1470_{\rm cm}^{-1}$ 处出现了归属于吡啶环骨架伸缩振动吸收峰,在 $1196_{\rm cm}^{-1}$ 和 $1060_{\rm cm}^{-1}$ 处出现了归属于磺酸基伸缩振动所产生的特征吸收峰,且与牛磺酸谱图中磺酸基的特征吸收峰 $1213_{\rm cm}^{-1}$ 和 $1036_{\rm cm}^{-1}$ 相比.发生了一定的位移,这些特征都说明形成了牛磺酸 Schiff 碱。

表 1 牛磺酸、配体及其配合物的 IR 光谱的主要吸收峰数据

(cm⁻¹)

化合物	νn—H	νо—н	νc⊐N	ν so ₃	V.	芳 环	ν _{N0} -3	v Cu− O	VCu− N
牛磺酸	3421(vs)	_	_	1213(vs)	-	_	_	_	_
	3216(vs)			1036(vs)					
HL	_	_	1650(s)	1196(vs)	1606(s)	1586(vs)	_	_	_
				1060(vs)	1566(s)	1470(m)			
[$CuL(H_2O)$] • NO_3	_	3442(vs)	1636(s)	1221(s)	1605(s)	1572(w)	1384(vs)	460(w)	419(w)
				1044(s)	1507(w)				

注: 一: 无吸收峰; vs: 超强吸收峰; s: 强吸收峰; m: 中强吸收峰; w: 弱吸收峰。

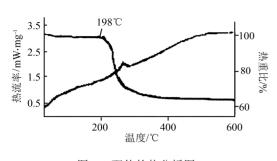
与配体相比, 在配合物的 IR 光谱中磺酸基的特征吸收峰由 $1196 \, \mathrm{cm}^{-1}$ 和 $1060 \, \mathrm{cm}^{-1}$ 位移至 $1221 \, \mathrm{cm}^{-1}$ 和 $1044 \, \mathrm{cm}^{-1}$ 处, 表明磺酸基与金属离子发生了配位作用。亚胺基的 $v \in \mathbb{N}$ 吸收峰由 Schiff 碱的 $1650 \, \mathrm{cm}^{-1}$ 移至 $1636 \, \mathrm{cm}^{-1}$ 处, 说明 \mathbb{N} 原子发生了配位, 且归属于吡啶芳环伸缩振动的吸收峰 $1605 \, \mathrm{v} 1507 \, \mathrm{cm}^{-1}$ 与配体 Schiff 碱相比, 也发生了一定的位移, 证明吡啶环 \mathbb{N} 原子也参与了配位。在 $3442 \, \mathrm{cm}^{-1}$ 出现的强而宽的吸收峰, 说明配合物中有结晶水或配位水存在。而在 $1384 \, \mathrm{cm}^{-1}$ 出现的超强尖锐的吸收峰, 说明配合物中存在未配位的作为反荷离子形式存在的 \mathbb{N} \mathbb{N} 。配合物 \mathbb{N} $\mathbb{N$

3.2 紫外光谱分析

将配体与配合物溶于二甲亚砜中, 配成浓度大约为 1×10^{-5} mol·L⁻¹的混合溶液, 测定了配体与配合物的紫外可见吸收光谱。测定波长为 190-500nm, 结果见表 2。

由配体的 UV –V is 光谱图可知, 在约 261. 0_{nm} 处的吸收峰为芳环和杂环中的 $\pi \to \pi^*$ 跃迁吸收带, 27 0_{nm} 处是—C ==N 的 $n \to \pi^*$ 跃迁的特征吸收峰。从配合物紫外吸收光谱数据可知, 配合物的 $\pi \to \pi^*$ 电子跃迁和 $n \to \pi^*$ 电子跃迁吸收峰与配体相比均发生了相应位移, 说明配体 Schiff 碱中的亚胺基 N 和吡啶环 N 均参加了配位。

3.3 热重分析


©对配体和配合物进行热册。分析温度为20m600℃,蒙气氛围。以Alight为参比。60℃加加,其w.

分析图见图 1 和图 2。

表 2 配体和配合物的紫外光谱数据

 (\mathbf{nm})

化合物	$\pi \rightarrow \pi^*$	$n \rightarrow \pi^*$
HL	261. 0	270. 0
[CuL(H ₂ O)] • NO ₃	266. 0	285. 0

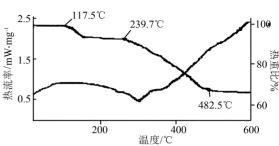


图 1 配体的热分析图

图 2 Cu 配合物的热分析图

由图 1 可见,配体在 198℃之前基本无失重,198℃之后开始溶化并且迅速分解。

由图 2 可以看出,铜配合物的失重分两个阶段。在 117.5℃前基本没有失重,说明配合物不含有结晶水。在 117.5℃后才开始失重 5.12%,说明配合物中含有一分子结晶水(1分子结晶水理论失重 5.04%)。第二失重阶段,从 239.7℃开始失重,说明配合物在此温度开始熔化分解,至482.5℃结束。与配体相比较,配合物热稳定性有一定的提高。

3.4 元素分析和摩尔电导率

配体及配合物的元素分析(金属元素含量采用 EDTA 滴定法测定)及摩尔电导率(将配体和配合物配成浓度大约为 10^{-4} mol/L 的二甲亚砜溶液进行测定)见表 3。

化合物	C(%)	H(%)	N(%)	Cu(%)	摩尔电导率 <m< th=""></m<>	
	理论/ 实验	理论/实验	理论/实验	理论/实验	$(S \cdot cm^2 \cdot mol^{-1})$	
HL	44. 85/ 44. 75	4. 70/ 4. 79	13. 08/ 13. 15	_	10. 05	
Cu 配合物	26. 93/ 26. 87	3. 11/3. 14	11. 78/ 11. 81	17. 81/ 17. 65	81.88	

表 3 配体及其配合物的元素分析及摩尔电导率

由表 4 的摩尔电导率表明,配体为非电解质,铜配合物为 1:1 型电解质 $^{(14)}$ (与红外光谱分析一致)。根据摩尔电导率、红外光谱和热重分析等结果,可以推测配合物的组成为 $[CuL(H2O)] \cdot NO_3$,其中 $HL=C_8H_{10}N_2O_3S$ 。

4 结论

合成了牛磺酸 Schiff 碱及其铜配合物, 通过表征推出它们的组成为[CuL(H₂O)] • NO₃, 其中HL= C₈H₁₀N₂O₃S。

通过表征分析可推测 Schiff 碱及其 Cu 配合物的结构如图 3 和图 4。

$$CH = N - CH_2 - CH_2 - SO_3H$$

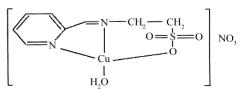


图 3 配体的结构

图 4 [CuL(H₂O)] • NO₃ 的结构

参考文献

- Jabri E, Carr M B, Hausinger R P et al. The Crystal Structure of Urease from Klebsiella Aerogenes [J]. Science, 1995, 268 (5213): 998-1004.
- [2] 蒋毅民, 张淑华, 徐庆等. 双核 Cu(II) 牛磺酸缩水杨醛席夫碱配合物的合成、晶体结构及生物活性[J]. 化学学报, 2003, **61** (4): 573—577.
- [3] Volkmer D, Hommerich B, Griesar K et al. Dinuclear Nickel (II) Complexes as Models for the Active Site of U rease [J]. Inorg. Chem., 1996, 35(13): 3792—3797.
- [4] 李书祯. 必需元素与健康[M]. 北京: 轻工业出版社, 1988. 83-84.
- [5] Sturm an J.A. Taurine in Development [J]. Physiol Rev., 1993, 73(1): 119-147.
- [6] 钟凡, 蒋毅民, 张淑华, 牛磺酸合铜螯合物的合成及晶体结构 [J], 无机化学学报, 2003, 19(6): 599—622.
- [7] 蒋毅民, 张淑华, 周忠远等. N_i(II), 牛磺酸缩水杨醛席夫碱·2, 2'-联吡啶三元配合物的合成及晶体结构[J]. 结构化学, 2003, **22**(1): 89—92.
- [8] 蒋毅民, 张淑华, 徐庆等. 双核 Cu(Ⅱ)-牛磺酸缩水杨醛席夫碱配合物的合成、晶体结构及生物活性[J]. 化学学报, 2003, **19** (4): 573—577.
- [9] 张淑华, 蒋毅民. Cu(II) 牛磺酸缩水杨醛席夫碱配合物的合成及晶体结构[J]. 无机化学学报, 2002, 18(5): 497—500.
- [10] 张淑华, 蒋毅民, 肖瑜等. 钾的配合物 CoH10KNO4S 的合成、晶体结构及生物活性[1]. 无机化学学报, 2003, 19(5): 517—520.
- [11] 孟令芝, 龚淑玲, 何永炳. 有机波谱分析[M]. 第2版. 武汉: 武汉大学出版社, 2003.
- [12] 许亚平, 钟凡, 袁红梅. 牛磺酸缩 5-溴水杨醛希夫碱合镍(II) 配合物的合成及性质研究[J]. 井冈山师范学院院报(自然科学版), 2004, **25**(6): 24—26.
- [13] 张淑华, 蒋毅民, 钟新仙. Cu(II) 牛磺酸缩水杨醛希夫碱- 邻菲咯啉三元配合物的合成、晶体结构及性质[J]. 无 机化学学报, 2004, **20**(8): 959—962.
- [14] Geary W J. Characterization of Coordination Compounds[J]. Coord. Chem. Rev., 1971, 7(1): 81—90.

Synthesis and Characterization of Taurine Schiff Base and Its Cu(II) Complex

XIE Qing-Fan CHEN Yan-Min HUANG Miao-Ling

(College of Chemistry and Life Science, Quanzhou Normal University, Quanzhou, Fujian 362000, P. R. China)

Abstract From taurine and 2-pyridinecarboxaldehyde, a taurine Schiff base and its Cu(II) complex [CuL(H₂O)] • NO₃ were synthesized. The Schiff base and metal compounds were characterized by elemental analysis, infrared spectrum, ultraviolet spectrum, differential thermal gravimetric analysis and molar conductance.

Key words Taurine Schiff Base; Copper(II) Complex; Synthesis; Characterization

过期 光谱实验室》期刊免费赠送启事

本部尚有一些过期(2007及以前)的期刊,凡同行中有需要者均可免费赠送,但邮费(含包扎费和人工费) 自付,每6本(不同卷、期)为1个单元,约重2.0-2.5kg,收费(可用邮票支付)20元。

有意者可来信告知收件人姓名及详细地址,同时将邮票放在信封中挂号寄来。

© 1994-2011 China Academic Journal Electronic Publishing House. All rights 從遵实验室》編輯部