A cta Scientiae C ircum stantiae

王淑莹,顾升波,杨庆,等. 2009. SBR 工艺实时控制策略研究进展 [J].环境科学学报, 29(6): 1121-1130 W ang S Y, Gu S B, Yang Q, *et al* 2009 Research progress on real-time control strategies for sequencing batch reactors [J]. Acta Scientiae Circum stantiae, 29(6): 1121-1130

SBR工艺实时控制策略研究进展

王淑莹*, 顾升波, 杨庆, 彭永臻

北京工业大学,北京市水质科学与水环境恢复工程重点实验室,北京 100124 收稿日期: 2008-10-20 修回日期: 2008-12-12 录用日期: 2009-04-02

摘要:随着工艺设备、自动化控制技术的快速发展, SBR 工艺对设备稳定性和自动化控制技术水平的基本要求得到满足, SBR 工艺在世界范围 内得到广泛发展和应用并取得了巨大的成功.现今全世界绝大多数的 SBR 污水处理厂都实现了最简单的自动控制 (定时开 /关控制或 PD 控 制),但定时自动控制存在很大的缺陷.很多研究者开始尝试利用各种控制技术建立 SBR 实时控制策略.本文回顾了目前 SBR 实时控制策略的 最新研究进展和实际应用,并对各种实时控制策略的优缺点进行分类、归纳和总结.虽然实时控制策略在 SBR 工艺的优化控制和节能降耗方 面具有明显的优势,但在实际应用过程中还是存在很多问题尚待解决.最后通过分析 SBR 实时控制策略普遍存在的不足和问题,指出今后 SBR 实时控制策略的发展方向和应用前景.

关键词: SBR; 实时控制; 控制策略

文章编号: 0253-2468(2009) 06-1121-10 中图分类号: X703 1 文献标识码: A

Research progress on real-time control strategies for sequencing batch reactors

WANG Shuying, GU Shengbo, YANG Qing PENG Yongzhen

 Key Laboratory of Beijing WaterQuality Science and WaterEnvironment Recovery Engineering Beijing University of Technology, Beijing 100124

 Received 20 October 2008;
 received form 12 December 2008;

 accepted 2 April 2009

Abstract W ith the rapid development of treatment technologies equipment and autocontrol techniques the basic requirements of equipment stability and autocontrol level for sequencing batch reactor (SBR) processes have been achieved, and SBR processes have been wilely applied and hugely successful M ost SBR wastewater treatment plants have realized basic autocontrol (on/off or PID control), however, fixed-time autocontrol has had evident shortcomings. Therefore, many researchers have focussed on the establishment of real-time control strategies for SBR reactors which are based on control technologies. In this paper, the latest research progress and practical application of real-time strategies for SBR processes are reviewed and the advantages and disadvantages of real-time control strategies are classified and summarized. A lthough the real-time control strategy for SBR processes has great superiority in aspects of optimal control and energy saving there are many unsolved problems in practical application. By analyzing the problem sex isting in the application, the future development direction of real-time control strategy for SBR processes is indicated.

Keywords sequencing batch reactors, realtime control control strategy

1 引言(Introduction)

20世纪 80年代以来, SBR 工艺在世界范围内 得到蓬勃发展,特别是在工业废水和中小型城镇废 水处理领域取得巨大的成功.主要原因除了 SBR 工 艺本身与生俱来的优点(占地面积小,投资费用低, 运行方式灵活多变,可控性好等)之外,还应归功于 设备和自动化控制技术(ICA 技术)的快速发展.随 着仪表设备的发展,即使是对仪表稳定性要求高的 SBR系统,目前仪表也已不是限制 SBR系统应用的 瓶颈.同时,虽然自动化控制技术水平达到了 SBR 系统的要求,但这些自动化控制技术并不是针对 SBR系统开发,并不能直接应用到 SBR工艺中,此 时需要根据 SBR固有的特性开发出合适的控制系统,因此,作为控制系统核心部分的控制策略的开 发日益引起各国学者的重视和广泛关注.

作者简介: 王淑莹 (1953—), 女, 教授, E-mail wsg@ bjut edu. cn, * 通讯作者 (责任作者)

基金项目: "十一五"国家科技支撑计划重点项目 (Na 2006BAC19B03); 北京市教委科技创新平台项目 (Na PXM 2008_014204_050843)

 $[\]begin{array}{l} \textbf{Supported by the K ey Technologies R\&D Program for the 11 th Five-Year plan (Na 2006BAC19B03) and the Project of Scientific Research Base and Scientific Innovation Platform of Beijing M unicipal Education Commission (Na PXM 2008 _014204 _050843) \\ \end{array}$

Biography. WANG Shuying (1953-), female professor E-mail wsg@ bjut edu. cn * Corresponding author

目前,控制策略的开发成为 SBR 工艺发展的限制因素.虽然现今世界上绝大多数 SBR 污水处理厂 普遍实现了最简单的定时自动控制 (开 /关控制, PD 控制);但定时自动控制由于运行方式不灵活, 不能随水质水量变化自动调整周期内各阶段的持 续时间,易导致出水水质波动大,存在不利于节能 降耗等缺陷,这意味着定时控制注定要被更高级的 控制方法所替代.实时控制成为目前被广泛研究的 控制类型,特别是基于各种间接参数的实时控制策 略更是取得了实质性的突破和进展.在硬件设备, 如仪表、传感器等能够满足需求的条件下,控制系 统的成功应用主要取决于控制策略的性能.

本文主要对 SBR 的实时控制策略的最新研究 进展和应用进行简要的回顾,并对 SBR 实时控制策 略进行分类、归纳和总结,比较不同实时控制策略 之间的优缺点.最后根据目前的 SBR 工艺实时控制 策略的发展趋势,指出未来的研究方向和应用前景.

2 实时控制策略 (Real-time control strategy)

进水水量、水质和运行环境的变化,是 SBR工 艺污水处理过程不确定性产生的重要原因.影响过 程控制的各种因素 (如进水水质、水量、温度、设备 特性等)都在随时间实时变化,且这种变化常常难 以通过传统的时间控制策略来精确控制.实时控制 策略是根据在线传感器的信号,对系统状态实时进 行预测、分析并做出判断,而建立起来的控制策略. 在处理水质水量变化较大的工业废水和中小城镇 污水过程中,与时间控制策略相比,实时控制的最 大优势在于其准确性高,并具有很强的适应性和灵 活性.根据在线参数的不同,实时控制策略分为以 下几类.

2.1 基于直接参数的 SBR 法实时控制策略

基于直接参数的 SBR 法实时控制策略是根据 传感器直接检测污染物浓度的变化,当污染物浓度 降低到排放标准范围内及时进行阶段转换,实现 SBR 工艺的优化运行.

污染物传感器中应用比较普遍的有在线 COD、 氨氮、磷酸盐、硝酸盐 4种,其中在线 COD、氨氮传 感器主要用来控制 SBR 法的曝气阶段,磷酸盐、硝 酸盐两种传感器同样在沉淀阶段和排水阶段应用 较多 (Sinon et al, 2006). Wiese等 (2005; 2006)应 用氨氮、硝酸盐、悬浮物 (TSS)等污染物传感器,分 别建立了 SBR 污水处理厂和整合排水系统的 SBR 污水处理厂实时控制策略,不仅使污水处理厂处理 能力提高了 50%,同时也促进氮、磷去除率大幅度 提高.

Langengraber等 (2004)把排水系统监测中普遍 使用的潜水型紫外 何见光分光计应用到 SBR污水 处理厂的控制过程中,对硝酸盐、COD、TSS等指标 进行在线检测,如图 1所示.点 1,23,45分别标志 着上一个周期的结束、新的周期开始进水,反硝化 反应结束、反应阶段结束等过程.潜水型的紫外 何 见光分光光度计虽然能节省化学试剂消耗,缩短检 测时间;但其校正繁杂,准确度不高,性能不够可 靠,该设备有待进一步的改进和研究.Langergraber 等(2004)的研究结果也说明了基于污染物传感器 建立控制策略普遍存在的问题,即传感器费用昂 贵、维护复杂,且存在一定的滞后性.因此,很多研 究者和工程师开始尝试采用相对廉价、性能更稳定 的间接参数传感器来指示工艺过程状态.

图 1 典型 SBR 的周期中 NO₃-N和 TSS随时间变化曲线

Fig 1 T in e series for NO $_3^-$ –N and TSS during a typical SBR cycle

2 2 基于间接参数的 SBR 法实时控制策略 (DO、 pH、ORP)

在 SBR 工艺去除有机物和脱氮反应过程中, DO、pH 值、ORP(氧化还原电位)等参数的变化规律 和特征点能够指示反应的进程.通过检测到这些特 征就能及时调整 SBR的运行参数,最大限度地缩短 周期长度,提高处理量的同时节能降耗.根据控制 原理的不同,基于 DO、pH 和 ORP建立的控制策略 又分为以下几种.

2 2 1 根据参数经验值 根据 SBR法反应过程中 ORP数值作为控制策略的运算依据,已经有很多研 究报道(Heduit *et al*, 1988, Demoulin *et al*, 1997,).其中 Demoulin等(1997)发现将 ORP控制 在 50~ - 200mV 的范围内,可使 CASS 工艺污水处 理厂在低温、低溶解氧条件下实现较好的 SND和除 磷效果;但是,这和 Akin和 Ugurlu (2005)提出来的 缺氧阶段结束时 ORP值为 – 50mV不太一致.另外, Tom lins等 (2002)通过 OGAR 控制系统对 SBR 进 行过程控制, ORP为 400mV时硝化结束, ORP为 150mV时反硝化结束. 这些经验值与早期的研究者 提出的 经验值相似 (Charpentier *et al*, 1989, W areham *et al*, 1993, Lu *et al*, 2000)

参数经验值不同的原因是: SBR 工艺系统的 ORP值是多种氧化物质与还原物质进行氧化还原 反应的综合结果. 不同的水质、不同的微生物种群 对 ORP都有影响, 对生物处理系统而言, ORP已不 再是一个热力学平衡概念, 也不能作为某种氧化物 和还原物的浓度指标, 仅能对整个系统的氧化还原 状态给出一个定性描述. 因此, 应根据 SBR 系统的 实际情况来确定 ORP的取值范围. 以参数经验值为 基础的控制策略在 SBR 处理过程中不能灵活随进 水水质波动而变化, 且大多鲁棒性不强, 导致出水 水质不稳定. 为了改进以上缺点和不足, 很多研究 人员开发出对间接参数进行简单处理之后的控制 策略.

222 参数经过简单处理

1)参数经过简单处理控制策略的基本原理及 分类

在 SBR 反应过程中 DO、ORP、pH 和 OUR 等参 数的变化曲线与污染物的降解过程密切相关,下面 具体通过下图 2(Yangetal, 2007)对 DQ ORP、pH 曲线与污染物之间的关系进行详细的阐述. 由于异 养菌降解有机物的速率很快,在反应开始后 30m in 内间接参数曲线 (DO、rH、ORP) 几乎同时出现了变 化点,该点指示 SBR反应过程有机物降解终点,之 后,随着硝化反应阶段的进行, 出曲线上的'氨 谷'、DO曲线上的'突跃点'以及 ORP曲线上的平 台折点同时出现,这些变化点都能指示 SBR 工艺中 硝化反应的结束,此时 COD 中易生物降解部分几乎 全部被微生物利用,氨氮代谢过程也已经结束.如 果控制系统及时捕捉到这些特征点并及时停曝气, 不仅节省 SBR 周期反应时间和提高工艺处理量, 而 且在不影响出水水质的基础上最大限度的节省曝 气阶段能耗.停曝气之后,系统进入反硝化阶段,此 时异养菌利用硝化阶段产生的硝酸盐和亚硝酸盐 进行反硝化反应,将其转化成氮气从反应器中溢 出. pH 曲线上的 '硝酸盐峰'和 ORP曲线上的 '硝

酸盐膝',则指示着 SBR 反硝化反应的终点,此时 SBR控制系统及时识别该变化点,并停搅拌,反应 阶段结束, SBR 系统进入沉淀阶段.由于反硝化阶 段 DO 信号值几乎一直为零,无法给出有效的指示 信息,所以 DO 不能作为 SBR 反硝化阶段的控制参 数.另外,在此基础上对这些间接参数的变化曲线 进行简单处理(比如滤波,一阶求导,二阶求导)之 后同样能得到指示反应进程的特征点.根据这些特 征点可对 SBR 工艺过程进行阶段控制和转换,从而 达到优化节能目的.

图 2 SBR周期中 DO、ORP、pH与 COD、氨氮、亚硝酸盐和硝酸 盐浓度之间的关系

Fig 2 the relationship of DO, ORP, μ H with COD, NH $_4^+$ -N, NO $_2^-$ -N, NO $_3^-$ -N concentration in nitrogen renoval process of typical SBR cycle

一般来说,在 SBR 工艺运行中以常规间接参数 作为简单参数处理控制策略的应用最为广泛,可分 为:①基于单一参数的控制策略,②基于多种参数 联合(至少 2种参数)的控制策略.

2)基于单一参数的控制策略

目前国际上 SBR 的控制方式按照传感器的不同可分为: DO 类型、OUR 类型、ORP 类型、_PH 类型. 图 3是典型的单一参数控制策略的流程图 (以 pH 类型为例).

A. DO 类型: DO 传感器是最早在活性污泥法中 广泛应用的传感器之一. 在早期 SBR法的应用过程 中应用 DO 参数多以定值控制为主, 随着现代工业 的快速发展, 此时的控制策略不再局限于固定参数 值水平的简单控制, 而是根据 DO 曲线与微生物新 陈代谢速率之间的关系, 以 DO 曲线在反应阶段的 突跃变化点为基础建立实时控制策略, DO 曲线突

图 3 典型的单一参数控制策略的流程图(注: *T_i* - *t*时刻; *T_{ok}* - ₁出信 号符合运算法则时的时间; *T_{inc}* - 传感器检测间隔时间; *T_{wait}* -传感器信号稳定所需时间; *T_{min}* - 系统反应阶段所需的最短时 间; *T_{max}* - 设定的反应阶段最长时间; ₁H_i - *t*时刻的 ₁H 值; ₁H_{min} - 设定的 ₁H 信号最小值; ₁H_{max} - 设定的 ₁H 信号最大 值)

Fig 3 Typical flow chart for a single parameter control strategy

然上升指示了污染物降解结束,此时可以停止曝气进入沉淀和排水阶段(Buitron *et al*, 2005).单一DO参数控制策略的报道比较少,主要还是作为辅助参数配合其它参数组成综合的实时控制策略.

B. OUR 类型: 耗氧速率参数 (OUR) 的定义为 单位时间内 DO浓度的变化值. OUR 在一定程度上 反映了生物反应过程中微生物的活性. 根据 DO 传 感器测出来的数据以及 DO 与 OUR 之间的公式,通 过试验校正公式中的相关系数,最后利用计算机或 PLC程序计算出 OUR 值, 根据 OUR 曲线的变化规 律对 SBR 曝气阶段进行控制 (Johansen et al, 1997, Klapwijk et al, 1998). OUR 类型控制策略已 被应用到 SBR 的新工艺中,诸如短程硝化工艺 (Blackburne et al, 2008; Pambrun et al, 2008), 强化生物除磷(EBPR)工艺(Guisasola et al, 2007). Gu isaso la 等 (2006) 尝试建立 EBPR 启动控 制策略,该控制策略主要以 OUR及 dOUR 信号为控 制参数.根据 OUR曲线变化点与聚磷菌吸磷结束点 的对应关系,同时辅以 dOUR 信号由负转为正的变 化点指示吸磷结束点. 此类控制策略由于与 DO 参 数有密切联系,同样也存在与 DO 类型控制策略类 似的缺陷,即不能应用于 SBR 缺氧或厌氧阶段的 控制.

C. ORP 类型: 与污水处理有关的最早的 ORP 测量可追溯到 1906年 (Koch and Oldham, 1985). 20 世纪 40年代研究人员对 ORP作为控制参数发生了

广泛的兴趣,对许多污水处理厂进行了大量的 ORP 检测,并一致认为,随着污水中有机物的氧化分解, ORP有所增加. 几乎所有的研究者都提倡 ORP作为 '新'的过程控制变量,其中一些研究者甚至还提出 了利用 ORP控制来解决运行问题, 为处理厂的运行 提供指导、特别是如何合理的控制曝气量,之后 DO 传感器研制成功,由于其性能更稳定、指示作用更 明显, DO 控制在曝气系统中得到成功应用; 而 ORP 作为'新'开发的参数,研究人员大多认为难以实现 可靠的 ORP测定, 而且其定义及其指示意义都得不 到合理的解释,这导致对 ORP参数的研究出现了停 滞,但是,随着水体富营养化的日益严重,活性污泥 法工艺普遍通过增加缺氧和厌氧段实现脱氮除磷 的功能,由于缺氧和厌氧段 DO 浓度低, DO 参数的 指示作用不大,此时 ORP参数重新引起人们的兴趣 和重视. ORP类型控制策略从 1980s开始在活性污 泥法 工艺 (包括 SBR 工艺) 中应 用较 普遍 (Charpentier et al, 1989, Wouters et al, 1994, PlissonSaune et al, 1996). Wang Y Y 等 (2004) 利用 反硝化除磷污泥 (DPBS)进行 SBR 小试批次研究, 发现 ORP曲线只能作为厌氧阶段放磷结束的指示 点,而不能作为用于缺氧反硝化和吸磷结束的控制 参数. 如果该控制策略应用到 SBR 系统中存在一定 的局限性. Li和 Irvin(2007)提出了 ORP作为硝化 反硝化指示器的控制思想,这为控制策略的实施提 供强有力支持. 但是. 由于 ORP类型参数在硝化反 ·硝化阶段受外来电子受体,比如硫酸根离子 (SO_4^{2-}) 的干扰很大,导致 ORP参数指示作用不稳定,甚至 ORP曲线不出现变化点,从而导致 ORP类型的控制 策略存在抗干扰能力差、性能不稳定的缺陷.很多 研究人员的结果表明, pH 参数比 ORP参数更加稳 定可靠(Heduit et al, 1992, Al-Ghusain et al, 1994).

D_pH 类型:在 SBR 反应过程中,_pH 值既可应 用于缺氧或厌氧阶段,也没有 ORP参数那种容易受 到外部干扰的特性._pH 类型的控制策略相对于其它 单一间接参数控制策略鲁棒性更强,性能更稳定.

 $_{\rm PH}$ 类型控制策略按信号处理难易程度可分为 2种: 一种是以 $_{\rm PH}$ 曲线变化点 (最高点、最低点)为 基础的控制策略; 一种是以 $_{\rm PH}$ 一阶或二阶微分信 号 (dpH /dt, d² pH /dt²)变化点为基础的控制策略.

第一种控制策略不论是 SBR 工业废水处理 (Peng et al, 2004b)还是生活废水处理 (Peng

et al, 2003, 2006, W ang *et al*, 2007)过程中都有 广泛的应用. 其中 Peng等(2003)提出了 pH 间接参 数指示硝化阶段结束点的模糊控制策略;结果表 明, 不论碱度是否过量, pH 曲线都会出现指示点指 示硝化反应的结束. 由此可以看出, pH 参数比其它 间接参数鲁棒性更强.

第二种控制策略主要应用于 SBR 新工艺的运行和启动,比如分段进水工艺(Guo et al, 2007)、 短程硝化反硝化工艺(Yang et al, 2007)等.其中 Yang等(2007)采用 pH 值及其一阶微分信号(dpH / dt)作为控制参数建立了实时控制策略,实现了低温 条件下 SBR短程工艺长期稳定运行,运行过程中, 主要依赖_PH 参数进行实时控制, 同时维持较短的 有效固体停留时间 (SRT = 13d), 实现了硝化菌种群 的优化, 逐渐把亚硝酸菌 (NOB)从 SBR系统中淘汰 出去, 实现中试 SBR 长期稳定短程脱氮. 此研究中 采用的实时控制策略如图 4 所示. 虽然 pH 类型控 制策略具有稳定可靠的性能, 但还是会受一些外部 未知因素的影响; pH 类型控制策略在实际应用中还 是会出现一些偶然的故障和事故, 如 pH 变化点不 出现、pH 传感器失灵、测量值准确度随时间推移逐 渐降低. 因此, 很多研究报道开始向多种参数联合 的控制策略演变, 综合多个单一控制参数的优点, 以增强控制策略抗干扰能力及稳定性.

图 4 基于 pH的 SBR实时控制策略 Fig 4 Real-time control strategies of SBR based on pH parameter

最后对不同类型的单一参数控制策略进行比 较分析和归纳,如表 1所示.

3)基于多种参数联合 (至少 2种参数)的控制 策略

此种控制策略大致可以分为 2大类: 2种间接 参数类型、3种或 3种以上间接参数类型. A. 2种间接参数类型: 理论上说 DO、pH、ORP 和 OUR 4种常规间接参数两两结合建立 SBR 控制 策略,形成的类型应该有 16种,但实际上文献中报 道的控制策略类型大多集中于 ORP和 pH 类型 (Chang and Hao, 1996, Yu *et al*, 2001; Lee *et al*, 2001; Spagn i *et al*, 2001; Peng *et al*, 2002, Gao

1125

et al, 2003, K in et al, 2004, W ang Y Y et al, 2004, L i et al, 2004, W ang et al, 2005; C asellas et al, 2006), ORP和 OUR 类型 (Corom in as et al, 2004, Puig et al, 2005, Puig et al, 2006), ORP和 DO 类型 (Poo *et al*, 2005), pH 和 DO 类型 (Peng *et al*, 2004a Lemaire *et al*, 2008) 4种.这 4种类型 中主要以 ORP和 pH 类型为主, 其它 3种类型控制 策略应用和研究报道较少.

表 1	比较不同类型的单-	- 参数控制策略
1 (1	记忆门闩天主门十	

Γab		e i	1	Comparison	am ong	th e d	l iffe ren t	contro	l strategies	based	on	а	singl	e	paramet	er
-----	--	-----	---	------------	--------	--------	--------------	--------	--------------	-------	----	---	-------	---	---------	----

控制策略 参数类型	控制策略简单描述	控制策略优点	控制策略缺点	参考文献出处
DO	根据 DO曲线出现' 氨肘', 指示好 氧阶段结束的终点, 从而进行 SBR 阶段转换	DO 控制策略执行方便, 早期应用普遍	不能应用于 SBR 缺氧和 厌 氧 阶 段 的 实 时 控 制 策略	Buitron et al, 2005
OUR	根据好氧结束时 OUR 曲线出现的 急剧下降变化点,指示有机物或氨 氮的降解终点,从而进行阶段转换	OUR 控制策 略 非常 简单 直观, 指示性强	不能应用于 SBR 工艺的 缺氧和好氧阶段的控制 策略	Johan sen <i>et al</i> , 1997; Kapwijk <i>et al</i> , 1998; Blackbume <i>et al</i> , 2008; Pambnun <i>et al</i> , 2007; 2008
OR P	根据 ORP曲线出现的 ' 氨肘 ' 和 ' 硝酸盐膝 ' 分别指示好氧结束和 缺氧结束终点, 从而实现实时控制	ORP控制策略适用性强, 应用广泛	ORP 传感器性能不够稳 定,有时不出现变化点, 受外来电子受体干扰大	W ang <i>et al</i> , 2004; Li and Irvin 2007; Plisson Saune <i>et al</i> , 1996; W outers <i>et al</i> , 1994
μ	根据 pH 曲线出现的 ' 氨谷 ' 和 ' 硝 酸盐峰 ' 分别指示好氧和缺氧 结束 终点, 从而实现实时控制	控制策略鲁棒性强,性能 稳定可靠	pH 传感器需要定期 维 护,准确度随时间推移 下降	Peng et al , 2004b; 2003; 2006 W ang et al , 2007

ORP和 H 类型占主导地位的原因, 主要可以 归结为 ORP和 H 2种参数无论处于 SBR 的缺氧、 厌氧还是好氧阶段都能够稳定的检测和反映系统 内微生物的实时状态. 两者可以互为辅助、互相促 进, 除非 2种参数同时出现问题和故障 (这种情况 非常罕见), 一般来说 ORP和 H 类型的控制策略 不会出现异常情况, 可以保证 SBR 工艺稳定高效 运行.

ORP和 pH 类型按信号处理的难易程度同样可 分为 2种: 一种是以 pH 和 ORP 曲线变化点 (最高 点、最低点)为基础的控制策略;一种以 pH 和 ORP 一阶或二阶微分信号 (dpH /dt, dORP /dt, d² pH /dt², d^2 ORP/ dt^2)变化点为基础的控制策略.前者控制策 略比较简单, 根据应用的 SBR 工艺类型划分除了传 统 SBR 脱氮除磷工艺 (Spagni et al, 2001; Casellas et al, 2006)之外,还包括 ICEAS工艺 (Yu et al, 2001)、CAST工艺 (Wang et al, 2005)、短程硝化反 硝化工艺 (Gao et al, 2003, Wang et al, 2004), 分 段进水工艺(Liet al, 2004). 后一种策略较前种策 略复杂,研究和应用也更为深入.Lee等(2001)不仅 比较了实时控制策略与定时控制策略之间的性能, 而且对比了 ORP和 H 曲线与它们一阶、二阶微分 曲线的指示变化点,发现采用实时控制策略的系统 比采用定时控制策略的系统具有更好的脱氮除磷

性能. ORP和 H 的二阶导数零点, 一阶导数零点分 别对应氨氧化结束终点和吸磷结束终点. 不过 Chang和 H ao (1996)研究结果表明: pH 曲线及其 一阶二阶微分变化点比 ORP曲线及其一阶二阶微 分变化点的指示作用更稳定更可靠, 控制策略主要 以 pH 间接参数为主, ORP只是作为辅助参数. 之后 Peng等 (2002)开发出针对 SBR 工艺反硝化阶段的 模糊控制参数, 以 ORP, pH 2种模糊控制参数为基 础建立稳定的控制策略. K in 等 (2004)建立了处理 养猪废水的控制策略, 该策略除了采用 ORP, pH 及 其一阶微分信号分别作为反硝化, 硝化作用的控制 参数之外, 还能应对进水 C/N 比波动大等复杂条件 变化, 达到良好的处理效果. 下面以 pH 和 ORP类型 为代表给出 2种间接参数控制策略的流程图, 如图 5所示.

B. 3种或 3种以上间接参数类型: 此类控制策 略主要利用 DQ ORP和 pH 3种常规间接参数,将 其分别应用于传统 SBR 工艺 (Kishida et al, 2003; Akin and Ugurh 2005), 还有分段进水 SBR 工艺 (Andreotto la et al, 2001; Puig et al, 2004)以及短 程硝化反硝化工艺 (Wu et al, 2007; Peng et al, 2007). 其中值得一提的是 Kishida等 (2003)建立了 针对养猪废水的控制策略采用猪粪作为外加碳源, 该策略不仅提高了脱氮效率而且极大节省 SBR反

图 5 典型的两种间接参数控制策略的流程图

Fig 5 Typical flow chart for a double parameter control strategy

.....

硝化阶段所需碳源费用,值得在养猪废水处理工艺 中进行推广应用. 此类控制策略在应用于处理含甲 醛防腐剂的木材加工废水的 SBR 工艺中同样能达 到良好处理效果,而且还缩短了 SBR 周期时间,使 日处理水量增加 1倍. Pavselj等 (2001)详细介绍了 控制策略的建立和设计以及控制策略的验证;作者 主要介绍了缺氧、好氧阶段的优化控制,其依据的 主要间接参数为 DO、 ORP、 rH, 其中设计的控制算 法先对原始数据进行过滤再简单预处理(微分处 理)之后,通过算法识别曲线特征点,从而进行阶段 转换达到节能降耗的目的.

最后对基于多种间接参数的控制策略不同类 型进行总结和归纳,如表 2所示.

衣 4 奉丁乡仲间按参数控前束哈的总结	表	2 基于	-多种间接参数控制策略的总结
---------------------	---	------	----------------

.

2 bit grad 0.0112 bit grad weigt multicle Quarty application of the second of the se			你判等败你判论?	s of control stategies ba	ased on mixed parameters					
$R = 0$ $d R = 0$ $d^2 R + d^2 = 0$ $d^3 R R E = 0$ $P = 0$ $d^2 R + d^2 = 0$ $d^3 R R E = 0$ $d^3 R R E = 0$ $P = 0$ $d^3 R P / de^2 = 0$ $d^3 R R E = 0$ $d^3 R R E = 0$ $P = 0$ $d^3 R P / de^2 = 0$ $d^3 R R E = 0$ $d^3 R R E = 0$ $P = 0$ $d^3 R P / de^2 = 0$ $d^3 R R E = 0$ $d^3 R R E = 0$ $P = 0$ $d^3 R P / de^2 = 0$ $d^3 R R E = 0$ $d^3 R R E = 0$ $d^3 R R E = 0$ $P = 0$ $d^3 R P / de^2 = 0$ $d^3 R R E = 0$ $d^3 R R E = 0$ $d^3 R R E = 0$ $P = 0$ $d^3 R P / de^2 = 0$ $d^3 R R P / de^2 = 0$ $P = 0$ $d^3 R P / de^2 = 0$ $d^3 R R P / de^2 = 0$ $d^3 R R R R R R R R R R R R R R R R R R R$	投利束略 米刑				处理对象及试验规模	参考文献				
pit dr pt / dr = 0 Fut. SBR 处理能示 Level al., 2001 orp $dORP / dr^2 = 0$ //dx SBR 处理啤酒配水 Level al., 2002 ORP $dORP / dr^2 = 0$ //dx SBR 处理啤酒配水 Peng et al., 2002 ORP $dORP / dr^2 = 0$ //dx //dx SBR 处理啤酒配水 Peng et al., 2004 ORP $dORP / dr = 0$ //dx //dx //dx SBR 处理啤酒配水 Ferd al., 2004 ORP $dORP / dr = 0$ //dx //dx <th dx<="" th=""> <th dx<="" th=""> <th dx<="" th=""> <th dx<="" t<="" td=""><td><u>_</u></td><td></td><td>畎氧反咱化</td><td></td><td></td><td>I / 2001</td></th></th></th></th>	<th dx<="" th=""> <th dx<="" th=""> <th dx<="" t<="" td=""><td><u>_</u></td><td></td><td>畎氧反咱化</td><td></td><td></td><td>I / 2001</td></th></th></th>	<th dx<="" th=""> <th dx<="" t<="" td=""><td><u>_</u></td><td></td><td>畎氧反咱化</td><td></td><td></td><td>I / 2001</td></th></th>	<th dx<="" t<="" td=""><td><u>_</u></td><td></td><td>畎氧反咱化</td><td></td><td></td><td>I / 2001</td></th>	<td><u>_</u></td> <td></td> <td>畎氧反咱化</td> <td></td> <td></td> <td>I / 2001</td>	<u>_</u>		畎 氧反咱化			I / 2001
Other $drORP/dr = 0$ $vidt$ SBR 处理啤酒配水 Peng et al., 2002 ORP $dORP/dr = 0$ $vidt$ SBR 处理常酒配水 Feng et al., 2004 ORP $dORP/dr = 0$ $vidt$ SBR 处理常酒配水 Kin et al., 2004 ORP $dORP/dr = 0$ $vidt$ SBR 处理常酒配水 Kin et al., 2004 ORP $dORP/dr = 0$ $vidt$ SBR 处理* Yu RF et al., 2001 ORP $dORP/dr = 0$ $fidt$ $vidt$ $drat Bogt Yu RF et al., 2001 ORP dORP/dr = 0 fidt vidt drat Bogt vidt drat Bogt Gao et al., 2003 ORP ORP/dr = 0 fidt drat Bogt Gao et al., 2004 wag et al., 2004 \mu \phi H / drat Bogt d\mu H / drat Bogt d\mu H / drat Bogt vidt GRS P / dB drs F / dB drs$	pH OB D	dpH / dt = 0		$d^2 p H / dt^2 = 0$	小试SBR处理汇小	Lee et al, 2001				
pin dpin late 0 Juit Sork $\mathcal{D}_{2} = (a a b, c)$ Peng at a. 2002 0RP $\partial ORP / dt = 0$ /vit SBR $\mathcal{D}_{2} = (a a b, c)$ Feng at a. 2004 0RP $\partial ORP / dt = 0$ /vit SBR $\mathcal{D}_{2} = (a a b, c)$ Vit SBR $\mathcal{D}_{2} = (a a b, c)$ 0RP $\partial ORP / dt = 0$ /vit SBR $\mathcal{D}_{2} = (a b, c)$ Vit N RF et al. 2001 0RP $\partial ORP / dt = 0$ /vit M RF et al. 2001 (b, c) = (a b, c) (c) = (a b, c) 0RP $\partial ORP / dt = 0$ /vit M RF et al. 2004 (c) = (a b, c) (c) = (a b, c) 0RP $\partial ORP / dt = 0$ /vit M RF et al. 2004 (c) = (a b, c) (c) = (a b, c) 0RP $\partial ORP / dt = 0$ /vit M RF et al. 2004 (c) = (a b, c) (c) = (a b, c) 0RP $\partial ORP / dt^2 = 0$ /vit C AST Z $\mathcal{D} = \mathcal{D} / \mathcal{D} / \mathcal{D} / \mathcal{D} = (a b, c)$ (c) = (a b, c) 0RP $ORP - i b^{-1}$ (c) = (a b, c) (c) = (a b, c) 0RP $ORP + i b^{-1}$ (c) = (a b, c) (c) = (a b, c) 0RP $ORP + i b^{-1}$ (c) = (a b, c) (c) = (a b, c) <td< td=""><td>UKP</td><td></td><td></td><td>$d^2 O RP / dt^2 = 0$</td><td></td><td>Demonstral 2002</td></td<>	UKP			$d^2 O RP / dt^2 = 0$		Demonstral 2002				
ORP Iddit Yule 0 μ ϕ H / $dr > 0$ 维持 20n in d OR P / $dr < -5$ 维持 30n in μ K in et al., 2004 ORP d OR P / $dr < -5$ 维持 30n in μ K in et al., 2004 μ H ϕ H / $dr = 0$ $d\mu$ H / $dr = 0$ ρ K in et al., 2001 ORP $d\mu$ H / $dr = 0$ $d\mu$ H / $dr = 0$ ρ K in et al., 2001 ORP $d\rho$ BP / $dr = 0$ $d\mu$ H / $dr = 0$ ρ K in et al., 2003 ORP $d\rho$ BP / $dr = 0$ $d\mu$ H / $dr dr = 0$ ρ K in et al., 2004 μ H ϕ H / $dr dr dp ge m$ $d\mu$ H / $dr dp ge m$ $d\mu$ H / $dr dp ge m$ $d\mu$ H / $dr dp ge m$ μ H ϕ H / $dr dp ge m$ μ H ϕ H / $dr dr dp ge m$ μ H ϕ H / $dr dp ge m$ μ H $gr H$ μ H / $dr dp ge m$ μ H / $dr dp ge m$ μ H μ H / $dr dp ge m$ μ H μ H / $dr dp ge m$ μ H / $dr dp ge m$ μ H / $dr dp ge m$	р Порр		dpn /dt = 0		小瓜。因此处理啤酒能小	Peng et al., 2002				
Image: problem in the set of the s		dnH /dt、0 维持 20m in	dORF/dl = 0		小试 SBR 处理美狭座水	Kin at $a = 2004$				
ORP $dh P / dx = 0$ $dh / dx = 0$ $h = h / dx = 0$ $h = h / dx = 0$ ORP $dORP / dx = 0$ $dH / dx = 0$ $h = h / dx = 0$ fx $Yu \ RF \ et al$, 2001 ORP $dORP / dx = 0$ $dORP / dx = 0$ $dORP / dx = 0$ fx $Yu \ RF \ et al$, 2003 ORP $dORP / dx = 0$ $dORP / dx = 0$ fx $W \ ag \ et al$, 2003 $W \ ag \ et al$, 2004 H $\phi H / dx \ dx \ by \ yx \ dx \ dx \ dx \ fx \ fx \ fx \ fx \ f$	μι	ախու/ա/> վ ⊧⊭յզ Հահու			小山。如此处理作相及小	K III <i>et al.</i> , 2004				
μ $\phi_{H}/dr=0$ $\phi_{H}/dr=0$ γ_{U} χ^{U} χ^{U} χ^{U} RF $etal$, 2001 ORP $\partial ORP/dr=0$ $\partial ORP/dr=0$ γ_{U} χ^{U} χ^{U} χ^{U} RF $etal$, 2003 μ ϕ_{H}/dr $dragge get$ $d\eta H/dragge T$ $d\eta H/dragge T$ $d\eta R/dragge T$ $QRP/dragge R$ W $ang etal$, 2004 μ $\phi_{H}/dragge T$ $d\eta R/dragge T$ $d\eta R/dragge R$ W $ang etal$, 2005 ORP $d\theta R/dragge T$ $d\eta R/dragge R$ $d\eta R/dragge R$ W $ang etal$, 2005 ORP $d^{2}ORP/dr^{2}=0$ $\beta\gamma N$ W $ang etal$, 2005 ORP $d\eta R/dragge T$ $d\eta R/dragge T$ $d\eta R/dragge R$ W $ang etal$, 2005 ORP $d^{2}ORP/dr^{2}=0$ ηM M $d\eta R$ $SR M \chi R$ W $ang etal$, 2004 ORP $d^{2}ORP/dr^{2}=0$ ηM M $d\eta R$ P $d\eta R$ P $d\eta R$ Q $d\eta R$ </td <td>ORP</td> <td></td> <td>40KF741< - 5 维持 30m in</td> <td></td> <td></td> <td></td>	ORP		40KF741< - 5 维持 30m in							
ORP $dORP/dz = 0$ $j5k$ H $\phi HI/drafp ger_{td=} 0$ $j5k$ H $\phi HI/drafp ger_{td=} 0$ $j5k$ $Wang et al. 2003$ ORP $dORP/dz = 0$ $dORP/dz$ $Wang et al. 2004$ H $\phi HI/drafp ger_{td=} 0$ JT $Wang et al. 2005$ ORP $dORP/dz = 0$ JT $Wang et al. 2005$ ORP $\phi HI/drafp ger_{td=} 0$ JT $Wang et al. 2005$ ORP $dORP/dz^2 = 0$ JT $Wang et al. 2005$ ORP $dORP/dz^2 = 0$ JT $Wang et al. 2004$ ORP $dORP/dz^2 = 0$ JT $Wang et al. 2005$ ORP $ORP < -120nV$ $Puig SRD ger_{td} = 0$ JT ORP $ORP < -120nV$ $Puig sRD ger_{td} = 0$ JT OR $ORP = 10 - 0.2$ JT JT $Poo et al. 2005$ D0 $DO_2 3ng L^{-1}$ JT JT JT IT JT JT JT JT JT IT IT IT	H_{1}	dpH/dt = 0	dpH /dt = 0		小试连续流 SBR 处理生活	Yu RF et al., 2001				
μ $\phi\mu$ l /dr dr da db dc dr dr dr dr dr dr dr dr	ORP	dORP/dt = 0	dOR P / dt = 0		污水					
ORP $dORP/dt = 0$ 維持 20m n $dORP/dt = 0$ 大豆废水 W ang et al., 2004 H $\phi_{H}/dt = 0$ $d_{H}/dt = 0$ J_{VU} (CAST I SUBUELS W ang et al., 2005 ORP $d^{ORP}/dt = 0$ J_{VU} (CAST I SUBUELS W ang et al., 2004 H $\phi_{H}/dt = 0$ J_{VU} (CAST I SUBUELS W ang et al., 2005 ORP $d^{ORP/dt^2 = 0}$ J_{VU} (CAST I SUBUELS I.et al., 2004 ORP $d^{H}/dt = 0$ J_{VU} (CAST I SUBUELS I.et al., 2004 ORP $d^{H}/dt = 0$ J_{VU} (CAST I SUBUELS I.et al., 2004 ORP $d^{H}/dt = 0$ J_{VU} (CAST I SUBUELS I.et al., 2004 ORP $ORP - 120mV$ Pu is SuBUEL is subject. Pu is $et al., 2005 OUR OUR < 35mg L^{-1} J_{VU} (SBR SuBUEL I SUBUELS Poo \ et al., 2005 D0 Do / \Delta = 0 I - 0 I + 1 I + 1 I + 2 J_{H} d_{H}/dt = 0 I + 0 I + 1 I + 1 I + 1 J_{H} d_{H}/dt = 0 I + 1 I + 1 I + 1 $	H_{I}	dpH /dt 由负变正	dpH /dt由正变负		小试短程 SBR工艺处理	Gao et al., 2003				
μ ϕ_{H} $d_{v}H$ $d_{$	ORP	dORP/dt=0维持 20m in	dORP/dt趋近于 0		大豆废水	W ang et a l, 2004				
ORP $d^{2} ORP / dt^{2} = 0$ $\exists x$ μ ϕ H / dr la figge T ν id β ORP / dt^{2} = 0 η differ X SBR ψ T Li et al., 2004 ORP d^{2} ORP / dt^{2} = 0 η differ X SBR ψ T Li et al., 2004 ORP ORP - 120nV μ id SBR ψ T Puig et al., 2005 OUR OUR < 35mg L^{-1} h^{-1}	H_{I}	dpH /dt 由负变正	dpH /dt由正变负		小试 CAST工艺处理生活	W ang et a l , 2005				
μ μ μ μ $d\mu$ <t< td=""><td>ORP</td><td></td><td>$d^2 \operatorname{ORP} / dt^2 = 0$</td><td></td><td>污水</td><td></td></t<>	ORP		$d^2 \operatorname{ORP} / dt^2 = 0$		污水					
ORP d^{2} ORP/ $d^{2} = 0$ 制药废水 ORP ORP ORP Puig et al., 2005 OUR OUR < 35mg L ⁻¹ h ⁻¹ ORP ORP $\mp d$ /vit SBR处理养猪废水 Poo et al., 2005 D0 Do> 3mg L ⁻¹ /vit SBR处理养猪废水 Poo et al., 2006 D0 Do> 3mg L ⁻¹ /vit SBR短程工艺处理 Peng et al., 2004 a D0 Do> 3mg L ⁻¹ /vit SBR短程工艺处理 Peng et al., 2004 a D0 Do> 3mg L ⁻¹ /vit SBR短程工艺处理 Lem aire et al., 2008 OUR OUR < 0 5mg L ⁻¹ m in ⁻¹ /vit SBR短程工艺处理 Wu et al., 2007 D0 QUR < 0 5mg L ⁻¹ m in ⁻¹ /vit SBR短程工艺处理 Wu et al., 2007 D0 QEK点 /vit SBR短程工艺处理 Wu et al., 2007 D0 QEK点 /vit SBR短程工艺处理 Wu et al., 2007 D0 QEK点 /l = 8 2~ 8 3 /vit SBR处理配水 Ak in 和 U gurb, 2005 D0 D0 = 2- 2 7mg L ⁻¹ //it SBR///l = 129~ 152mV /vit SBR///l = 129~ 152mV	H_1	dpH /dt 由负变正			小试分段进水 SBR 处理	Li <i>et al</i> , 2004				
ORP ORP $-120mV$ 中试 SBR处理市政污水 $Puig et al.$ 2005 OUR OUR $35mg L^{-1} h^{-1}$ ////////////////////////////////////	ORP		$d^2 \operatorname{ORP} / dt^2 = 0$		制药废水					
OUR OUR < 35mg L ⁻¹ h ⁻¹ ORP ORP ∓ 6 h ti SBR ψ 理养猪 g k Poo et al., 2005 D0 $D^{0>}$ 3mg L ⁻¹ h ti SBR ψ 理养猪 g k Poo et al., 2005 D0 $D^{0>}$ 3mg L ⁻¹ h ti SBR ψ TZ h Peng et al., 2004 a D0 D0 > 3mg L ⁻¹ h ti SBR ψ TZ h Peng et al., 2004 a D0 D0> 3mg L ⁻¹ h ti SBR ψ TZ h Peng et al., 2004 a D0 D0> 3mg L ⁻¹ h ti SBR ψ TZ h Peng et al., 2004 a D0 D0> 3mg L ⁻¹ H ti SBR ψ TZ h Peng et al., 2004 a D0 D0> 3mg L ⁻¹ H ti SBR ψ TZ h Peng et al., 2004 a D0 D0> 3mg L ⁻¹ H ti SBR ψ TZ h H ti SBR ψ TZ h H ti SBR ψ TZ h H ϕ H ϕ H ϕ H ϕ H H ti SBR ψ TZ h H ti SBR ψ TZ h H ti SBR ψ TZ h <td>ORP</td> <td></td> <td>ORP < -120mV</td> <td></td> <td>中试 SBR处理市政污水</td> <td>Puig et al, 2005</td>	ORP		ORP < -120mV		中试 SBR处理市政污水	Puig et al, 2005				
ORP ORP平台 小试 SBR处理养猪废水 Poo et al., 2005 D0 $D0> 3mg L^{-1}$ Δ D0/ Δ t= 0 1~0 2 // (x) SBR短程工艺处理 Peng et al., 2004 a D0 $D0> 3mg L^{-1}$ 生活污水 PH $\phi H / dt ab \oplus \overline{\phi} \overline{c}$ // (x) SBR短程工艺处理 Peng et al., 2004 a D0 $D0> 3mg L^{-1}$ 生活污水 Lem aire et al., 2008 OUR $OUR < 0.5mg L^{-4} m n^{-1}$ 居宰废水 // H 氨谷 硝酸盐峰 // (x) SBR短程工艺处理 Wu et al., 2007 D0 突跃点 生活污水 Peng et al., 2007 D0 突跃点 描書 2~8.3 // (x) SBR短程工艺处理 Wu et al., 2007 D0 突跃点 #H = 8.2~8.3 // (x) SBR处理配水 Ak in和 U gurlu, 2005 D0 D0= 2~2.7mg L^{-1} ORP = 129~152mV	OUR	OUR< $35mg L^{-1} h^{-1}$								
DO $3 \text{ ng } L^{-1}$ $\Delta \text{ DO} / \Delta t = 0 \ 1 \sim 0 \ 2$ 小试 SBR短程工艺处理 Peng et al., 2004 a 时 ϕ H / dt 自负变正 小试 SBR短程工艺处理 Peng et al., 2004 a DO DO> 3 ng L^{-1} 生活污水 Lem aire et al., 2008 0UR OUR < 0 5 ng L^{-1} m in^{-1} 屠宰废水 Lem aire et al., 2007 DO 交気点 小试 SBR短程工艺处理 Wu et al., 2007 DO 突跃点 生活污水 Peng et al., 2007 DO 突跃点 小试 SBR短程工艺处理 Wu et al., 2007 DO 突跃点 作目 8 2~ 8 3 小试 SBR处理配水 Ak in和 U gurlu, 2005 DO DO = 2~ 2.7 mg L^{-1} DR = 129~ 152mV U	ORP	ORP平台			小试 SBR处理养猪废水	Poo et al , 2005				
D0 \triangle D0 / \triangle t = 0 1~0 2 H ϕ H / dt 由负变正 小试 SBR短程工艺处理 Peng et al., 2004 a D0 D0> 3mg L ⁻¹ 生活污水 Lem aire et al., 2008 H ϕ H / dt 由负变正 小试分段进水 SBR 处理 Lem aire et al., 2008 OUR OUR < 0 5mg L ⁻¹ m in ⁻¹ 屠宰废水 H 氨谷 硝酸盐峰 小试 SBR短程工艺处理 Wu et al., 2007 D0 突跃点 生活污水 Peng et al., 2007 D0 突跃点 生活污水 Peng et al., 2007 D0 突跃点 指酸盐滕 小试 SBR短程工艺处理 Wu et al., 2007 D0 空跃点 日 8 2~ 8 3 小试 SBR处理配水 Akin和 U gurh, 2005 D0 D0 = 2~ 2.7 mg L ⁻¹ ORP = 129~ 152mV ORP = 129~ 152mV	DO	DO> $3mg L^{-1}$								
世 中H /dt 由负变正 小试 SBR短程工艺处理 Peng et al., 2004 a D0 D0> 3mg L ⁻¹ 生活污水 中 中H /dt 由负变正 小试分段进水 SBR 处理 Lem aire et al., 2008 OUR OUR < 0 5mg L ⁻¹ m in ⁻¹ 屠宰废水 中 氨谷 硝酸盐峰 小试 SBR短程工艺处理 Wu et al., 2007 D0 突跃点 生活污水 Peng et al., 2007 D0 突跃点 生活污水 Peng et al., 2007 D0 突跃点 指酸盐膝 小试 SBR短程工艺处理 Wu et al., 2007 D0 突跃点 日 第 2 2 2 D0 空跃点 日 8 2 ~ 8 3 小试 SBR处理配水 Ak in 和 U gurh, 2005 D0 D0 = 2 ~ 2.7 mg L ⁻¹ ORP = 129 ~ 152mV ORP = 129 ~ 152mV 0	DO	\triangle DO $\triangle t = 0$ 1~ 0 2								
D0 D0 > 3mg L ⁻¹ 生活污水 州 фH / dt 由负变正 小试分段进水 SBR 处理 Lem aire et al., 2008 OUR OUR < 0.5mg L ⁻¹ m in ⁻¹ 屠宰废水 州 氨谷 硝酸盐峰 小试 SBR短程工艺处理 Wu et al., 2007 D0 突跃点 生活污水 Peng et al., 2007 ORP 平台折点 硝酸盐膝 小试 SBR短程工艺处理 Vu et al., 2007 D0 pt 荷酸盐膝 小试 SBR处理配水 Ak in和 U guru, 2005 D0 D0 = 2~ 2.7mg L ⁻¹ ORP = 129~ 152mV Ak in和 U guru, 2005	Н	dpH / dt 由负变正			小试 SBR短程工艺处理	Peng et al , 2004 a				
时 中H / dt 由负变正 小试分段进水 SBR 处理 Lem aire et al, 2008 OUR OUR < 0.5mg L ⁻¹ m in ⁻¹ 屠宰废水 中 氨谷 硝酸盐峰 小试 SBR短程工艺处理 Wu et al, 2007 DO 突跃点 生活污水 Peng et al, 2007 ORP 平台折点 硝酸盐膝 // H = 8 2~ 8 3 // 小试 SBR处理配水 Ak in 和 U guru, 2005 DO DO DO = 2~ 2.7mg L ⁻¹ ORP = 129~ 152mV ORP = 129~ 152mV	DO	DO> $3mg L^{-1}$			生活污水					
OUR OUR < 0.5mg L ⁻¹ m in ⁻¹ 屠宰废水 州 氨谷 硝酸盐峰 小试 SBR短程工艺处理 Wu et al, 2007 DO 突跃点 生活污水 Peng et al, 2007 ORP 平台折点 硝酸盐膝 //试 SBR处理配水 Ak in 和 U gurh, 2005 DO DO DO 小试 SBR处理配水 Ak in 和 U gurh, 2005 DO DO DO DO PEng et al, 2007 ORP 平台折点 硝酸盐膝 //试 SBR处理配水 Ak in 和 U gurh, 2005 DO DO= 2~2.7mg L ⁻¹ //// ORP = 129~ 152mV //// SBR处理配水 Ak in 和 U gurh, 2005	Hq	dpH /dt 由负变正			小试分段进水 SBR 处理	Lem aire et al, 2008				
山 氨谷 硝酸盐峰 小试 SBR短程工艺处理 Wu et al, 2007 DO 突跃点 生活污水 Peng et al, 2007 OR P 平台折点 硝酸盐膝 中 中= 7.2~7.3 中= 8.2~8.3 小试 SBR处理配水 DO DO= 2~2.7mg L ⁻¹ ORP = 129~152mV ORP = 129~152mV	OUR	OUR < 0 5mg L^{-1} m in ⁻¹			屠宰废水					
DO 突跃点 生活污水 Peng et al., 2007 ORP 平台折点 硝酸盐膝 pH pH= 7, 2~7, 3 pH= 8, 2~8, 3 小试 SBR处理配水 Akin和 U gurh, 2005 DO DO= 2~2, 7m g L ⁻¹ ORP = 129~152mV ORP = 129~152mV	H	氨谷	硝酸盐峰		小试 SBR短程工艺处理	Wu et al, 2007				
ORP 平台折点 硝酸盐膝 H H= 7.2~7.3 H= 8.2~8.3 小试 SBR处理配水 Ak in 和 U gurlu, 2005 D0 D0= 2~2.7mg L ⁻¹ ORP ORP= - 49~ - 55mV ORP= 129~ 152mV	DO	突跃点			生活污水	Peng et al., 2007				
pH pH = 7. 2~7.3 pH = 8 2~ 8 3 小试 SBR处理配水 Akin和 U gurh, 2005 DO DO = 2~ 2.7m g L ⁻¹ ORP ORP = -49~ - 55mV ORP = 129~ 152mV	ORP	平台折点	硝酸盐膝			<u> </u>				
DO $DO = 2 \sim 2.7 \text{m g L}^{-1}$ ORP $ORP = -49 \sim -55 \text{m V}$ $ORP = 129 \sim 152 \text{m V}$	Hq	µH = 7. 2∼ 7. 3		pH = 8 2~ 8 3	小试 SBR处理配水	Akin和Ugurlu, 2005				
ORP $ORP = -49 \sim -55 \text{mV}$ $ORP = 129 \sim 152 \text{mV}$	DO	DO = $2 \sim 2.7 \text{mg} \text{ L}^{-1}$								
	ORP	$ORP = -49 \sim -55 mV$		$ORP = 129 \sim 152 mV$						

223 参数经过复杂处理

1) SBR 运行数据具有 (批次 ×变量 ×时间) 三 维特征, 而主成分分析 (PCA) 技术只能对二维数据 结构进行分析, 所以传统 PCA 技术不能直接应用于 SBR 工艺. 之后现代 多元统计过程控制技术 (MSPC)快速发展并广泛应用到工业批次生产. 由 于 SBR 工艺具有典型的批次特征, 研究人员开始尝 试建立以 MSPC技术为核心的控制策略. 此类控制 策略主要利用 MSPC技术有效提取 SBR 过程监控 所采集的测量数据的相关信息, 通过控制算法对获 得的信息进行分析和诊断, 根据所得结果对 SBR 工 艺进行优化控制.

2) 常见类型 M SPC 按技术类型大致可以分 为主成分分析 (PCA)技术、部分最小二乘 (PLS)法、 主元回归 (PCR)等几种.其中应用最普遍还是 PCA 技术及其改良 PCA 技术 (比如多路主成分分析 (MPCA)技术,多路独立成分分析 (M CA)技术,多 路核心主成分分析 (MKPCA)技术).

Lee和 V anrolleghem (2003)提出了自适应 PCA 技术和 M PCA技术两者相结合的控制算法,基于此 算法建立的控制策略成功地应用于 SBR 小试的在 线监控运行. Y oo (2004)等针对 M PCA 技术要求所 有批次长度必须相等,测量变量必须为正态分布. 以及估计的当前批次的未来值必须允许在线监控 的缺点,开发出基于 M CA 技术的控制策略,在线监 测 SBR工艺过程,以优化工艺周期运行.同时,Lee 和 Vanrolleghem(2004)提出一种用于污水处理过程 监测的通用 PCA 算法,这种算法有别于传统 M PCA 技术 (Sung et al, 2007), 基于此算法的 PCA 控制 策略与 Nom ikos 和 MacG regor (1995)提出的 MPCA 控制策略性能一致.随后一种新型非线性批次监测 技术多路核心主成分分析技术 (MKPCA)出现,并开 始应用于解决非线性问题 (Lee et al, 2004). Yoo 等(2006)尝试利用 MKPCA 技术建立控制策略用于 监测中试 SBR的运行,在线监测结果显示这种基于 自适应和非线性监测模型的控制策略具有很强的 鲁棒性.

Aguado等 (2006)尝试建立以 PCR、PLS和人工 神经网络 (ANN s) 3种预测模型为基础的 SBR 控制 策略,控制策略的算法采用批次展开和变量展开 2 种方式.结果显示, PLS类型控制策略表现出优于其 它类型控制策略的性能.

另外, Aguado 等 (2007) 采用 M SPC 方法建立了

2个强化除磷统计模型, 其中的 AT模型采用变量展 开, 预处理之后通过 PLS方法建模; 而 WKFH 模型 是批次展开, 预处理之后再进行变量展开, 最后通 过 PCA 方法建模. 根据这 2种模型尝试建立基于 PLS和 PCA技术的 2种控制策略. 结果表明: PLS控 制策略相对于 PCA 控制策略性能更稳定. 主要原因 在于 PCA模型过于复杂, 计算量大, 响应时间长, 导 致 PCA 控制策略应用受到一定的限制.

3)存在问题 由于 SBR 过程具有高度非线性、 时变性, 以及受水力变化、成分的变化和设备故障 等波动的影响很大等特征, 这些因素加大了 MSPC 技术应用于 SBR 工艺运行和控制过程的难度. 同 时, 虽然 M SPC技术广泛应用到各种工业批次生产 过程中, 但这种技术最近才开始应用到 SBR 的工艺 中, 基于此种技术的 SBR 控制策略的开发、设计和 验证方法都有待于进一步研究, 相信将来结合 M SPC技术的控制策略能在 SBR 工艺控制过程中广 泛应用.

3 结语 (Summary)

SBR工艺由于具有占地面积小、投资费用低、运行方式灵活、可控性好等优点,成为中小城镇污水及工业废水的首选处理工艺.实时控制策略能够实现 SBR污水处理工艺的优化运行,促进 SBR工艺的广泛应用.虽然针对 SBR工艺的实时控制的研究已经取得了明显的进展,但实时控制系统的鲁棒性还有待进一步加强,实时控制策略的稳定性还有待进一步提高,这极大地限制了实时控制技术在 SBR 实际污水处理厂的应用.

因此,适合 SBR工艺特点的控制策略的研究和 开发是该工艺未来发展所必须解决的关键问题之 一.综上所述, SBR工艺控制策略未来的发展方向 应集中在如下几个方面:

1)建立和设计通用的实时控制策略体系和评价标准,提高控制策略的稳定性.

2)不断跟踪 ICA技术的发展,及时发现最新的 控制技术,并开发出针对该技术的 SBR 控制策略.

3)智能控制是实时控制发展的高级阶段,智能 控制技术的控制策略是未来 SBR 实时控制的发展 趋势.

如何根据我国污水处理行业的国情和实际发展情况,来建立合理的适合我国国情的 SBR 工艺控制策略是未来的发展方向.

责任作者简介:王淑莹:北京工 业大学环能学院教授、博士生 导师;研究方向为水污染控制 工程.主要从事水质科学与水 环境恢复工程、城市污水生物 处理技术与应用、污水生物除 磷脱氮新技术、新工艺的开发 及稳定性智能控制研究.

参考文献 (R eferences):

- Akin B S, Ugurlu A 2005 Monitoring and control of biological nutrient removal in a sequencing batch reactor [J]. Process Biochem, 40 (8): 2873-2878
- Aguado D, Ferrer A, Seco A, *et al*. 2006. Comparison of different predictive models for nutrient estimation in a sequencing batch reactor for wastewater treatment [J]. Chemometrics and Intelligent Laboratory Systems, 84(1-2): 75–81
- Aguado D, Ferrer A, Ferrer J et al 2007. Multivariate SPC of a sequencing batch reactor for wastewater treatment [J]. Chemometrics and Intelligent Laboratory Systems \$5(1): 82-93
- Alghusain IA, Huang J Hao O J *et al* 1994. Using pH as a real-time control parameter for wastewater treatment and sludge digestion processes [J]. WatSciTech 30(4): 159–168
- Andreottola G, Foladori P, Rogazzi M. 2001 On-line control of a SBR system fornitrogen removal from industria lwastewater [J]. W at Sci Tech 43 (3): 93–100
- Blackburne R, Yuan Z G, Keller J et al 2008. Demonstration of nitrogen removal via nitrite in a sequencing batch reactor treating domestic wastewater [J]. Water R esearch, 42(8-9): 2166–2176
- Buitron G, Shoeb M E, Moreno-Andrade L, et al 2005 Evaluation of two control strategies for a sequencing batch reactor degrading high concentration peaks of 4-ch brophenol [J]. Water Res, 39 (6): 1015–1024
- Casellas M, Dagot C, Baudu M. 2006 Set up and assessment of a control strategy in a SBR in order to enhance nitrogen and phosphorus renoval [J]. Process Biochem istry, 41(9): 1994-2001
- Chang C H, Hao O J 1996. Sequencing batch reactor system for nutrient removal ORP and pH profiles [J]. J Chem Tech Biotechnol 67 (1): 27-38
- Charpentier J. Godart H., Martin G., et al. 1989 Oxidation-reduction potential (ORP) regulation as a way to optimize aeration and C. N and P. removal. experimental basis and various full-scale examples [J]. W at Sci Tech, 21(10-11): 1209-1223
- Demoulin G, Goronszy M C, Wutscher K, *et al*. 1997. Cocurrent nitrification /denitrification and biological P-removal in cyclic activated sludge plants by redox controlled cycle operation [J]. Wat SciTech 35(1): 215-224
- Gao DW, Peng YZ, Liang H, *et al* 2003. Using oxidation-reduction potential ORP and pH value for process control of shortcut nirification-denitrification [J]. Journal of Environmental Science and Health (Part A), 38(12): 2933–2942
- Guisasola A, Pijuan M, Baeza JA, *et al.* 2006 In proving the start-up of an EBPR system using OUR to control the aerobic phase length: a simulation study[J]. Wat SciTech 53 (4-5): 253-262

- Guisasola A, Vargas M, Marcelino M, et al. 2007. On-line monitoring of the enhanced biological phosphorus removal process using respirametry and tirrinetry [J]. Biochemical Engineering Journal, 35(3): 371-379
- Guo JH, Yang Q. Peng Y Z, et al. 2007. Biological nitrogen removal with real-time controlusing step-feed SBR technology [J]. Enzyme and M icrobial Technology, 40(6): 1564–1569
- Heduit A, Leclerc L A, Sintes I, et al 1988 Aspects of the control of nitrification and denitrification reactions in activated sludgewith the aid of the redox potential [J]. Water Supply 6(3): 275-285
- Heduit A, Thevenot D R. 1992. Elements in the inetrepretation of platinum electrode potentials in biological treatment [J]. W at Sci T ech, 26(5-6): 1335-1344
- Johan sen N H, Andersen J S, Jansen J L. 1997. Optimum operation of a small sequencing batch reactor for BOD and nitrogen removal based on online OUR calculation [J]. Wat SciTech, 35(6): 29–36
- K in J.H., Chen M.X., K ishida N, et al 2004. Integrated real-time control strategy for nitrogen removal in swine wastewater treatment using sequencing batch reactors [J]. Water Research, 38 (14-15): 3340-3348
- Kishida N, Kin J H, Chem M, et al 2003. Effectiveness of oxidationreduction potential and pH as monitoring and control parameters for nitrogen removal in sw ine was tewater treatment by sequencing batch reactors [J]. J Biosci Bioeng 96(3): 285-290
- K kpwijk A, BrouwerH, Vralijk I, et al. 1998 Control of intermittently aerated nitrogen removal plants by detection end points of nitrification and denitrification using respirametry only [J]. Water R es 32 (5): 1700–1703
- Koch F A, Oldham W K. 1985 Oxidation-reduction potential-a tool for monitoring control and optimization of biological nutrient removal systems[J]. W at SciTech 17(11-1): 259-281
- Langergraber G, Gupta JK, Press IA, et al 2004. On-linemonitoring for control of a pibt-scale sequencing batch reactor using a submersiber UV /VIS spectrum eter[J]. W at Sci Tech, 50(10): 73-80
- Lee D S, Jeon C O, Park J M. 2001. Biological nitrogen removal with enhanced phosphate uptake in a sequencing batch reactor using single sludge system [J]. Water Res 35(16): 3968-3976
- Lee D S, Vanrolleghem P A. 2004 Adaptive consensus principal component analysis for on-line batch process monitoring [J]. Environmental Monitoring and Assessment 92(1-3): 119-135
- Lee D S, Vanrolleghem P A 2003 Monitoring of a sequencing batch reactor using adaptivem ultiblock principal component analysis [J]. Biotech and Bioeng 82(4): 489-497
- Lee JM, Yoo C K, Cho i S W, et al 2004. Nonlinear process monitoring using kernel principal component analysis [J]. Chen ical Engineering Science, 59(1): 223-234
- Lenn aire R, Marcelin o M, Yuan Z G. 2008. A chieving the nitrite pathway using aeration phase length control and step-feed in an SBR removing nutrients from abattoir wastewater [J]. Biotech and bioeng 100(6): 1228–1236
- LiBK, Irvin S. 2007 The comparison of alkalinity and ORP as indicators for nitrification and denitrification in a sequencing batch reactor (SBR) [J]. B ioch emical Engin eering Journal, 34(3): 248-255
- LiYZ, Peng CY, Peng YZ, *et al* 2004. Nitrogen removal form pharm aceutical manu facturing wastewater via nitrite and the process

1129

optim ization with on-line control [J]. W at Sci Tech, 50(6): $25\!-\!30$

- Lu S G, Imai T, Ukita M, *et al* 2000 Application of ORP control for nitrogen removal in highly concentrated activated sludge process [J]. Environmental Technology, 21(1): 115-122
- Nom ikos P, MacGregor J F. 1995. Multivariate SPC charts formonitoring bath processes [J]. Technom eryt 37(1): 41–59
- Pambrun V, Paul E, Sperandio M. 2008. Control and modeling of partial nitrification of effluents with high ammonia concentrations in sequencing batch reactor[J]. Chemical Engineering and Processing 47(3): 323-329
- PavseljN, HvalaN, Kocijan J *et al.* 2001 Experimental design of an optimal phase duration control strategy used in batch biological wastewater treatment[J]. ISA Transaction 40(1): 41-56
- Peng Y Z, G ao S Y, W ang S Y, et al. 2007. Partial nitrification from domestic wastewater by aeration control at an bient temperature [J]. Chinese J Chem Eng 15 (1): 115–121
- Peng Y Z, Wang S P, Wang S Y, et al 2006 Effect of denitrification type on pH profiles in the sequencing batch reactor process [J]. W at SciTech, 53(9): 87-93
- Peng Y Z, G ao J F, W ang S Y, et al. 2003. U se of pH as fuzzy control parameter for nitrification under different alkalinity in SBR process [J]. W at Sci Tech, 47(11): 77–84
- Peng Y Z, Chen Y, Peng C Y, et al 2004a Nitrite accumulation by aeration controlled in sequencing batch reactors treating domestic wastewater [J]. Wat SciTech 50 (10): 35-43
- Peng Y Z, G ao J F, W ang S Y, et al. 2002 Use pH and ORP as fuzzy control parameters of denitrification in SBR process [J]. W at S ci Tech. 46(4-5): 131-137
- Peng Y Z, Li Y Z, Peng C Y, et al. 2004b. Nitrogen removal from pharm aceutical manufacturing wastewater with high concentration of ammonia and free ammonia via partial nitrification and denitrification [J]. Wat SciTech, 50(6): 31–36
- PlissonSaune S, Capdeville B, Mauret M, *et al.* 1996 Real-time control of nitrogen removal using three ORP bending-points signification control strategy and results [J]. Wat SciTech, 33(1): 275-280
- Poo K M, In J H, Ko J H, et al 2005. Control and nitrogen bad estimation of aerobic stage in full-scale sequencing batch reactor to treat strong nitrogen swine wastewater [J]. Korean J Chem Eng 22 (5): 666–670
- Puig S. Corminas I, Vives M T, et al. 2005. Development and implementation of a real-time control system for nitrogen removal using OUR and ORP as end points [J]. Ind Eng Chem Res, 44 (9): 3367-3373
- Puig S. Vives M. T., Corum inas I., *et al.* 2004 Wastewater nitrogen removal in SBRs, applying a step-feed strategy. from lab-scale to pib+plant operation [J]. Wat SciTech, 50 (10): 89-96
- Puig S, Corominas L, Traore A, et al 2006 An on-line optimisation of a SBR cycle for carbon and nitrogen removal based on on-line pH and OUR: the role of dissolved oxygen control [J]. Wat Sci Tech 53 (4-5): 171-178
- Sin on J W iese J Steinmetz H. 2006. A comparison of continuous flow and sequencing batch reactor plants concerning integrated operation of sewer systems and wastewater treatment plants [J]. Wat Sci

T ech, 54 (11−12): 241−248

- Spagni A, Buday J, Ratini P, et al 2001 Experimental considerations on monitoring ORP, pH, conductivity and dissolved oxygen in nitrogen and phosphorus biological removal processes [J]. Wat Sci T ech, 43(11): 197–204
- Sung S H, Lee M W, Lee D S, et al. 2007 Monitoring of sequencing batch reactor for nitrogen and phosphorus removal using neural networks[J]. BiochemicalEngineering Journal, 35(3): 365-370
- Tom lins Z, Thomas M, Keller J *et al.* 2002 Nitrogen removal in a SBR using the OGAR process control system [J]. W at SciTech 46(4-5): 125-130
- W ang S P, Peng Y Z, W ang S Y, *et al.* 2005 Applying real-time control to enhance the performance of nitrogen removal in CAST system [J]. Journal of Environmental Science-China 17(5): 736-739
- Wang S Y, Gao D W, Peng Y Z, et al. 2004 Alternating Shortcut Nitrification-Denitrification for nitrogen removal from soybean wastewater by SBR with real-time control [J]. Journal of Environmental Sciences, 16 (3): 380-383
- Wang Y Y, Pan M L, Yan M, et al 2007 Characteristics of anoxic phosphors removal in sequencing batch reactor [J]. Journal of Environmental Sciences, 19 (7): 776-782
- Wang Y Y, Peng Y Z, Peng C Y, et al. 2004 Influence of ORP variation carbon source and nitrate concentration on denitrifying phosphorus removal by DPB Sludge from Dephanox Process[J]. W at SciTech, 50(10): 153-161
- Wareham D G, Hall K J Mavinic D S. 1993 Real-time control of aerobic-anoxic sludge digestion using ORP. [J]. Journal of Environmental Engineering-ASCE, 119(1): 120-136
- W iese J Sin on J Schmitt T G. 2005 Integrated real-time control for a sequencing batch reactor plant and a combined sewer system [J]. W at SciTech, 52 (5): 179–186
- Wiese J Sinon J Steinmetz H. 2006 A process-dependent real-time controller for sequencing batch reactor plants results of full-scale operation[J]. Wat SciTech 53 (4-5): 143–150
- Wouters Wasiak K, Heduit A, Audic JM, *et al* 1994. Real-time control of nitrogen removal at full-scale using oxidation reduction potential [J]. Wat SciTech 30 (4): 207-210
- WuCY, ChenZQ, LiuXH, *et al.* 2007. Nitrification denitrification via nitrite in SBR using real-time control strategy when treating domestic wastewater [J]. BiochemicalEngineering Journal 36(2): 87–92
- Yang Q. Peng Y Z, Liu X H, et al. 2007. N irogen removal via nitrite form municipal wastewater at low temperatures using real-time Control to optimize nitrifying communities [J]. Environmental Science & Technology, 41(23): 8159-8164
- Yoo C K, Lee D S, Vanrolleghem P A. 2004. Application of multiway ICA for on-line process monitoring of a sequencing batch reactor [J]. W at Res 38(7): 1715–1732
- Yoo C K, Lee I B, Vanrolleghem P A. 2006. On-line adaptive and nonlinear process monitoring of a pilot-scale sequencing batch reactor [J]. Environment Monitor and Assessment 119 (1-3): 349-366
- Yu R F, Liaw S L, Cho B C, et al 2001. Dynamic control of a continuous inflow SBR with the time varying influent bading [J]. W at SciTech, 43(3): 107-114