# 石胡荽的挥发性成分和指纹图谱研究

谭丽贤1,曾志12,蒙绍金1,沈妙婷1,张菡2

(1. 华南师范大学 化学与环境学院, 广东 广州 51063 t, 2 秋田省立大学 生物资源科学学院, 日本 秋田 010-0195)

摘 要:采用气相色谱 – 质谱联用技术 (GC-MS)对广东和广西 2个产地石胡荽的挥发性成分进行了研究,其主要成分为桃金娘烯醇、反式-乙酸菊花烯酯、乙酸桃金娘烯酯、棕榈酸、麝香草酚。采用本研究提出的"色谱指纹图谱分区"法对 2个产地石胡荽的挥发性成分进行分析和比较,把石胡荽总离子流色谱图分为 4个区,并用相对保留值  $\alpha$ 和相对峰面积 S1进行分析比较。结果表明,此法简单、快速、有效,为建立石胡荽的色谱指纹图谱提供了一种新的方法。

关键词: 石胡荽; 气-质联用; 挥发性成分; 指纹图谱

中图分类号: 0.657.63, 0.949.783.5 文献标识码: A 文章编号: 1004-4957(2006)06-0091-04

# Study on the Volatile Constituents and Fingerprints of Centipeda m in in a

TAN Lixian<sup>1</sup>, ZENG Zhi<sup>1, 2</sup>, MENG Shao-jin<sup>1</sup>, SHEN Miao-ting<sup>1</sup>, ZHANG Han<sup>2</sup>
(1 School of Chemistry and Environment, South China Normal University, Guangzhou 510631, China, 2 Faculty of Bioresource Sciences, Akita Prefectural University, Akita 010-0195, Japan)

Abstract The volatile compositions from C entiped a m im a of two sources were analyzed by gas chromatography—mass spectrometry (GC-MS). The main components were myrtenol, trans-chrysanthenyl acetate, myrtenyl acetate, hexadecanoic acid and thymol. The volatile compositions of  $C \cdot m$  im a from the two sources were compared with each other with the chromatographic fingerprinting method of D is ing. Sections. The total ion chromatograms were divided into four chromatographic fingerprinting sections and the compounds were compared with the relative retention value ( $\alpha$ ) and the relative peak area (Sr). The results showed that it was a simple, rapid and efficient method, which offered a new way to the establishment of the chromatographic fingerprints for  $C \cdot m$  im a.

Key words Centipeda minima; Gas chium atography - mass spectroscopy (GC-MS); Volatile constituents, Fingerprint

石胡荽是菊科植物石胡荽  $Centipeda\ minima(L.)\ A.\ Br.\ et A\ schers.$  的干燥全草。其性味辛寒,有解毒消肿的功效 $^{[1]}$ ,是治疗过敏性鼻炎的药物。石胡荽主要产于广东和广西等地。石胡荽的化学成分有萜类、甾体、黄酮类、脂肪酸、香豆素等 $^{[2]}$ 。国内外关于石胡荽挥发性成分的研究报道较少。本文采用 GC-MS联用技术,研究比较了广东和广西 2个产地石胡荽的挥发性成分和指纹图谱。

# 1 实验部分

### 1.1 材料与仪器

石胡荽产自广东和广西,由制药公司购自佛山市医药集团中药饮片厂和广州清平药材市场,经鉴定为石胡荽的干燥茎叶。将药材样品粉碎,按中国药典 2000版挥发油测定法 (甲)分别提取挥发油,经乙醚萃取和无水硫酸钠干燥后得到淡黄色油状物。无水硫酸钠和乙醚为分析纯试剂。HP5890型气相色谱仪,HP5972MSD检测器 (美国惠普公司)。

### 1.2 GC-MS条件

GC: NWAX柱 (30 m × 0. 25 mm × 0. 25 μm); 进样口温度: 280 ℃; 接口温度: 250 ℃; 载气 为氦气, 流速为 1 mL• m in⁻¹; 柱前压为 80 kPa, 分流比为 30: 1; 程序升温: 60 ℃保持 5 m in, 以

收稿日期: 2005-11-27; 修回日期: 2006-07-05

基金项目: 广东省科技计划重大专项 (A 301020101); 广东省自然科学基金资助项目 (01142)

作者简介: 谭丽贤 (1980- ), 女,广东佛山人,硕士研究生; 曾 志,联系人,Tel 020- 39310187, E-mail zhizen@ scnu. edu. cn. 1994-2010 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

2 ℃• m in<sup>-1</sup>的速率升至 240 ℃, 保持 10 m in, MS 电离方式: EI 电子能量: 70 eV; 离子源温度: 180 ℃: 离子流: 200 μA: 扫描质量范围: 50~500 u,

# 2 结果与讨论

### 2.1 石胡荽挥发性成分

广东产石胡荽和广西产石胡荽的挥发油收率分别为 0.1% 和 0.14%, 2个产地的石胡荽挥发油收率的差异不大。按实验部分 GC – MS条件对挥发性成分进行分析,获得广东、广西2个产地的石胡荽的总离子流色谱图,如图 1 所示。对总离子流色谱图中的各色谱峰经质谱扫描后得到质谱图,经过质谱数据库检索,人工谱图解析<sup>[3]</sup>,按各色谱峰的质谱图与文献核对,并查对有关质谱文献 [4-7],从而确定出2个产地石胡荽的化学组成,并应用峰面积归一化法确定了它们的相对含量,其结果见表 1。

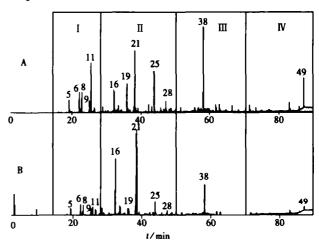



图 1 石胡荽挥发性成分总离子流色谱图

Fig. 1 Total ion chromatograms of the volatile compositions of *C. minima* 

A. 广东(Guangdong); B. 广西(Guangxi)

表 1 石胡荽挥发性成分的化学组成

Table 1 Volatile compositions of C. m in ima

| Peak<br>No | Retention time $t_{\rm R}$ /m in | C on pound                                                                          | S in ilarity/% | Fom u la                        | М г | Relative content // |          |
|------------|----------------------------------|-------------------------------------------------------------------------------------|----------------|---------------------------------|-----|---------------------|----------|
|            |                                  |                                                                                     |                |                                 |     | Guangdong           | Guangx i |
| 1          | 3 06                             | α-P inene(α-蒎烯)                                                                     | 95             | C <sub>10</sub> H <sub>16</sub> | 136 | _                   | 1. 55    |
| 2          | 9 58                             | 1-Methy <del>1</del> 2-(1-methy lethy 1) - benzene(1-甲基-2-(1-甲基乙                    | 94             | $C_{10}H_{14}$                  | 134 | -                   | 1. 02    |
|            |                                  | 基 )-苯 )                                                                             |                |                                 |     |                     |          |
| 4          | 15 64                            | 3-H exer-1-ol(3-己烯-1-醇)                                                             | 91             | $C_6H_{12}O$                    | 100 | _                   | 0. 41    |
| <b>5</b> * | 19 38                            | A risto len(马兜铃烯 )                                                                  | 60             | $C_{15}H_{24}$                  | 204 | 2. 17               | 1. 74    |
| 6          | 22 30                            | $(E)$ -4- $(2', 4', 4'$ -Trim ethylbicyclo $[4, 1, 0]$ hep $\pm 2'$ -err $3'$ -yl)- | 81             | $\mathrm{C_{14}H_{20}O}$        | 204 | 3. 87               | 2. 68    |
|            |                                  | 3-buten-2-one((E)-4-(2', 4', 4' 三甲基二环 [4, 1, 0]-3'-2'-                              |                |                                 |     |                     |          |
|            |                                  | 庚烯基)-3-丁烯-2 <b>酮</b> )                                                              |                |                                 |     |                     |          |
| 8          | 23 05                            | 2-(2-Fu rany ln e thy l) -5-m e thy l fu ran (2-(2-甲基呋喃基)-5-甲                       | 64             | $C_{10}H_{10}O_{2}$             | 162 | 3. 67               | 2, 30    |
|            |                                  | 基 呋喃)                                                                               |                |                                 |     |                     |          |
| g*         | 25 17                            | α-H umu lene (α-葎草烯)                                                                | 55             | $C_{15}H_{24}$                  | 204 | 1. 82               | 1. 59    |
| 10         | 25 52                            | 1, 7-D in ethyl-7-(4-methyl-3-pentenyl) tricyclo[2, 2, 1, 02, 6]                    | 97             | $C_{15}H_{24}$                  | 204 | -                   | 0. 51    |
|            |                                  | heptane(1,7-二甲基-7-(4-甲基-3-戊烯基)-三环[2,2,1,02,                                         |                |                                 |     |                     |          |
|            |                                  | 6]庚烷)                                                                               |                |                                 |     |                     |          |
| 11         | 25 67                            | trans-Chrysanthenyl acetate(反式-乙酸菊花烯酯 )                                             | 63             | $C_{12}H_{18}O_2$               | 194 | 11. 93              | 1. 82    |
| 12         | 26 58                            | trans-Caryophy llene(反式-丁香烯)                                                        | 96             | $C_{15}H_{24}$                  | 204 | 0. 84               | 1. 48    |
| 13         | 28 36                            | 6, 6D in ethyFb icyclo[3, 1, 1] hept2-ene2-carboxaldehyde(6,                        | 86             | $C_9H_{10}O_2$                  | 150 | 1. 11               | 1. 67    |
|            |                                  | 6-二甲基-二环 [ 3, 1, 1]庚-2-烯-2-羟基乙醛)                                                    |                |                                 |     |                     |          |
| 14         | 28 96                            | β-Santalene(β-檀香萜)                                                                  | 93             | $C_{15}H_{24}$                  | 204 | 0. 85               | 0. 60    |
| 16         | 32 42                            | Myrtenyl acetate(乙酸桃金娘烯酯)                                                           | 60             | $C_{12}H_{18}O_2$               | 194 | 4. 24               | 22. 14   |
| 17         | 33 20                            | Albocimene(别罗勒烯)                                                                    | 84             | $C_{10}H_{16}$                  | 136 | 0. 60               | -        |
| 19         | 36 06                            | 1B, 4, 4-Trin ethy ł b icy c b [ 3, 2, 0 ] h ept 6-en-2B-ol (1B, 4, 4- $\Xi$        | 53             | $\mathrm{C_{10}H_{16}O}$        | 152 | 4. 98               | 1. 68    |
|            |                                  | 甲基-二环 [ 3, 2, 0] -6-庚烯-2B醇)                                                         |                |                                 |     |                     |          |
| 20         | 37. 98                           | Propanoic acid, 2-m ethyl, 3, 7-dim ethyl-2, 6-octadienyl ester(2-                  | 86             | $C_{14}H_{24}O_{2}$             | 224 | 1. 06               | 1. 03    |
|            |                                  | 甲基丙醇酸-3,7二甲基-2,6辛二烯酯)                                                               |                |                                 |     |                     |          |
| 21         | 38 56                            | Myrtenol(桃金娘烯醇)                                                                     | 93             | $\mathrm{C_{10}H_{16}O}$        | 152 | 14. 34              | 35. 34   |
| 22         | 39 18                            | N erol(橙花醇)                                                                         | 91             | $\mathrm{C_{10}H_{18}O}$        | 154 | 0. 49               | 0. 61    |
| 23         | 42 36                            | anti-9-Methyl-1, 6-methanofluorene(反-9-甲基-1, 6-甲烷芴)                                 | 83             | $C_{12}H_{18}O_2$               | 194 | 1. 17               | 0. 63    |
| 25         | 43 98                            | 2·M ethy ł 5-( 1·m ethy lethy l) - phen ol( 2·甲基- 5·(1·甲基乙基)-                       | 91             | $\mathrm{C_{10}H_{14}O}$        | 150 | 7. 41               | 3. 16    |
|            |                                  | 苯酚)                                                                                 |                |                                 |     |                     |          |
| 26         | 45 86                            | β-Ionone(β紫罗兰酮)                                                                     | 96             | $C_{13}H_{20}O$                 | 192 | 0. 90               | 0. 64    |
| 28*        | 47. 33                           | Caryophyllene ox ide(石竹烯氧化物 )                                                       | 68             | $\mathrm{C_{15}H_{24}O}$        | 220 | 2. 19               | 1. 18    |
| 29         | 48 29                            | 2-Ethyl-4-methylphenylmethylether(2-乙基-4-甲苯基甲醚)                                     | 80             | $\mathrm{C_{10}H_{14}O}$        | 150 | 0. 71               | _        |

#### (续表 1)

| Peak | R etention time  | C 1                                                               | S in ilarity/% | Fom u la                 | <i>M</i> <sub>r</sub> | Relative content ₱ |          |
|------|------------------|-------------------------------------------------------------------|----------------|--------------------------|-----------------------|--------------------|----------|
| Να   | $t_{ m R}$ /m in | C an pound                                                        |                |                          |                       | Guangdong          | Guangx i |
| 30   | 48 76            | 5·M ethy ł·2·( 1·m ethy lethy l) - phen ol( 5·甲基-2·(1·甲基乙基) - ##N | 83             | $C_{10}H_{14}O$          | 150                   | 0. 63              | 0. 66    |
|      |                  | 苯酚)                                                               |                |                          |                       |                    |          |
| 32   | 51 65            | Famesol(法呢醇 )                                                     | 90             | $C_{15}H_{26}O$          | 222                   | 0. 60              | 0. 47    |
| 33   | 55 19            | Calarene(白菖油萜 )                                                   | 83             | $C_{15}H_{24}$           | 204                   | 0. 48              | -        |
| 34   | 55 63            | 6, 10, 14-Trim ethy t2-pen tadec anone (6, 10, 14三甲基-2十五          | 86             | $C_{18}H_{36}O$          | 268                   | 0. 72              | -        |
|      |                  | 酮 )                                                               |                |                          |                       |                    |          |
| 35   | 56 65            | Patchou li alcoho l(广藿香醇 )                                        | 99             | $\mathrm{C_{15}H_{26}O}$ | 222                   | 0. 59              | -        |
| 37   | 57. 47           | 2·M ethy t·5-(1-m ethy lethy 1)-phen ol(2-甲基-5-(1-甲基乙基)-          | 93             | $\mathrm{C_{10}H_{14}O}$ | 150                   | 0. 59              | -        |
|      |                  | 苯酚)                                                               |                |                          |                       |                    |          |
| 38   | 58 27            | Thym ol(麝香草酚)                                                     | 94             | $\mathrm{C_{10}H_{14}O}$ | 150                   | 14. 14             | 7. 59    |
| 39   | 58 61            | α-C edren e( α 柏木烯 )                                              | 89             | $C_{15}H_{24}$           | 204                   | 0. 59              | -        |
| 49   | 87. 14           | Hexadecanoic acid(棕榈酸)                                            | 96             | $C_{16}H_{32}O_2$        | 256                   | 4. 26              | 1. 67    |

<sup>\*</sup> The compounds with similarity under 80% were not listed on the table except for those with higher contents

广东产石胡荽的挥发性成分鉴定出 43种,广西产石胡荽的挥发性成分鉴定出 32种。在 2个产地石胡荽中鉴定出共有成分 26种,其中相对含量超过 1% 的共有成分 15种:马兜铃烯、(E)-4-(2', 4', 4') 三甲基二环 [4, 1, 0] -3'-2'-庚烯基 [4, 1, 1] -2-万烯 [4, 1, 1] -2-万米 [4,

### 2.2 主要成分含量的比较

在广东产的石胡荽的挥发性成分中相对百分含量较高的 8种化合物分别是: 桃金娘烯醇 (14.34%)、麝香草酚 (14.14%)、反式-乙酸菊花烯酯 (11.93%)、2甲基-5-(1甲基乙基) - 苯酚 (7.41%)、1B, 4 4三甲基 二环 [3,2,0] -6-庚烯-2B醇 (4.98%)、棕榈酸 (4.26%)、乙酸桃金娘烯酯 (4.24%)、(E) -4-(2',4',4')三甲基二环 [4,1,0] -3'-2'-庚烯基)-3-丁烯-2·酮 (3.87%),8种化合物的总含量占所有化合物的 (3.17%);在广西产的石胡荽中,挥发性成分中相对百分含量较高的 8种化合物分别是: 桃金娘烯醇 (35.34%)、乙酸桃金娘烯酯 (22.14%)、麝香草酚 (7.59%)、2-甲基-5-(1-甲基乙基)苯酚 (3.16%)、(E) -4-(2',4',4')三甲基二环 [4,1,0] -3'-2' 庚烯基)-3-丁烯-2·酮 (2.68%)、2-(2-甲基呋喃基)-5-甲基 呋喃 (2.36%)、α 依兰烯 (2.13%)、反式 -乙酸菊花烯酯 (1.82%),8种化合物的总含量占所有化合物的 (2.36%) 75.76%。

#### 2.3 色谱指纹图谱分区比较

2个产地的石胡荽的总离子流色谱图既有相似的特征,又有差别。广东产石胡荽的挥发性成分的色谱峰较多,第 I、 II、 III区均有较多的峰;广西产石胡荽的挥发性成分的色谱峰较少,而且相对百分含量均较小。第 I 区的相似性较大,特征峰 5、6、8、9出峰稳定,并且其相对百分含量差异不大。第 II 区的峰较密集,而且差异性较大,特征峰 16、21在广西产的石胡荽中相对百分含量较大,但在广东产的石胡荽中相对百分含量较小。第 III区也是峰密集区,但是峰的相对百分含量都较小,差异也不大。特征峰 38的相对百分含量差异不大。第 IV区的峰数比较少,特征峰 48的相对百分含量差异不大。

#### 表 2 石胡荽挥发性成分相对峰面积的比较

Table 2 Comparison of the relative peak areas for volatile compositions of C. minima

| Section | Peak No | Com pound                                                                    | α      | Sr        |          |  |
|---------|---------|------------------------------------------------------------------------------|--------|-----------|----------|--|
| Section |         |                                                                              | u      | Guangdong | Guangx i |  |
| I       | 5       | Aristolen(马兜铃烯)                                                              | 0 841  | 0 590     | 0 755    |  |
|         | 6       | 4-(2', 4', 4'-Trimethylbicyclb[4, 1, 0]hept2'-err3'-yl)-3-buterr2-one(4-     | 0 968  | 1 055     | 1. 165   |  |
|         |         | (2′, 4′, 4′-三甲基二环 [4, 1, 0]-3′-2′-庚烯基)-3-丁烯-2酮)                              |        |           |          |  |
|         | 8       | 2-( 2-Furany ln ethyl) -5-m ethyl furan( 2-( 2-甲基呋喃基 ) -5-甲基-呋喃 )            | 1 000  | 1 000     | 1 000    |  |
|         | 9       | α-Hum u lene(α-葎草烯)                                                          | 1 092  | 0 496     | 0 691    |  |
|         | 11      | trans-Chrysanthenylacetate(反式-乙酸菊花烯酯)                                        | 1. 114 | 3 249     | 0 791    |  |
| II      | 16      | Myrtenyl acetate(乙酸桃金娘烯酯)                                                    | 1 406  | 1 154     | 9 626    |  |
|         | 19      | 1B, 4, 4-T rim ethy bicyclo[ 3, 2, 0] hep t 6 en - 2B - o l( 1B, 4, 4-三甲基-二环 | 1 564  | 1 356     | 0 733    |  |
|         |         | [3, 2, 0]-6 <del>庚</del> 烯-2B <b>醇</b> )                                     |        |           |          |  |
|         | 21      | M yrtenol(桃金娘烯醇)                                                             | 1 673  | 3 907     | 15 376   |  |
|         | 25      | 2-M ethy I-5 ( 1-m ethy lethy l)-phenol(2-甲基-5 (1-甲基乙基)-苯酚)                  | 1 908  | 2 019     | 1 376    |  |
|         | 28      | C ary ophyllene ox ide (石竹烯氧化物 )                                             | 2 054  | 0 596     | 0 515    |  |
| III     | 38      | Thym ol(麝香草酚)                                                                | 2 528  | 3 854     | 3 304    |  |
| IV      | 49      | H exad ecan oic a cid(棕榈酸)                                                   | 3 781  | 1 160     | 0 728    |  |

由表 2可以看出,在第 I 区中,反式 乙酸菊花烯酯的相对百分含量存在着一定的差异: 广东产的石胡荽较高,而广西产的石胡荽较低,其余 4种化合物的相对百分含量则差异不大。在 II 区中,乙酸桃金娘烯酯和桃金娘烯醇的相对百分含量存在较大差异,在广西产的石胡荽中的百分含量比广东产的石胡荽高得多。在 III区和 IV区中,麝香草酚和棕榈酸的相对百分含量的差异不大。根据化学分类学,反式-乙酸菊花烯酯是菊科植物特有的化学成分,而桃金娘烯醇和乙酸桃金娘烯酯则是石胡荽的主要成分。以上分析可以看出,广东产的石胡荽与广西产的石胡荽在品质上存在着一定的差异。

## 3 结 论

本文采用气相色谱 – 质谱联用技术 (GC – MS)对广东和广西 2个产地石胡荽的挥发性成分进行了研究。其主要成分为桃金娘烯醇、反式-乙酸菊花烯酯、乙酸桃金娘烯酯、棕榈酸、麝香草酚。石胡荽由于产地多,原植物种源复杂,给质量控制带来了一定困难。结合气相色谱指纹图谱研究,分析了 2个产地石胡荽之间的差异性。这些差异是否会对药效产生显著影响,还需进一步的药理试验证明。色谱特征的"整体性"和"模糊性"是中药色谱指纹图谱分析最基本的属性<sup>[9]</sup>。石胡荽指纹图谱研究从药材整体色谱图入手,为药材质量的分析与控制提供了可靠的依据,这比以单一或几个化学对照品作为鉴别标准要全面得多。另一方面,"色谱指纹图谱分区"法能快速、清晰、准确地区分和比较不同产地的石胡荽。实验证明,这种方法简单、快速、有效,为建立石胡荽的色谱指纹图谱提供了一种新的方法。

## 参考文献:

- [1] 国家药典委员会. 中华人民共和国药典(一部)[M]. 2000年版. 北京: 化学工业出版社, 2000 285
- [2] 褚红芬, 孔德云, 恽 英. 石胡荽中的甾醇成分 [J]. 中草药, 1994, (11): 612
- [3] 曾志,石建功,曾和平,等.有机质谱学在中药鱼腥草研究中的应用[J].分析化学,2003,31(4):399-404
- [4] MASADA Y. Analysis of essential oils by gas chrom atography and mass spectrometry[M]. New York: John Wiley and Sons Inc. 1976. 48
- [5] HELLER S.R. EPA/N.H. Mass Spectral Data Base[M]. Washington, U.S. Government Printing Office, 1980. 45.
- [6] 丛浦珠. 质谱学在天然有机化学中的应用[M]. 北京: 科学出版社, 1987. 31.
- [7] 中国质谱学会有机专业委员会. 香料质谱图集[M]. 北京: 科学出版社, 1992 76
- [8] 曾 志,杨东晖,宋力飞,等.高效液相色谱指纹图谱应用于板蓝根的鉴定[J].分析化学,2002,30(7):849 852
- [9] 谢培山. 中药制剂色谱指纹图谱(图像)鉴别[J]. 中成药, 2000, 22(6): 391-395