不同因素影响下 Fe() 水解中和法制备 FeOOH 矿相的光谱分析

熊慧欣¹,梁剑茹¹,徐轶群²,周立祥^{1*}

南京农业大学资源与环境科学学院,江苏南京 210095
 扬州大学环境科学与环境工程学院,江苏扬州 225009

2. 扬州八子环境科子可环境工程于阮,江苏扬州 223009

摘要 羟基氧化铁 (FeOOH) 作为重金属等污染物的吸附材料倍受关注,但不同因素作用下形成的 FeOOH 产物矿相、结构性质的差异及其对环境功能的影响,却少有报道。采用 X 射线衍射仪,红外光谱仪, 扫描电子显微镜和激光粒度分析仪,系统考察了 Fe()溶液水解中和形成 FeOOH 时,不同作用因素如铁 盐种类、p H 和温度等对产物矿相的影响。结果表明,pH 8 条件下,Fe()溶液水解产物均为二线水铁矿 (Fe₅ HO₈·4H₂O);随着 p H 升高,Fe₅ HO₈·4H₂O 会向 - FeOOH 相转化。Cl⁻和 NO₅离子的存在分别有 利于 - FeOOH 和 - FeOOH 的形成;SO²⁺ 会阻碍 Fe₅ HO₈·4H₂O 向 - FeOOH 相转化;Fe²⁺存在时,会促 进 Fe₅ HO₈·4H₂O 向 - FeOOH 相转化。加热陈化,可促进 Fe₅ HO₈·4H₂O 转化为 - FeOOH,且利于良好 结晶 - FeOOH 的形成。但 p H 5,富含 Cl⁻的 Fe()溶液加热水解利于 - FeOOH 的生成。不同因素影响 下形成的 FeOOH,在矿相、表面基团、颗粒形貌和粒径大小上存在一定的差异。

关键词 羟基氧化铁;水铁矿;四方纤铁矿;针铁矿;光谱分析 中图分类号:O614 文献标识码:A DOI: 10.3964/j.issn.1000-0593(2009)07-2005-05

引 言

-7

采矿、电镀、电子和制革等行业产生的废水,常含有高 浓度重金属,若未经处理排入环境中,易引起地表水和地下 水的污染^[1,2]。目前,利用铝硅酸盐矿物、碳酸盐矿物和铁 的氢氧化物等去除环境中的重金属是研究者们关注的热 点^[3-7]。通过非金属矿物的沉淀、离子交换和吸附等作用, 可有效地去除环境介质中的污染物^[8,9]。通常,具有不同形 貌结构特征和界面性质的环境矿物材料与重金属间会发生 不同的相互作用^[10,11]。羟基氧化铁(FeOOH)作为一种非金 属矿物广泛存在于矿山废水、土壤和水体沉积物等自然环 境中,它通常以针铁矿(Goethite, -FeOOH)、纤铁矿(Lepidocrocite, -FeOOH)和四方纤铁矿(Akagan éte, -FeOOH)等多种同质异相体形式存在^[12]。羟基氧化铁和其 他氢氧化物因具有较稳定的化学性质,较高的比表面积和 细微的颗粒结构,在环境治理中被日益重视[13-16]。由于矿物 的转化迁移及环境功能与颗粒物的形貌结构、界面性质等 密切相关^[17,18],有必要对羟基氧化铁的结构界面特性进行 表征,为其在环境治理中的应用提供理论依据。在利用同一

方法合成羟基氧化铁时,不同条件下形成产物的矿相、结构 界面特性的比较还少有报道。本文系统地对不同因素作用 下 Fe()溶液水解中和形成产物 FeOOH 的结构特征和界 面性质进行了表征,筛选并获得具有良好应用前景的有效 吸附剂,以应用于治理土壤与水中的重金属和其他污染物。

1 材料与方法

1.1 化学试剂

FeCl₃ · 6 H₂O, Fe (NO₃)₃ · 9 H₂O, FeSO₄ · 7 H₂O 和 Fe₂ (SO₄)₃ · x H₂O 等,均为分析纯。

1.2 不同因素作用下羟基氧化铁的制备

羟基氧化铁的制备方法[19,20]与影响因素见表 1。沉 淀物形成后取出,离心,透析(3 000 Dn)去杂质离子 Cl⁻, NO₃和 SO²⁺等,干燥,贮备。

1.3 样品的表征与分析方法

样品的晶相用德国布鲁克 AXS 公司的 D8 ADVANCE 型多晶 X射线衍射仪分析, XRD 选择的工作条件为: Cu K 线,40 kV,200 mA,扫描速度 6°·min⁻¹,扫描范围 10~ 80°;采用傅里叶远红外光谱仪(FTIR)测定颗粒的表面结构

作者简介: 熊慧欣, 女, 1976年生, 南京农业大学资源与环境学院博士研究生 e-mail: huixinx @163.com *通讯联系人 e-mail: lxzhou @njau.edu.cn

收稿日期: 2008-05-16,修订日期: 2008-08-18

基金项目:国家自然科学基金项目(20677028)资助

组成及键合情况;样品的外貌结构由荷兰 PHILIPS 的 XL-30 环境扫描电子显微镜(SEM)测定;样品颗粒的粒径分布 范围采用 LS-230 型激光粒度分析仪测定。溶液 pH 值由 pHS-3C 型数字 pH 计测定。

Table 1	Prepared meth	ods for iron	oxyhydroxide	precipitates	under	different	conditions

制备方法(磁力搅拌下)	反应铁盐	pН	温度	产物见图
0.25 mol · L ⁻¹ FeCl ₃ 溶液逐滴加 0.5 mol · L ⁻¹ NaOH 至一定 p H 值	FeCl ₃	8,10,12	25	(a)
0. 25 mol ·L ⁻¹ Fe(NO ₃)₃ 溶液逐滴加 0. 5 mol ·L ⁻¹ KOH 至一定 p H 值	Fe(NO ₃) ₃	8,10,12	25	(b)
0. 25 mol ·L ⁻¹ Fe ₂ (SO ₄) ₃ 溶液逐滴加 0. 5 mol ·L ⁻¹ KOH 至一定 p H 值	$Fe_2(SO_4)_3$	8,10,12	25	(c)
0.5 mol ·L ⁻¹ FeSO4 和 0.25 mol ·L ⁻¹ Fe2(SO4)3 的混合溶液逐滴加 0.5 mol ·L ⁻¹ KOH至pH8.0	FeSO4 和 Fe ₂ (SO ₄) ₃	8	25	(c)
0. 25 mol ·L ⁻¹ Fe ³⁺ 溶液逐滴加 0. 5 mol ·L ⁻¹ KOH至一定 pH 值	FeCl ₃ , Fe(NO ₃) ₃ , Fe ₂ (SO ₄) ₃	12	25	(d)
0. 1 mol ·L ^{- 1} FeCl₃ 溶液逐滴加 0. 1 mol ·L ^{- 1} NaOH 至一定 p H 值后加热陈化 6 d	FeCl ₃	5,8,10	60	(e)
0. 25 mol ·L ^{- 1} Fe(NO3)3 或 Fe2(SO4)3 溶液静置 1 d, 逐滴加 2. 5 mol ·L ^{- 1} KOH 至一定 p H 值后加热陈化 6 d	Fe(NO ₃) ₃ 或Fe ₂ (SO ₄) ₃	8,10,12	60	(f)

2 结果与讨论

-7

2.1 不同因素作用下形成产物 FeOOH的 XRD 图谱及矿相

不同影响因素 (p H、铁盐种类、温度和 Fe²⁺离子) 作用 下,所得产物 FeOOH 的 XRD 图谱(图 1 所示)。在常温(25)磁力搅拌条件下, p H 8, 10, 12 时, FeCl₃, Fe(NO₃)₃和 Fe₂(SO₄)₃ 溶液水解形成产物的 XRD 图谱分别见图 1 (a) ~ (c)。对照 JCPDS 标准数据卡 29-0713 (-FeOOH), 34-1266 (-FeOOH)及 Cornell 和 Schwertmann 曾报道的 Fe₅ HO₈ · 4H₂O 的 XRD 图谱^[12, 21],高铁盐溶液水解形成产物 FeOOH 的矿相依为 FeCl₃: Fe₅ HO₈ · 4H₂O, -FeOOH 和 - FeOOH; Fe₅ HO₈ · 4H₂O, Fe₅ HO₈ · 4H₂O 和 -FeOOH; Fe₅ HO₈ · 4H₂O。显然, pH 10 且有 Cl⁻ 离子存在时, 易形成 -FeOOH; pH 8 条件下,所有铁盐溶液水解产物均为 Fe₅ HO₈ · 4H₂O,随着 pH 升高, Fe₅ HO₈ · 4H₂O 会向,-FeOOH 相转化,即 pH 10 时,FeCl₃ 溶液水解形成 -FeOOH; pH 12 时,FeCl₃ 和 Fe (NO₃)₃ 溶液水解均形成 -FeOOH,但明显有后者反应产物的结晶更好[见图 1 (d)]。 由此可见,Cl⁻ 和 NO₃ 离子的存在分别有利于 -FeOOH 和 -FeOOH 形成;SO₄⁻ 会阻碍 Fe₅ HO₈ · 4H₂O 向 -FeOOH 相转化^[12,21]。当其他条件均不变,pH 8 时,于 Fe₂ (SO₄)₃ 溶液加入一定比例的 FeSO₄ 溶液,可得到结晶粉末 -FeOOH产物[见图1(c)],这是由于Fe²⁺作用下,会促进

Fe5 HO8 ·4 H2O 向 - FeOOH 相转化^[12, 21]。

常温磁力搅拌、不同 p H 值条件下所得 FeOOH 新鲜产物,置于 60 下加热陈化 6 d,最后形成产物样品的 XRD 图 谱见图 1 (e)和(f)。由 XRD 谱线可知,FeCl₃ 溶液水解产物加热陈化后所得 FeOOH 样品分别为结晶较好的 -FeOOH (p H 5)和结晶极好的 -FeOOH(p H 8, 10); Fe(NO₃)₃ 或 Fe₂(SO₄)₃ 溶液水解产物加热陈化后所得 FeOOH 样品均为结晶极好的 -FeOOH(p H 8, 10, 12)。可见,加热陈化可促进 Fe₅ HO₈ ·4H₂O 转化为 -FeOOH,且有利于良好结晶 - FeOOH的形成;但 p H 5,富含 Cl⁻ 的铁盐溶液加热水解有利于结晶 -FeOOH的形成^(12,21)。

2.2 样品的 IR图谱及表面官能团

常温下,不同影响因素作用时合成的 FeOOH 样品的 IR 光谱图(图 2 所示)。依据前人所报道铁氧化物表面基团对应 的 IR 谱线^[12, 22-24]可知,在所有样品的红外光谱线中,均于 3 430~3 100 cm⁻¹,1 400~1 640 cm⁻¹处分别出现了 OH 的 伸缩振动吸收峰、H --O --H 的变形振动吸收峰;1 005~ 1 125 cm⁻¹处的吸收峰为 SO²⁺ 基团的振动峰,这表明产物 FeOOH 对 SO²⁺ 有一定的吸附能力。900~450 cm⁻¹处的吸 收峰为 FeOOH 的特征吸收峰,约 700 和 4 69 cm⁻¹处为 Fe₅ HO₈ · 4H₂O 的特征吸收峰;约 891,795,632 和 459 cm⁻¹处为 - FeOOH 的特征吸收峰; - FeOOH 的特征吸收峰 大约出现于 684 和 489 cm⁻¹处。可见, IR 光谱与 XRD 谱线 一致反应了铁盐溶液水解及加热陈化产物的矿相组成。

2.3 样品的 SEM 图像及颗粒形貌

用于污染物吸附的环境矿物材料结晶颗粒大小、颗粒间 团聚或凝聚现象和表面积相对大小常可由组成矿物的 SEM 颗粒形貌特征直观反映。不同条件下,Fe()溶液水解中和 形成的 FeOOH 颗粒形貌的扫描电镜图(图 3 所示)。铁盐 Fe₂(SO₄)₃ 在 p H 8,10 和 12,及常温磁力搅拌下形成产物 均为 Fe₅ HO₈ ·4H₂O,其中,Fer SO 25 (p H 8)样品的团 聚颗粒形貌结构为絮状棉花团或雪花形状,团聚而成的大颗 粒尺寸较均匀,其直径大部分位于 5~20 μm 范围内。

Fig. 2 Infrared spectra of iron oxyhydroxides prepared under different conditions

Gth-NO-25 ℃

7

Fig. 3 SEM images of the prepared crystalline FeOOH

Gth-NO/SO-60 ℃

Gth-SOFe(Ⅱ)-25℃

铁盐 FeCl₃ 溶液在 pH 10、常温磁力搅拌下所得 -FeOOH产物 Aka-Cl⁻25 样品,及 FeCl₃ 溶液在 pH 5和 60 加热条件下所得 -FeOOH产物 Aka-Cl⁻60 样品,其 颗粒或团聚颗粒的形貌结构均为细小絮状棉花团和块状体, 颗粒尺寸大小不均一,小颗粒为纳米级尺寸,而大颗粒直径 约为 10~20 μ m(块状体的厚度直径),其中,Aka-Cl⁻25 样品中颗粒总体上比 Aka-Cl⁻60 要大,所以,其比表面积 要小于 Aka-Cl⁻60 。

- FeOOH产物中,常温磁力搅拌下所得产物 Gth NO-25 (pH 12)样品的团聚颗粒为板块状形貌;铁盐 Fe2 (SO₄)₃和亚铁盐 FeSO₄的混合液在 pH 8、常温磁力搅拌下 所得产物 Gth SO-Fe()-25 样品颗粒凝结成絮状大颗粒, 团聚颗粒直径约小于 5 μ m(宽度直径);铁盐 Fe2(SO₄)₃或 Fe(NO₃)₃溶液在 pH 8,10 或 12 时水解所得产物,于 60 加热条件下转化而成的 Gth NO/SO-60 样品由大小约为长 ×宽 15 μ m ×20 μ m 的絮状独立椭球团聚颗粒组成,该椭 球型大颗粒又由针状形细小颗粒团聚而成。从上述三种 -FeOOH 样品的 SEM 团聚颗粒形貌可看出,其平均尺寸大小 关系有 Gth SO-Fe()-25 < Gth NO/SO-60 < Gth NO-

25 ,但差异不很明显,可见,加热陈化和加入 Fe²⁺离子有 利于形成粒径更细小的 - FeOOH 颗粒或团聚颗粒产物。

2.4 样品的悬浮颗粒粒度分布

如图 4 所示, Fe5 HO8 ·4 H2O 样品 Fer SO-25 .几乎 占容积 95 %的悬浮颗粒粒径位于 5~100 µm 间, 整个容积 (100%)中的颗粒粒径平均值为 22.1 µm; -FeOOH 样品 Aka-Cl⁻25 和 Aka-Cl⁻60 , 其悬浮颗粒粒径基本分别位 于 5~100 µm 和 1~10 µm 间, 粒径平均值分别为 34.2 和 2.56 µm, Aka-Cl⁻25 样品颗粒粒径明显较 Aka-Cl⁻60 样品大得多; -FeOOH 样品 Gth-NO-25 , Gth-SO-Fe()-悬浮颗粒粒径均基本位于 5~100 和 Gth-NO/SO-60 25 µm间,粒径平均值依次对应为31.2,24.6,17.8µm。其中, 样品 Gth-NO/SO-60 的粒径小于样品 Gth-SO-Fe()-25

,与上述观察到的 SEM 形貌中颗粒粒径大小结果相反, 这可能与前者的椭球型大颗粒由针状细小颗粒团聚而成有 关。可见,样品 - FeOOH 的颗粒粒径分布范围与 SEM 形貌 一致有以 Aka-Cl⁻60 的粒径相对较小,故比表面积相对较 大;但样品 - FeOOH 颗粒粒径分布差异不明显,其原因可 能是沉淀形成过程中颗粒间极易发生团聚现象所造成的。

Fig 4 Particle diameter distribution of FeOOH suspensions(Volume statistics %)

3 结 论

(1) p H 8 时, Fe())溶液水解产物均为 Fe₅ HO₈ ·
4H₂O;随着 p H 升高, Fe₅ HO₈ · 4H₂O 会向 - FeOOH 相转 化; p H 12 时, FeCl₃ 和 Fe(NO₃)₃ 溶液水解均形成 FeOOH。Cl⁻和 NO₃ 离子的存在分别有利于 - FeOOH和 FeOOH相形成; SO²⁻ 会阻碍 Fe₅ HO₈ · 4H₂O 向 - FeOOH 相转化。Fe²⁺ 会促进 Fe₅ HO₈ ·4 H₂O 向 - FeOOH 相转化。

(2) 加热陈化可促进 Fe₅ HO₈ · 4 H₂O 转化为 - FeOOH, 且有利于良好结晶 - FeOOH的形成; 但 p H 5, 富含 Cl⁻ 的 铁盐溶液加热水解有利于 - FeOOH 的生成。

(3) 不同影响因素作用下,Fe()溶液水解形成的 FeOOH 样品在矿相、表面基团、SEM 颗粒形貌及尺寸大小 和悬浮颗粒粒径分布上,存在一定的差异。

参考文献

- [1] Sharma Y C. Colloids Surf. A-Physiochem. Eng. Aspects, 2003, 215: 155.
- [2] Kowalski Z. J. Hazard. Mater., 1994, 37: 137.
- [3] Lehmann M, Zouboulis A I, Matis KA. Chemosphere, 1999, 39(6): 881.
- [4] Tzou Y M, Wang M K, Loeppert R H. Arch. Environ. Contam. Toxicol., 2003, 44: 445.
- [5] Lazaridis N K, Charalambous C. Water Res., 2005, 39: 4385.
- [6] ZHU Chun-shui, SUN Zhen-ya, GONG Wen-qi, et al(祝春水, 孙振亚, 龚文琪, 等). Research of Environmental Science(环境科学研究), 2003, 16(6): 57.

- [7] PENG Shurchuan, LI Hui-fu, CHEN Tian-hu, et al (彭书传,李辉夫,陈天虎,等). Acta Mineralogica Sinica (矿物学报), 2007, 27(2): 103.
- [8] CHEN Furxing, ZHOU Lirxiang(陈福星,周立祥). China Environmental Science(中国环境科学), 2006, 26(1): 11.
- [9] ZHOU Shun-gui, ZHOU Li-xiang, CHEN fu-xing(周顺桂,周立祥,陈福星). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2007, 27(2): 367.
- [10] Abdel-Samad H, Watson P R. Appl. Surf. Sci., 1997, 108: 371.
- [11] Taylor R W, Shen S Y, Bleam W F, et al. Clays Clay Minerals, 2000, 48(6): 648.
- [12] Cornell R M, Schwertmann U. Iron Oxides in the Laboratory. New York: VCH Publishers, 1991.
- [13] Lehmann M, Zouboulis A I, Matis KA. Environ. Pollut., 2001, 113: 121.
- [14] Lazaridis N K, Bakoyannakis D N, Deliyanni E A. Chemosphere, 2005, 58: 65.
- [15] Tzou Y M, Wang M K, Loeppert R H. Soil Sediment Contam., 2003, 12(1): 69.
- [16] SUN Zherrya, ZHU Churrshui, CHEN Hersheng, et al(孙振亚,祝春水,陈和生,等). Acta Petrologica et Mineralogica(岩石矿物学杂志), 2003, 22(4): 352.
- [17] WEIJun-feng, WU Da-qing(魏俊峰,吴大清). Advances in Earth Science(地球科学进展), 2000, 15(1): 90.
- [18] LIAO Li-bing(廖立兵), Dnal dG Fraser. Earth Science: Journal of China University of Geosciences(地球科学:中国地质大学学报), 2002, 27(5): 584.
- [19] Chitrakar R, Tezuka S, Sonoda A, et al. Journal of Colloid Interface and Science, 2006, 298: 602.
- [20] Johnson B B. Environmental Science and Technology, 1990, 24(1): 112.
- [21] JCPDS (Joint Committee on Powder Diffraction Standards), Mineral Powder Diffraction Files. International Center for Diffraction Data, Swarthmore: Pennsyvania. 2002.
- [22] ZHOU Shun-gui, ZHOU Li-xiang(周顺桂,周立祥). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2006, 26(15): 966.
- [23] Randall S R, Sherman D M, Ragnarsdottir K V, et al. Geochimica et Cosmochimica Acta, 1999, 63: 2971.
- [24] Murad E, Bishop J L. American Mineralogist, 2000, 85, 716.

Spectral Analysis of FeOOH Prepared Through Hydrolysis and Neutralization of Ferric Solutions under Different Conditions

XIONG Hui-xin¹, LIANG Jian-ru¹, XU Yi-qun², ZHOU Li-xiang¹*

1. College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China

2. College of Environmental Sciences and Engineering, Yangzhou University, Yangzhou 225009, China

Abstract In the present work, the iron oxyhydroxides were prepared by hydrolysis and neutralization of ferric ion from FeCl₃, Fe(NO₃)₃ and Fe₂ (SO₄)₃ salts, under the conditions of various p H values and aging for about 6 days at 60 . These iron minerals were identified and characterized using X-ray diffraction (XRD), infrared spectroscopy (IR) and scanning electron microscopy (SEM). In addition, particle size distributions of FeOOH suspension were also determined by LS-230 model laser grainsize analyzer. Results showed that ferrihydrite formed in the ferric solutions containing Cl⁻, NO₃ and SO₄²⁻ at p H values of 8 and 10. It was testified that the presence of Cl⁻ was favorable for the formation of akagan **é**te. Meanwhile, the poor crystalline goethite phase was observed to be formed in FeCl₃ or Fe(NO₃)₃ solution, but not be formed in Fe₂ (SO₄)₃ solution at p H 12. It indicated that the presence of SO₄²⁻ obviously inhibited the formation of goethite. However, the goethite phase formed in Fe₂ (SO₄)₃ solution. In addition, it was usually easy for the crystalline goethite to be transformed from the above generated ferrihydrite precipitates by aging at 60 . Furthermore, the phase of akagan **é**te also was obtained in the Cl⁻-rich acid (p H 5) solution by aging at 60 . In conclusion, the prepared FeOOH samples show some differences in their properties such as the phase, surface properties, morphology structures and particle size.

Keywords Iron oxyhydroxides; Ferrihydrite; Akagan éte; Goethite; Spectral analysis

* Corresponding author

(Received May 16, 2008; accepted Aug. 18, 2008)