污泥内层和外层胞外聚合物的三维荧光光谱特性研究

欧阳二明^{1, 2}, 王 伟¹, 龙 能³, 李 怀⁴

- 1. 清华大学环境科学与工程系,北京 100084
- 2. 南昌大学建筑工程学院, 江西 南昌 330031
- 3. 北京科技大学土木与环境工程学院,北京 100083
- 4. 长安大学环境科学与工程学院,陕西西安 710054

摘要 运用三维荧光光谱技术对污泥 LB-EPS和 TB-EPS的荧光特性进行了研究。实验结果表明,在污泥 LB-EPS和 TB-EPS中都有三个明显的荧光峰,分别为 Peak B($_{ex}/_{em} = 270 \sim 280 \text{ nm}/345 \sim 360 \text{ nm}$), Peak C ($_{ex}/_{em} = 330 \sim 340 \text{ nm}/410 \sim 430 \text{ nm}$)和 Peak D($_{ex}/_{em} = 390 \text{ nm}/450 \sim 470 \text{ nm}$)。其中 Peak B为类蛋白荧光 (Protein-like)、Peak C为可见区类富里酸荧光 (Visible fulvic-like)、Peak D为类腐殖酸荧光 (Hum ic-like)。 从各荧光峰的荧光强度来分析,LB-EPS和 TB-EPS中的主要成分都为类蛋白,然后依次为富里酸和腐殖酸。 浓度和 pH值对污泥 LB-EPS和 TB-EPS的三维荧光特性都有很大的影响,但影响程度略有区别,表明作为外层的胞外聚合物,LB-EPS表现出与 TB-EPS不全相同的化学结构。

关键词 外层胞外聚合物;内层胞外聚合物;污泥;三维荧光光谱 中图分类号: O657.3 文献标识码: A DOL 10.3964/j.issn.1000-0593(2009)05-1313-06

引 言

胞外聚合物 (extracellular polymeric substances, EPS)是微 生物在一定环境条件下,在其代谢过程中分泌的包围在微生 物细胞壁外的大分子有机多聚物,其有机部分主要由蛋白 质、多聚糖以及腐殖酸、DNA和脂类组成^[1]。EPS能作为抵 抗外界环境的保护层和营养吸收层,是微生物饥饿期间重要 的碳源和能源储备。通过连接细胞和其他物质,EPS可以稳 定污泥的絮体结构,为微生物提供最基本的生长条件;同时 从废水中吸收新陈代谢所需的营养,并形成保护屏障,抵抗 苛刻的外界环境^[2]。此外,EPS能改变污泥的表面特性、生 物絮凝、沉降性能及脱水性能等性质,从而影响污泥处理的 工艺和费用^[3,4]。污泥胞外聚合物可分为紧密粘附的胞外聚 合物 (tightly bound EPS, TB-EPS)和松散附着的胞外聚合物 (bosely bound EPS, LB-EPS)两部分。TB-EPS位于细胞体表 面,与细胞壁结合牢固;LB-EPS在 TB-EPS外层,结构松散, 密度较小,具有流变特性。近来的研究表明^[5,6],虽然 TB-EPS的各组分含量要大于 LB-EPS, 但对污泥沉降、絮凝和脱 水性能起着决定性作用是 LB-EPS, 而 TB-EPS对污泥这些性 能的影响相对要弱一些。

由于污泥胞外聚合物在废水生物处理中的重要作用,越 来越多的研究者 [58]采用各种技术方法对对它们的化学组成 和物理化学性质开展了深入的研究。Esparza-Soto和 Westerhoff^[8]采用荧光光谱技术对污泥胞外聚合物的特性进行了研 究,主要是基于污泥胞外聚合物中含有大量带有各种官能团 的芳香环结构以及未饱和脂肪链,其内含有多种不同的荧光 基团,这些荧光基团的荧光特性能表达胞外聚合物结构、官 能团、构型、非均质性等信息^[9,10]。三维荧光光谱(three-dimensional excitation emission matrix fluorescence spectroscopy; 3DEEM)能够获得激发波长和发射波长同时变化时的荧光强 度信息,能识别和表征复杂体系中荧光光谱重叠的对象,是 非常有用的光谱指纹技术 [11-14], 具有高灵敏度、高选择性、 高信息量、且不破坏样品结构等优点[15-18]。本文主要运用三 维荧光光谱技术研究和表征污泥外层胞外聚合物 (LB-EPS) 和内层胞外聚合物(TB-EPS)的荧光光谱性征及其浓度、pH 值效应。

- 1 材料与方法
- 1.1 污泥样品 试验污泥取自正常运转的北京市某城市污水处理厂的活

收稿日期: 2008-03-02, 修订日期: 2008-06-06

基金项目:国家高技术研究发展计划"863项目(2006AA06Z384)资助 作者简介:欧阳二明,1976年生,清华大学环境科学与工程系博士研究生

e-mail: oyem02@mails. tsinghua. edu. cn; youmer@ sina. com

性回流池,该厂采用普通活性污泥法处理城市污水,所取好 氧活性污泥的 VS/TS值为 72.7%,VSS/SS值为 76.0%。为 保证污泥性状不发生变化,从现场取回至实验室后,立即对 污泥进行 LB-EPS和 TB-EPS的提取。

1.2 污泥 LB-EPS和 TB-EPS提取方法

1314

采用改进的热提取法 (Modified heat extraction method)提 取 LB-EPS和 TB-EPS^[6]。用 TOC表征 LB-EPS和 TB-EPS的 总量,TOC测定采用 SHMADZU TOC Analyzer 5000A。提取到 的 LB-EPS和 TB-EPS的 TOC值分别为 46和 199.4mg·L⁻¹。 为研究 LB-EPS和 TB-EPS的荧光光谱特征及其浓度效应,采 用超纯水稀释配置 4种浓度 (46,23,11.5,5.75 mg C· L⁻¹)的 LB-EPS和 4种浓度 (199.4,99.7,49.85,24.93 mg C·L⁻¹)的 LB-EPS和 4种浓度 (199.4,99.7,49.85,24.93 mg C·L⁻¹)的 TB-EPS,分别测定它们的三维荧光光谱图。为研 究 LB-EPS和 TB-EPS的荧光光谱特征的 pH值效应,分别对 浓度为 23 mg C·L⁻¹的 LB-EPS和浓度为 99.7 mg C·L⁻¹的 TB-EPS测定其在 pH值为 3~12 (间隔为 1个单位)时的三维 荧光光谱图。样品 pH值均使用 0.1,1 mol·L⁻¹的 N₂OH和 0.1,1 mol·L⁻¹的 HCI溶液,并采用 10 μL的色谱进样器调 节。为减少浓度稀释效应,总共 10 mL的样品中加入酸碱的 量不超过 50 μL。

1.3 三维荧光光谱分析方法

三维荧光光谱图的测定在 Lum in escence Spectrometer LS-55荧光光度计 (美国 Perkin-Emer公司)上完成,提取到的污 泥 LB-EPS和 TB-EPS直接进行三维荧光扫描。Lum in escence Spectrometer LS-55荧光光度计使用氙弧灯为激发光源;激发 波长 ex = 230 ~ 400 nm,发射扫描波长 em = 300 ~ 550 nm; 激发和发射狭缝宽度为 5 nm;激发波长扫描间隔为 10 nm; 扫描速度为 1 200 nm · m in⁻¹;响应时间为自动方式;扫描光 谱进行仪器自动校正。采用 HLW inlab软件进行数据分析。

2 实验结果与讨论

2.1 LB-EPS和 TB-EPS的 3DEEMs

三维荧光光谱可以检测到胞外聚合物中不同类型的荧光 峰,如类腐殖酸荧光(Humic-like),类富里酸荧光(Fulviclike)和类蛋白荧光(Protein-like)等^[14, 19, 20]。

图 1所示为 LB-EPS和 TB-EPS的三维荧光光谱。由图可 知, 污泥 LB-EPS和 TB-EPS具有 3个相同的荧光峰类型, 其 中荧光峰 B (Peak B: ex / em = 270~280 nm /345~360 nm)为 类蛋白荧光,与胞外聚合物中的芳环氨基酸结构有关^[11,18]; 荧光峰 C(Peak C: ex/em = 330~340 nm /410~430 nm)为可 见区类富里酸荧光 (Visible fulvic-like), 与胞外聚合物中的羧 基和羰基结构有关; 荧光峰 D (Peak D: ex / en = 390 nm / 450 ~470 nm)为类腐殖酸荧光 (Humic-like)^[20-22]。这说明 LB-EPS和 TB-EPS虽然是分别位于污泥外层和内层的胞外聚合 物,但其组分和物质结构是基本相同的。从各荧光峰的荧光 强度来看,LB-EPS和 TB-EPS中的主要成分都为类蛋白,然 后依次是富里酸、腐殖酸。由表 1可知, 污泥 LB-EPS和 TB-EPS三个相同荧光峰所对应的荧光强度是不同的,例如对于 原始的胞外聚合物浓度而言 (LB-EPS浓度为 $46 \text{ mg C} \cdot L^{-1}$, TB-EPS浓度 199.4 mg C·L⁻¹时), TB-EPS的荧光峰 B、荧 光峰 C、荧光峰 D的荧光强度分别是 LB-EPS的 2.50, 1.83, 2.28倍, 说明位于内层的胞外聚合物具有更高的物质浓度, 这也与它们的 TOC浓度相一致。

Fig. 1 3D EEM s of the sludge EPS and L B-EPS

表 1和表 2分别列出了不同浓度和不同 pH条件下污泥 LB-EPS和 TB-EPS的三维荧光分析结果,包括各荧光峰位置 _{ex} / _{mx}相应荧光峰的荧光强度以及各荧光峰之间的荧光强 度比值。结果表明,虽然不同浓度、不同 pH条件下 LB-EPS 和 TB-EPS的荧光峰位置 _{ex} / _{en}会出现细微的红移或蓝移现 象,但表现出的荧光峰类型是基本相同的,说明浓度和 pH 值的影响不会从根本上改变 LB-EPS和 TB-EPS的物质组分 和化学结构。从各荧光峰荧光强度的比值来看,可以发现一 个很有意思的现象:同样的 pH条件下,TB-EPS的 B/C值、 B/D值都要大于 LB-EPS相应的 B/C值、B/D值;而 TB-EPS 的 C/D值却都要小于 LB-EPS相应的 C/D值。LB-EPS并不 表现出与 TB-EPS完全相同的荧光特性,位于外层

	Table 1	Fluorescenc	Fluorescence parameters of the sludge IB-EPS and LB-EPS at various concentrations								
	浓度 / (mg C・L ⁻¹)	Peak B		Peak C		Peak D					
		ex / em	荧光强度	ex / em	荧光强度	ex / em	荧光强度	\mathbf{B}/\mathbf{C}	B/D	C/D	
		/ nm	/a. u.	/ n m	/a. u.	/nm	/a. u.	_			
LB-EPS	46	270/359.5	271.7	330/424.0	109.1	390/457.0	70.6	2.49	3.85	1.55	
	23	270/352.0	143.3	330/420.0	50.3	390/453.5	38.1	2.85	3.76	1.32	
	11.5	270/355.5	73.7	330/436.5	23.8	390/454.0	21.1	3.09	3.49	1.13	
	5.75	270/354.0	33.4	340/429.5	13.2	390/455.5	13.5	2.53	2.47	0.98	
TB-EPS	199.4	280/355.5	680.0	330/425.0	199.7	390/461.5	161.2	3.40	4.22	1.24	
	99.7	280/357.0	611.4	330/416.5	138.7	390/465.0	95.4	4.41	6.41	1.45	
	49.85	280/353.0	496.5	330/409.5	87.3	390/464.5	60.1	5.69	8.26	1.45	
	24.93	280/356.5	328.2	330/417.0	45.2	390/456.0	31.6	7.25	10.40	1.43	

Table 2 Fluorescence parameters of the sludge EPS and LB-EPS at various pH values

	pH	Peak B		Peak C		Peak D		D /C	D /D	
		_{ex} / _{em} / nm	荧光强度 /a.u.	ex/ em/nm	荧光强度 /a.u.	ex/em/nm	荧光强度 /a.u.	B/C	B /D	C/D
LB-EPS	3	270/353.0	114.1	330/420	60.4	390/457	27.2	1.89	4.19	2.22
	4	270/352.0	127.9	330/417.0	67.4	390/457.0	30.9	1.90	4.14	2.18
	5	280/351.5	140.2	330/429.5	71.4	390/456.5	34.3	1.96	4.09	2.08
	6	270/345.0	148.2	330/410.5	68.6	390/453.5	34.2	2.16	4.33	2.00
	7	280/347.5	172.4	330/429.0	74.1	390/453.0	43.1	2.33	4.00	1.72
	8	270/351.5	147.3	330/417.5	70.2	390/454.5	40.8	2.10	3.61	1.72
	9	270/355.5	161.1	330/414.0	71.9	390/455.0	44.2	2.24	3.64	1.63
	10	280/347.5	165.6	330/416.5	70.9	390/455.0	44.6	2.34	3.72	1.59
	11	270/356.0	178.6	330/417.5	72.5	390/460.5	45.9	2.46	3.89	1.58
	12	270/354.0	131.9	330/413.0	67.5	390/456.0	44.2	1.95	2.98	1.53
TB-EPS	3	270/355.5	330.5	330/414.5	130.8	390/450.0	76.8	2.53	4.3	1.7
	4	280/354.5	365.0	330/426.5	132	390/454.5	83.1	2.76	4.39	1.59
	5	280/353.0	444.7	330/415.5	121	390/456.0	77.7	3.68	5.72	1.56
	6	280/355.5	614.1	330/427.0	120.9	390/461.0	90.6	5.08	6.78	1.33
	7	280/359.0	562.9	330/430.5	122.4	390/457.0	83.6	4.6	6.74	1.46
	8	280/354.5	655.7	330/426.5	127.4	390/463.5	84.2	5.15	7.79	1.51
	9	280/358.0	694.2	330/426.5	125.4	390/459.0	95.6	5.54	7.26	1.31
	10	280/353.0	795.7	330/423.5	155.7	390/472.0	107.5	5.49	7.4	1.35
	11	280/353.5	739.7	330/431.5	145	390/472.5	104.7	4.75	7.07	1.49
	12	280/357.0	611.4	330/416.5	138.7	390/465.0	95.4	4.41	6.41	1.45

的 LB-EPS与位于内层的 TB-EPS具有一定的特性差异。 3.2 LB-EPS和 TB-EPS荧光特性的浓度效应

表 1统计了 LB-EPS和 TB-EPS的三维荧光特性随浓度 变化的情况。结果表明,各荧光峰出现的位置与它们的浓度 基本没有关系,但荧光强度与它们的浓度有着直接明显的对 应关系 (如图 2所示)。分析结果显示,对于 LB-EPS,其三种 荧光峰 Peak B, Peak C, Peak D的荧光强度与相应的 LB-EPS 浓度 (以 TOC计, mg C·L⁻¹)都表现出很强的线性关系,相 关系数 R^2 分别高达 0.995 0, 0.998 5, 0.997 8, 0.999 9, 对 于 TB-EPS,其两种荧光峰 Peak C和 Peak D的荧光强度与 TB-EPS的浓度 (以 TOC计, mg C·L⁻¹)也表现出很强的线 性关系,相关系数 R^2 分别为 0.958 2和 0.991 8; 而 TB-EPS 的另外一种荧光峰 Peak B,其荧光强度与 TB-EPS的浓度则 表现出更强的对数关系。

由表 1也可以看出,浓度对 LB-EPS和 TB-EPS各荧光峰 强度间比值的影响是不一样的:对于 B/C值,在 TB-EPS中 其大小基本与 LB-EPS浓度呈负线性相关关系,而 LB-EPS的 B/C值受其浓度的影响不大;对于 B/D值,在 LB-EPS中其 大小随 LB-EPS浓度的增加而增加,但在 TB-EPS中其大小却 随 TB-EPS浓度的增加而减小;对与 C/D值,在 LB-EPS中其 大小基本与 LB-EPS浓度呈正线性相关关系,而在 TB-EPS中 其大小基本不受 TB-EPS浓度的影响。

3.3 pH对 LB-EPS和 TB-EPS荧光特性的影响

不同 pH条件下污泥 LB-EPS和 TB-EPS的三维荧光图分 别如图 3和图 4所示,它们的三维荧光光谱分析汇总结果见 表 2。实验结果显示,pH值对 LB-EPS和 TB-EPS的三维荧光 特性都有重要的影响。不同的 pH条件下,LB-EPS和 TB-EPS 各荧光峰的具体出现位置 $_{ex} / _{em}$ 都存在一定的细微偏移。 例如对于污泥 TB-EPS,与 pH 7时相比,其在 pH 12时 Peak B, Peak C, Peak D的 $_{ex} / _{em}$ 分别偏移了 2,14,8 nm;而对 于污泥 LB-EPS,与 pH 7相比,其在 pH 12时 Peak B, Peak C, Peak D的 $_{ex} / _{em}$ 分别偏移了 6,16,3 nm。这样偏移现象 在前人的研究报道^[21]中也出现过,说明 LB-EPS和 TB-EPS 中各组分的结构形态会随 pH 的不同而发生一定的细微变

Fig. 2 Correlation between the intensity and concentration 1: Peak B; 2: Peak C; 3: Peak D

Fig. 3 3DEEMs of the sludge LB-EPS at various pH at a LB-EPS concentration of 23 mg C \cdot L⁻¹

污泥 LB-EPS和 TB-EPS中 Peak B, Peak C, Peak D的荧光强度随着 pH的变化都相应地产生了一定的变化 (如图 3~ 图 5所示)。在 LB-EPS中, pH 3~7时, Peak B的荧光强度 随 pH值的增加而增加,在 pH增加到 8时, Peak B的荧光强度 度降回到 pH 6时的水平,随后在 pH 8~11之间, Peak B的 荧光强度又随 pH值的增加而增加,但在 pH增加到 12时, Peak B的荧光强度降回到了 pH 4的水平,整个 pH区间中, Peak B荧光强度的最大值出现 pH 11时,其值为 178.6。而 在 TB-EPS中, pH 3~6时, Peak B的荧光强度随 pH值的增 加而增加,在 pH 7时略有降低后,在 pH 7~10之间 Peak B 的荧光强度又随 pH值的增加而增加,然后在 pH 10~12之 间时 Peak B的荧光强度随之减少,最大值出现在 pH 10~12之 间时 Peak B的荧光强度随之减少,最大值出现在 pH 10时, 其值为 795.7。对于 LB-EPS,在 pH 3~12之间, Peak B和 Peak D的最大值都出现在 pH 11时;而 Peak C的最大值出现 在 pH 7时。对于 TB-EPS,在 pH 3~12之间, Peak B和 Peak D的最大值都出现在 pH 10时;而 Peak C的最大值出现在 pH 11时。这说明 LB-EPS和 TB-EPS中各结构和官能团特征 受 pH的影响方式是不尽相同的,LB-EPS表现出与 TB-EPS 不全相同的荧光特性。

Fig. 4 3DEEMs of the sludge EPS at various pH at a TB-EPS concentration of 99.7 mg C \cdot L⁻¹

4 结 论

本研究结果显示,在污泥 LB-EPS和 TB-EPS中都有 3个 明显的荧光峰: Peak B (_{ex} / _{en} = 270 ~ 280 nm /345 ~ 360 nm), Peak C (_{ex} / _{en} = 330 ~ 340 nm /410 ~ 430 nm)和 Peak D 第 5期

(_{ex}/_{en} = 390 nm /450 ~ 470 nm)。其中 Peak B 为类蛋白荧 光, 与胞外聚合物中的芳环氨基酸结构有关; Peak C为可见 区类富里酸荧光 (Visible fulvic-like), 与胞外聚合物中的羧基 和羰基结构有关; Peak D 为类腐殖酸荧光 (Humic-like)。浓 度和 pH值对污泥 LB-EPS和 TB-EPS的三维荧光特性都有重 大影响,但影响程度略有区别,表明作为外层的胞外聚合物,LB-EPS表现出与 TB-EPS不全相同的化学结构。三维荧光光谱作为一种快速、高灵敏度、高选择性的分析手段,在表征 LB-EPS和 TB-EPS的光谱特性方面表现出独特的优越性。

参考文献

- [1] Houghton J I, Stephenson T. Water Research, 2002, 36(14): 3620.
- [2] Frolund B, Palmgren R, Keiding K, et al Water Research, 1996, 30(8): 1749.
- [3] Wang Zhiping, Liu Lili, Yao Jie, et al Chemosphere, 2006, 63 (10): 1728.
- [4] Liu H, Fang H H P. Journal of Biotechnology, 2002, 95(3): 249.
- [5] WANG Hongwu, LIXiao-yan, ZHAO Qing-xiang(王红武,李晓岩,赵庆祥). China Safety Science Journal(中国安全科学学报), 2003, 13 (9): 31.
- [6] LiXY, Yang SF. Water Research, 2007, 41(5): 1022.
- [7] Wilen B M, Jin B, Lant P. Water Research, 2003, 37(9): 2127.
- [8] Esparza-Soto M, Westerhoff P K Water Science & Technology, 2001, 43(6): 87.
- [9] SONG Jimei, TANG Bi-lian (宋继梅, 唐碧莲). Spectroscopy and Spectral Analysis (光谱学与光谱分析), 2000, 20(1): 115.
- [10] ZHANG Qian-qian, LEI Shu-he, WANG Xiu-lin, et al 张前前, 类淑河, 王修林, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2004, 24(10): 1227.
- [11] FU Ping-qing, LU Cong-qiang, WU Feng-chang(傅平青,刘丛强,吴丰昌). Spectroscopy and SpectralAnalysis(光谱学与光谱分析), 2005, 25(12): 2024.
- [12] FU Ping-qing, WU Feng-chang, LU Cong-qiang, et al(傳平青,吴丰昌,刘丛强,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2006, 26(3): 471.
- [13] OU YANG Erming, ZHANG Xi-hui, WANG Wei(欧阳二明, 张锡辉, 王 伟). Water Resources Protection (水资源保护), 2007, 23(3):
 56.
- [14] OUYANG Erming, ZHANG Xi-hui, WANGWei(欧阳二明,张锡辉,王伟). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2007, 27(7): 1373.
- [15] Patel-Sorrentino N, Mounier S, Benaim J Y. Water Research, 2002, 36(10): 2571.
- [16] Baker A. Environmental Science & Technology, 2002, 36(7): 1377.
- [17] Wolfe A P, Kausal S S, Fulton J R, et al Environmental Science & Technology, 2002, 36(15): 3217.
- [18] Leenheer J A, Croue J P. Environmental Science & Technology, 2003, 37(1): 19A.
- [19] Baker A. Water Research, 2002, 36(1): 189.
- [20] Wu F C, Tanoue E Environmental Science & Technology, 2001, 35(18): 3646.
- [21] Mobed J J, Hemmingsen S L, Autry J L, et al Environmental Science & Technology, 1996, 30(10): 3061.
- [22] Baker A. Environmental Science & Technology, 2001, 35(5): 948.

Three-D in ensional Excitation Emission Matrix Fluorescence Spectroscopic Characterization of Loosely Bound and Tightly Bound Extracellular Polymeric Substances of Sludge

OUYANG $\operatorname{Erming}^{1, 2}$, WANG Wei¹, LONG Neng³, LIHua⁴

- 1. Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084, China
- 2 School of Civil Engineering and Architecture, Nanchang University, Nanchang 330031, China
- 3. School of Civil and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
- 4. Department of Environmental Science and Engineering, Chang 'an University, Xi 'an 710054, China

Abstract Three-dimensional excitation emission matrix fluorescence spectroscopy (3DEEM) was applied to characterize the loosely bound extracellular polymeric substances (IB-EPS) extracted from aerobic sludge in wastewater treatment The results showed that three fluorescence peaks were identified in three-dimensional excitation emission matrix fluorescence spectra of the LB-EPS and TB-EPS: peak B ($_{ex}/_{am} = 270-280 \text{ nm}/345-360 \text{ nm}$), peak C ($_{ex}/_{am} = 330-340 \text{ nm}/410-430 \text{ nm}$) and peak D ($_{ex}/_{am} = 390 \text{ nm}/450-470 \text{ nm}$). The peak B was attributed to the protein-like fluorophores, peak C to the visible fulvic-like fluorophore and peak D to the hum ic-like fluorophore. Results of the peak intensity showed that the major component of the LB-EPS and TB-EPS is protein-like organic matter, then followed by (from high to bw): fulvic-like organic matter and humic-like organic matter. The effects of both pH and concentration were significant to the 3DEEM s of LB-EPS and TB-EPS, but the degree is not the same LB-EPS has the particular chemical structures which are different from the TB-EPS

Keywords Loosely bound extracellular polymeric substances (LB-EPS); Tightly bound extracellular polymeric substances (TB-EPS); Sludge; Three-dimensional excitation emission matrix fluorescence spectroscopy

(Received Mar 2, 2008; accepted Jun 6, 2008)