有機排放的熱解析分析-非金屬的汽車原料之特色說明

目的

此分析過程係調查已成爲汽車原料之一的非金屬原料之排放,例如:紡織品、地毯、黏著劑、密封材料、泡棉材料、皮、塑料、鍍層、烤漆或是原料化合物。根據其所釋放的有機物質之總類與數量,使原料有各自的特徵。對此有兩項半量值,一半量值爲揮發性有機化合物(VOC值),另一爲液化物質(Fog值)。此外,排放物的單一物質也將進行鑑定。

在此測驗中,樣品會進行熱萃取,並且透過氣象色譜使其分開,並且進行質譜分析。當前的實驗程序只提供對這裡所描述的情況有效之數據,利用此方法所得之結果尚未有效。

對與健康有關的物質進行鑑定

選擇任一模式作爲濃度鑑定的基礎,且其模式在完整的車內、車場內或是與車廠相似的狀態皆可找到

用詞:排放值、非金屬原料、熱解析分析(TDS)、VOC 值 Vog 值

目錄

- 1 定義
- 1.1 熱解析
- 1.2 VDA278 之 VOC 值
- 1.3 VDA278 的 Fog 值
- 2 測試品的取得與儲存
- 3 測試系統、儀器參數
 - 3.1 對於基本上合意的儀器系統的最基本要求
 - 3.2 檢驗合格之數解析系統
- 4 分析之執行
- 4.1 清潔分析管柱
- 42系統的校正檢驗
- 4.3 校正
- 4.4 測試分析的過程
- 4.5 利用色層分析評估
- 5確認係數
 - 5.1 實際樣品的質譜值,比對實驗
 - 5.2 鑑定界線/Tenax 的甲苯線性

- 5.3 Tenax 對甲苯之散射與重得
- 6 可能發生的錯誤,常見的問題
 - 6.1 樣品加工
 - 6.2 樣品表面不相同
 - 6.3 冷卻系統的問題(KAS 3 葛斯特公司)
 - 6.4 熱探測器的問題(頂空取樣器 ATD, 伯金-艾爾莫公司)
 - 6.5 含水量過高的問題
 - 6.6 物質鑑定時的混淆
 - 6.7 高排放値下的偵測器線性模式
- 7 附件
 - 7.1 物質特殊的秤重量
 - 7.2 熱解析檢驗中的漆薄膜製造
 - 7.3 熱分析檢驗之草圖
 - 7.4 檢驗色層析譜
 - 7.5 Excel 報告,表格製作
 - 7.6 Excel 報告(原件)

1 定義

1.1 熱解析

以於玻璃· 在熱解析分析(TDS)中,極少 逐都在冷凝器所產生之惰性氣體分離。 揮發性物質,透過可 此時物質蒸發。接著,物質會在氣相色 加熱完成後,為 譜的分離管柱內

附件 7.3 為熱解吸

勿半量値以μm/g²表示 甲苯在 VOC 測量 做為定量物質,在 Fog 値則是十六醇 物質峰可以根據質譜與滯留時間指數代入。

/DA278 之 VOC 値

根據 VDA278 的 VOC 值爲半揮發性物質至揮發性物質的總合,此 VOC 值與甲苯 相同。利用在此所描述的方法,可在洗提區至二十烷得到物質並且進行分析。

按此物質可假設,此物質可在汽車內的空氣分析中得到證明。 爲了分析,需將測試品在30分鐘內加溫至90°C。經過兩次鑑定後,可算出VOC 值。兩次測試中所取得較高的數值作爲結果。

³VOC 值=揮發性有機化合物=半揮發性物質。此 VOC 只和這裡所描述之程序有關,和其他程序的 VOC 不能作比較。

1.3 VDA278 的 Fog 值

爲測試 Fog 値,在 VOC 測試結束後,將第二個樣品留在分析管柱內,並且再次以 120℃加熱六十分鐘。

Fog 值爲超揮發性物質,其物質是在十六醇的滯留時間所提取,其與十六醇相對等。在烷烃 C16 至 C32 的洗提區可得到此物質。

此物質在室溫下容易液化,且基本上有助於擋風玻璃上的水氣凝結。

2 測試品的取得與儲存

選擇何時取得樣品的要點爲,盡可能地使物質的擺放時間與裝備運送最短時間相符合。

例如:

泡棉原料通常在製作完成後的 2至 12天內送達汽車廠,泡棉樣品必須先置放於通風處最多兩天,才能進行檢驗。一切都是以有可能發生的最壞情況(worst case) 爲前提。

由於檢驗之需要,需取一標準樣品。取樣過程中不允許有任何的汙染,每一個樣品都必須密封於銀箔紙內。

樣品密封於兩層厚錫箔紙內(30 / m),且開口處多次黏合。接著,將樣品密封於一聚乙烯袋子內,再送至實驗室。接著,樣品存放於最高-18℃的環境下,直到測試分析進行。

有關於實驗器分類樣品製作準備的其他建議,請閱讀附件7.1 與7.2。

附件 7.1: 不可物質的樣品秤重規定

附件 72: 漆膜的製造規定

測試系統,儀器參數

對於基本上合適的儀

3.1

器系統的最基本要求

- -直接相關的熱解析系統/GC系統
- --氣相色譜(建議使用一種氣體力學的電子技術)
- -質譜分析的探測器、値譜資料庫

- -具惰性氣體玻璃表面的分析管柱,內管柱直徑 4-5 公厘
- -色層分析之玻璃管分離管柱: 固定: 5%苯基-甲基-矽氧烷
- -儀器控制之軟體
- -分析使用之色層分析軟體,盡可能將原始檔案已 AIA 模式輸出
- -章節 4.2.1 所描述之檢驗混合物之單一物質的重拾數據(等於甲苯),必須在 VOC 分析條件下,保持 60 至 140%,甲苯的重拾至少 80%,最多 120%。
- -不能超過以下的探測範圍(DIN32645、置信區間:VB= 95%)

VOC 程序 甲苯 < $0.04 \mu g$ 且二十烷(C20)< $0.06 \mu g$ Fog 程序碳籠烯(C32)< $0.2 \mu g$

爲確定探測範圍,於甲醇(對 VOC 程序而言)中(也就是 Fog 程序中的戊烷)溶解的測試物質,按照不同的含量柱射至已填充 Tenax 的分析管柱,並且在 280℃時被釋出。分裂的關係與 GC 條件符合 VOC 與 Fog 參數、見章節 5.2。

3.2 檢驗合格之熱解析系統

製造商/地址

•

葛斯特(Gerstel)公司

D-45473 Mühlheim an der Ruhr, Aktienstr. 232-234

產品名稱

具 KAS-3,KAS-3+,KAS-4

之TDSA

伯金·艾爾莫(Perkin-Elmer)人司

頂空取樣器

D-63110 Rodgau-Jügesheim, Ferdinan-Porsche-Ring 17

3.3 檢驗合格的儀器之範例

儀器	議器例	儀器例子二
熱解析儀	TDSA(基斯博公司)	頂空取樣器(伯金・艾爾默公司)
器	现得分於爐:	玻璃分析爐:
7	直徑 / <mark>圖</mark> = 6mm	直徑:外圈= 6mm
	內圈= 4mm	內圈= 4mm
氣相層析	HP6890 與電子壓力調節器(EPS)	自動系統 XL
儀	阿吉雷特(Agilent)公司	伯金・艾爾默公司
Y	無探測器-split	(Perkin-Elmer)
•		Sauelenend split: 質譜儀/火焰離
		子化偵測器= 1:1
		毛細管色譜柱: 3.6m(I)/0.15 μ m
		(ID)
		3.6m(I)/0.15 μ m (ID)

	1	
		火焰離子化偵測器: 2m(l)/0.15 μ
		m (ID)
攜帶氣體	氦 5.0,使用梅瑟·葛麗山姆公	氦 5.0
	司的氣體清淨器清潔	
分離管柱	50m*0.32mm 管徑 · 0.52 μ m 膜厚	50m*0.32mm,0.52 μ m 5%苯甲基
	5%苯甲基-矽氧烷 HP Ultra 2	-矽氧烷 HP Ultra 2(19091B115)
	(19091B115)	
冷凝管	KAS,葛斯特(Gerstel)公司	集中於頂空取樣器
偵測器	質譜儀偵測器(MSD): HP5972A,	質譜儀偵測器: +火焰離子化
	阿吉雷特(Agilent)公司	偵測器(FIQ),伯金·艾爾默
		(Perkin-Elmer)公司
分析軟體	Chemstation G1701BA	Turboniuss 47.1
	MS-Excel 97	MS-Excel 2000
	Wiley7N/NIST-MS-Spektrenbibliot	Wiley7N/NIST MS Spektrenbiblioth
	hek	ek ×

3.3.1 VOC 分析過程、設定、儀器參數

項目	儀器 1	儀器 2
熱解析儀器	<u>TDSA</u>	頂空取樣器
	樣品模式: 収樣	溫度: 真空管/管: 280℃
	流動模式:	管柱: (VOC) 90℃
	開始溫度: 20°C	30 分鐘(兩階段分析)
	延緩時間1分鐘	1 分鐘(清潔)
Γ	第一次速率: 60k/分鐘	流動: 14psi
	第→次結束溫度: 90℃	20 毫升/分鐘(解析)
	第十次結束時間: 30 分鐘	22 毫升/分鐘(輸入)
	傳輸線: 280℃	19 毫升/分鐘(輸出)
	CC 運轉時間: 67 分鐘	
冷凝器之參數		<u>收集器:</u> -30℃(低)
	初次溫度: -150℃	280°C(高)
/ .O '	第一次速率: 12K/秒	20 分鐘(保持)
Y	第一次結束溫度: 280℃	40K/s(速率)
	第一次結束時間:5分鐘	
	平均時間:1分鐘	
儀器參數	質譜儀之傳輸管 280℃	
氣相層析(GC)	爐溫度系統: 40℃,2分鐘,等溫	
	3K/分鐘,直到 92℃	

	5K/分鐘,直到 120℃	
	10K/分鐘,直到 280℃	
	10 分鐘等溫	
	(全部時間:約59分鐘)	
	流速: 1.3ml/分鐘	自熱解析儀器產生
	空氣力學(EPS): 穩定慢速模	
	式	
氣相層析質譜儀	數據蒐集開始: 3,0 分鐘	
(MSD)之設定	計算校正: Standard-Spectra-Autotune(100℃爐溫)	
	掃描模式(低/高): 29-280amu, > 三次掃描/s	
	MS 門檻: 100	
火焰離子化偵測		溫度: 320
器之設定		Q2流速 45ml/分鐘
		Ha流速: 450ml/分鐘
		衰减: - 6 ◆ 範圍: 1
分析	關於總離子層析圖(TIO)的	關於總離子層析圖(TIC)的定
	定性與定量分析	量分析;ND層析圖的量化

3.3.2 Fog 分析過程之儀器參數

項目	儀器1	儀器 2
熱解析儀器	TOSA	頂空取樣器
MINAT IN LIANCHH	樣品模式: 樣品取樣	溫度: 真空管/管: 280℃
_5	流速模式:	管柱: (VOC) 120℃
	開始溫度:20℃	60分鐘(兩階段分析)
	延緩時間.1分鐘	1 分鐘(清潔)
	第 次速率: 60K/分鐘	流動: 14psi
	第一次結束溫度: 120℃	20 毫升/分鐘(解析)
	第一次結束時間: 60 分鐘	22 毫升/分鐘(輸入)
. "//	傳輸管: 280℃	19 毫升/分鐘(輸出)
	GC 運作時間: 57 分鐘	
冷凝器		收集器: -30℃(低)
Y	開始溫度: -150℃	280°C(高)
	第一次速率: 12K/秒	20 分鐘(保持)
	第一次最後溫度: 280℃	40K/s(速率)
儀器參數	連接 MSD 之傳輸管 280℃	
氣相層析(GC)	爐溫度系統: 50℃,兩分鐘	,等溫
	25K/分鐘,直至	IJ 160°C

	10K/分鐘,直到 280℃	
	30 分鐘等溫	
	(全部時間約48分鐘)	
	流速: 1.3ml/分鐘	自熱解析儀器產生
	空氣力學(EPS): 穩定慢速	
	模式	
質譜儀之設定	數據蒐集開始: 自 12,5 分鐘開始	
	測量軸校正: Standard-Spectra-Autotune(爐溫 100℃)	
	掃描模式(低/高): 29-370 amu, > 三次掃描/s	
	MS 門檻: 100	
火焰離子化偵測器		溫度: 320℃
(FID)之設定		O2流速: 45ml/分鐘
		Hz流速: 450ml/分鐘
		衰减:-6, RANCE
分析	關於總離子層析圖的定性	關於總離子層析圖的定量
	與定量分析 (7)	分析; FIX 層析圖的量化

3.3.3 校正溶液與檢品溶液之儀器參數

	NA HH	
	儀器 1	養器 2
熱解析儀器	TDSA	頂空取樣器
	樣品模式: 樣品取樣	溫度: 真空管/管: 280℃
	流速模式:	管柱: 280℃
	開始溫度: 20°C	30分鐘(兩階段分析)
	延緩時間:1分鐘	1分鐘(清潔)
()	第一大速率: 60K/分鐘	流動: 14psi
	余 —Х結東溫度: 280℃	20 毫升/分鐘(解析)
. •	第十次結束時間: 5 分鐘	22 毫升/分鐘(輸入)
	筆接 KAS 之傳輸管: 280℃	19 毫升/分鐘(輸出)
冷凝管	流動模式:	收集器: -30℃(低)
. "	初次溫度: -150℃	280℃(高)
	第一次速率: 12K/秒	20 分鐘(保持)
/ O '	第一次結束溫度: 280℃	40K/s(速率)
V	第一次結束時間:5分鐘	
	平均時間: 1 分鐘	
分析	關於總離子層析圖的定性	關於總離子層析圖的定量分
	與定量分析	析;FID層析圖的量化

甲苯校正和檢品分析的參數與 VOC 檢驗過程之參數一樣,只有數據取得動作開始的比較晚,大約在 5.5 分鐘時開始,目的在於減弱甲醇峰。

十六烷的校正按照 Fog 分析程序之 GC 條件進行。

GC 程序與樣品程序相比,可以相對縮短程序,但要在校正物質提吸後切斷爐溫系統。

4 分析之執行

4.1 清潔分析管柱

只能使用完全無汙染的分析管柱,即使是新的分析管柱,也需在第一次使用 前仔細清潔,以下爲合適的清潔方法。

玻璃管柱建議使用下列方法:

將管柱置放於鹼性清潔液數個鐘頭,最好是隔夜。接著用流動的熱水沖洗數分鐘,再使用去離子水沖洗。緊接著將管柱置放於乾燥箱(大約4分鐘、105℃)使其乾燥,並保持無汙染狀態(密封於鋁箔紙內),一直到需使用時。

4.2 系統的校正檢驗

儀器系統的功能的校正檢驗係於樣品級的檢品標準溶液分析時進行(見 4.2.1)。 檢品標準溶液包含極性、非極性和酸性物質,其在未預期的吸附作用下,出現一 明顯的峰拖尾。

質譜探測器的效能係透過計算與敏感度而定,製造商需達到要求之品質。此外,為了檢驗整個系統的濃度,也必須執行空氣力、檢測。

接著必須檢察 TDS/CC 系統的記憶功能、在每一次樣品組測試前,需使用空的分析管柱進行檢驗。如果有產生負面作用,像是出現過強的峰拖尾、受干擾的無數據。峰或是重大的物質損失,則壽爲系統作清洗。必要時須更換 GC 管柱、玻璃墊、傳輸管

建議將品質檢驗中的家品組之檢驗過程結果記錄下來(管制圖)。

- -峰面積-檢驗物質的關係
- -檢驗物質的濃度與甲苯相同
- -滯留時間

42.1 檢驗溶液的製造

下河溶解於甲醇的物質證明系統檢驗爲正確的。(根據 VOC 條件的提吸順序列表)

表格一 檢驗混合物

停留指數	成分	停留指數	成分
670	苯	1100	十一烷
700	庚烷	1110	二甲苯酚

766	甲苯	1200	十二烷
800	辛烷	1300	十三烷
870	對二甲苯	1400	十四烷
895	間二甲苯	1435	二環己胺
900	壬烷	1500	戊醇
1000	癸烷	1600	十六醇
1030	異辛醇	2390	己二酸二(2-乙基
			己)酯

製造方法的建議:

取每種化合物約 220±20mg,放置於玻璃器皿(例: 5 毫升的試管內),精準秤量。 將大約 100 克的混合物移至 50 毫升的定量瓶,並且秤重(精確秤量±0.1 毫克)。接 著加入甲醇至定量瓶刻度線下方一點點,再將定量瓶對閉。並輕輕地搖晃,直到 所有溶液完全溶解於甲醇。然後再次加入甲醇,直至定量瓶刻度線,並且再次搖 混。

爲進行檢驗程序,必須將此溶液 4μ (根據章節 4.3.2)注射 2 以 Tenax 填充之分析 管柱,以使分析管柱內涵有 0.45 ± 0.1 μ 》的成分。

4.2.2 樣品容易的保存

樣品溶液在冷藏的環境下(最高&℃)可保存至少三個月。

4.3 校正

校正需按照標準方法進行,對外需裝置一填充 Tenax TA 的分離管柱與校正溶液。

4.3.1 校正溶液

需要兩種校正溶液

1. 提供 VOC 檢測: 甲醇

(p.a.)中**大β**(**y**.a.)

2. 提供 Fog 檢測: 甲醇

(p,a)中大約 0.5 十六醇(p.a.)

使用 50 毫升的量杯秤量大約 25 毫克(±0.1 毫克)的甲苯(或是十六醇),再加入甲醇至量杯刻線下方一點,並且均勻搖晃。接著再次加入甲醇量杯刻線,並且均勻搖晃。

校正溶液在冷藏的環境下可保存至少三個月。 正確地保存是實驗室品質控管的一重要部分。

4.3.2

在含有 Tenax-TA 吸附劑之採樣管上裝上一注射裝置,其注射裝置作用在於,在 校正溶液製造過程中,確保惰性氣體(氦 5.0)通過採樣管。

用以控制流量總數與檢驗濃度的氣量表,應與分析管柱相接。

流速大約為 0.7+0.3 公升/分鐘,總流量應約為 2.5-3 公升。用盡的甲醇 Matrix 因 此被移除,相反地甲苯(也就是Tenax上的十六醇)則留下。

圖一顯示測試裝置的安裝圖

圖一 校正溶液的裝置

GC-Spritze: GC 注射 Septumkopf: 注射針閥 Quarzwatte: 石英棉 Gasuhr: 顯示錶 Tenax: 吸附劑

Desorptionsrohr:解吸管

Strömungsregler:流速調整器

Helium5.0: 氦 5.0

不得吸入空氣,再慢慢地(約 使用 10 μ1 的注射器取 4 μ1 5-10 秒)注入石英棉內。

爲避免損耗,建 至石英棉內。另一方法為,仔細計算測量 值的波動

4.3.3 填充 Tenax

裝須塞住管柱,以使 Tenax 可以被分析爐的加熱區 完全吸收。

TDSA系統的分析管柱之舉例

葛斯特(Gerstel)公司的

特(Gerstel)公司的 TDSA 儀器的管柱係使用長約 5-6 公分的 Tenax 吸附管。傳 輸管那一端距離管柱尾端約3公分,目的在於避免傳輸管插入吸附管。在 Tenax 層上方為長約1公分經過矽烷處理之玻璃綿,即為校正溶液注射的地方。

圖二 分析管柱內的 Tenax 吸附管(葛斯特 Gerstel 公司)

Tenax: 一種吸附劑

a)

Glaswolle: 玻璃棉

Trägergasströmung:載流氣體流向

b) 伯 金 - 艾 爾 莫

(Perkin-Elmer)公司的頂空取樣器系統的分析管柱之舉例

圖三 分離管柱內的加液器

Glas-bzw. Edelstahlrohr:玻璃(不鏽鋼)管

Probe bzw. 200mg Tenax TA: 測試品,也就是 200 毫克的 Tenax TA

Helium: 氦

Je 50mg Glaswolle: 50 毫克的玻璃棉

Transferline: 傳輸管

此熱分析管柱填充 200 毫克的 Tenax TA。傳輸管那一端填塞約 50 毫克經過矽烷處理之玻璃綿,載流氣體那一端也用約 50 毫克的玻璃棉封閉。 當加液之管子裝置於使用鐵氟龍材質之不鏽鋼管柱

Tenax 吸附管須按照製造商提供之說明書使用,並且保存於恰當的狀態下。Tenax 會隨著時間長短而變質,因此,Tenax 吸附管須按照適當的方式(例如: 嚴密控管與)儲存。

4.4 測試分析的過程

4.4.1 需加入分析管柱的樣品之切割與秤量

每一種樣品按照上述之重量,裝入於兩個管柱

管柱 A: 第一次的 VOC 分析程序

管柱 B: 第二次的 VOC 分析程序+緊接的 Fog 程序

打開樣品袋子前,爲天養免疫時所產生之水氣,必須先將冷凍的樣品於秤重之前達到室溫。

樣品的秤重量取決於手檢驗之材質(見附件 7.1)。

必要的精確度: ◆ ② 毫克

樣品輕重 特殊材之的規定請見附件 7.1

由於樣品材質爲不同成分,因此無法爲樣品尺寸確定一普遍之準則。樣品切割方面則是盡量使其表面平滑。在粉碎過程中,並非盡可能力求保留表面。下列爲操作方法:

分析管柱之內直徑(4 公厘),有可能因爲樣品的厚度而無法完全充分利用。管柱的加溫區,也就是樣品最大的程度爲 4 公分。爲了得到最大的面積,在切割樣品

時,應先依照樣品要放入之管柱的直徑切割。樣品的寬度通常大約爲3公厘。樣 品的長度與厚度則爲多變化,需視上述之秤重量而定(附件 7.1)。因此,寧可先將 樣品切長一點,再相對地減少其厚度。

樣品的尺寸必須在協議書裡說明(例如:長度*寬度*高度=15*2.8*0.7公厘)

漆與黏著物則有特別的處理方法。漆與黏著物必須加工製造成乾燥的膜,並且塗 在鋁箔紙上方。(見 7.1-7.2)

4.4.2 校正過程、感應因子的確認

每一個測試組都會有至少兩個含有甲苯或十六醇的 Tenax 分析管柱(詳見 4.2),立 且在校正過程中得到校正峰的面積值。

で一六醇 感應因子是自甲苯(也就是十六醇)的完全值所得的商數 管柱並產生峰面積。

方程式1

4.5 利用色層分析評估

4.5.1 峰積分

爲確定總參數(VOC 與 fog fi) 有戶樣品所得之物質峰的總面積(超過 基本線)。高峰訊號

等的總農度爲 VOC 值。 VOC 程序所計算

Fog 程序所計算 同等的總濃度為 Fog 値。

♥/>トト 20%,則必須重新進行 VOC 程序與 Fog 程序。 VOC 結果偏差 兩次的 VOC 值 發報告說明。評估時則使用具較高數值的檢驗。

>1 μg/g,才必須在結果報告列舉說明。也就是說,在色 プ重的積分條件係確定 1 μg/g。

夏的評估爲峰面積與感應因子(見 4.4.2)除 1000 乘樣品重量,再乘:

甲苯 (VOC 分析時) 十六醇(Fog 分析時)

方程式二

峰面積(總計)

排放量[μ g/g]= Rf(甲苯,C16) x	X

1000 x 樣品重量[毫克]

4.5.3 質量分析

單一峰(>1 μ g/g)係根據它的質譜和(一般來說可以使用)它的停留指數(參考技術文件或是根據利用烷烴的相同檢驗)來代入。

每一個 MS 搜尋程序結果都必須在輸入至結果表格前,進行可信度之確認。若無法明確鑑定物質,則可以在物質種類前方標上問號表示猜測,一般來說允許提示作爲結論。

爲了描述不同物質分類的必須注意下列的規定:

名稱舉例	註解
Toluol, Methylbenzol(甲苯)	參考物質的質譜與清留相符合(非常確
	定)
?1,1-Bis(p-tolyl)ethan 210	=>前方的問號: •
195 179 104	根據實譜(也就是滯留)沒有明確的分
•	類 但是此物質被認為具可能性(非常
	相似)。重要的質諾殘缺也必須說明。
?Alkohlo, 31 57 85	=>問號+物質分類符號:
	典型的殘缺或有名的範例提供物質種
	類的線索
? 54 76 99 109	不可能有任何化合物的結論
Isomere Paraffinfraktion, Siedebereich "	
C16-C26 "	
Cyclohexanon=?	已鑑定的峰(Peak)被一個或多個不知名
	的物質重疊
Artefakt	不可能來自於樣品或是在程序中產生
	的峰

4.5.4 分析結果之描述

色層分析的結果透過 Excel 表格呈現,其表格內容至少含有下列研究測驗之說明:

標題區	結果區
以側驗之物品名稱(原料、塡充物)	滯留時間
組成成份名稱	物質名稱
製造商/供應商名稱	CAS 編號
物品製造日期	峰的百分比
分析日期	濃度
秤重(毫克)	峰的分析

測試品大概的尺寸(公厘*公厘*公厘)	VOC(Fog)値
編號	VOC 第二個數值
	分析之評估

物質名稱之說明

物質不同的書寫方式,可直接按照 MS 數據庫表達方式。但是必須注意物質名稱不能用太多、不常使用的名稱。額外說明 1-3 個較常用的名稱就已足夠。

根據保存公約,將色相層析之結果轉成 Excel 檔案模式爲必做工作,目的在於建立一共用數據電子檔案庫,因此必須將正確的內容轉成 Excel 檔案。可參考文件內的 Excel 範例(附件 7.6)。

實驗室製作一書面的研究結果報告,其報告包含 VOC和 for 值,也就是以表格 (Excel 表格)呈現數量化的物質。

此外,需附加 VOC/Fog 分析的色譜,並見將完整的分析原始檔案儲存於CD-ROM,一同寄送。此 CD-ROM 需含有了列檔案:

- 2個 VOC 鑑定色譜分析原始檔案
- 1個 Fog 鑑定 色譜原始檔案

的色譜原始檔案

校正與樣品過程的色譜原始檔案

VOC/Fog 分析各自結果的 Excel 檔案

由於電腦軟體相容性的原因,色層分析檔案的檔案模式需與測驗委託人取得共識。若使用不同的色譜分析軟體,在檔案交換時,通常是透過 Export/Import 的功能將檔案轉檔成 AIA 模式

5 確認係數

5.1 實際樣品的實證值,比對實驗

重複性係取決於食品矩陣的特性、成分、極性。其結果也是取決於,是否能夠再製造樣品表面。這對於表面多孔的海棉來說,比起表面緊密的塑膠製品困難許多。根據許多不同材質的質譜,質譜值的偏差約<15%。

按照 VDA 建議書 278,無法說明熱解析測試的普遍精準度。

VOC 値、Fog 値、或是兩種分析過程產生的單一成分,透過十九間具備不同設備的實驗室,利用比對實驗對方法分析界線進行測試,而確定聚酯膜(PES)與熱塑性聚烯烴(TPO)所生成之膜。

表格: 環狀化合物比對結果(2002/01)

樣品	PES Folie			TPO FO	LIE			
統計	VOC	Fog 値	選擇的單峰		VOC	Fog 値	選擇的單峰	
	値		乙酸丁	癸二酸	値		主峰	棕梠酸
			脂	雙			(異構	(十六
			(n-Butyl-	(Tinuvin			烷烴)	(烷)
			acetat)	-p)				酸)
中間	584	22	19	1	134	505	28	95
値[μ								
g/g]								
標準	184	12	6	1	48	265	11	4
偏差						(0		
$[\mu g/g]$								
變數	53	53	34	70	36	52	40	45

其他的樣品矩陣之準確度可以明顯較易得到結果,因爲這對於實驗樣品,是和利用此方法可確定之數值的模稜兩可狀況有關。

在目前得比對實驗中,以下的原因會照成較高的偏差.

- -PES 薄膜的 VOC 值之主要成分是在校正區外面、爲了避免此狀況,因此補充檢驗規定(6.7 有可能發生入錯誤)。
- -PES 薄膜的 Fog 值位於不存在值之區附近(最小峰的總值)
- -乙酸丁酯爲不穩定的成分,不恰當的存放與非惰性表面,容易在分析系統 分解。
- -棕梠酸-峰應該對鑑定界線區的一物質進行評估,因此取決於較高相關散射。
- -由於高極性而表現出強大拖尾,且因此不容易結合的成分,位於TPO的薄膜。例如,核科數/用為極性成分,對甲基矽甲烷的只產生較弱的相互作用,但卻明顯及色層分析圖的強大拖尾合適。
- -許多的人對實驗參與者至今尚未有(或是只有很少)與有機化合物之熱解析 實驗的經驗

52 鑑定界線/Tenax 的甲苯線性

整個系統的執行是仿效甲苯線性之例子作說明:

表格 1 表示甲苯反應(直到高濃度區)的線性過程。(5 μ g 符合(樣品 30 毫克)約 150ppm)表格 2 表示三個測試點的線性過程。

表格 1 線性甲苯	表格 2 線性甲苯
整個測量區	只限下列測量區
Thermodesorption Kalibrierung auf Tenax:	Thermodesorption Kalibrierung auf Tenax:

Tenax 的熱解析校正 Peakfläche: 峰面積

Toluol/Injektion: 甲苯/注射

Tenax 的熱解析校正 Peakfläche: 峰面積

Toluol/Injektion: 甲苯/注射

 $Y = a^{1}X + a^{0}$ $a^{1} = 6761000 \pm 48000 \ a^{0} = 10300 \pm 98000$

相關係數: r= 0.099998

對於以下的測量區(置信區間, VB= 95%),由於上述之測量,而產生:

證明範圍: 0.005 μg 鑑定範圍: 0.02 μg

此統計係數係根據 DIN32645 而計算得知。

這裡所調查的鑑定範圍與證明範圍在樣品測量時,一定只會說明其比值。此比個當作分析系統回溯之最基本要求。對於系統的評論於 3.1 章描述。

5.3 Tenax 對甲苯之散射與重得

透過 Tenax 的檢驗標準可計算出甲苯量,另外也可得到下列數據

測量値數量: N=20 測量組數量: 6

標準偏差: 5.4%

重拾的中間値(實際値/額定値*100): 102%

最高的重拾: 117% 最小的重拾: 85%

測量組會於約六個星期內執行。

注意: 對於章節 5.2 和 5.3 的測量於與儀器 1(章節 3.3)執行

6

可能發生的錯誤、常

見的問題

6.1

樣品加工

在加工的過程分隔避免污染,以及防止測驗品不必要的加熱動作。不能用手指觸碰樣品,或是利力溫度所進行的切割科技(例如:高速旋轉鋸子)。通常使用小刀(配有變換刀片)、軟木塞鑽孔器,較硬的樣品則使用剪刀或是鉗子即可。

樣品的切割、秤重和放至分析管柱,這一系列動作需迅速流暢地進行。已裝置樣品的分析管柱必須馬上放置於自動採樣器,以避免物質損失。樣品的特別表層也有相當大的影響,因此必須盡可能地再次製造。通常較高的樣品表層也較容易散發。因此,VOC/Fog 值係根據秤量,而非樣品表層。物質在不同的矩陣也會有不同的反應,但是相互的關係一定爲線形的。

樣品表面不相同

加工處理某些表面構造不同的樣品是相當困難的。這裡會根據狀況出現較大的測量值散射(章節 5.1),這也許會在羊毛、多孔的海棉或是粉碎的 SMC 材質發生。 爲了能夠顧及分析結果之評估所產生之問題,執行的實驗室必須遵守報告中相應的規定。在懷疑的狀況下,樣品加工的問題應與委託者進行商討。

6.3 冷卻系統的問題(KAS 3 葛斯特公司)

如果 KAS 的襯墊沒有用經過矽烷處理之玻璃綿充分地填塞而有缺口,將容易產 生揮發性物質(包含甲苯),這對校正將會產生直接的影響。

襯墊有缺口的明顯特徵爲,在檢驗化合物的分析時,半揮發性物質出現小的前峰。=>補救方法:塞更多的玻璃棉

透過增加玻璃棉數量,也可以增加峰面積,並且達到較好的敏感度。另外,在東換襯墊後,一定要重新校正。

注意: 過於用力填塞的襯墊會無法順利吸收在載流氣體(壓力升高)。

6.4 熱探測器的問題(頂空取樣器 ATD, 伯金·艾爾莫公司)

- "Cold Spot"可存在於介於活塞與冷凝器中間的石英襯室, 此襯墊會在嚴重排放量時會照成 Minderbefunden。此間題可以透過安裝、導熱裝置時解決。
- 冷凝器的石英襯墊必須降低活化作用
- 注意冷凝器傳輸那一邊是否有使用足夠的石英棉(主少 0.5 公分),否則超揮發性物質會留在 Tenax 上。
- 使用金屬的分析管柱會導致明顯的物質損失

6.5 含水量過高的問題

若樣品會釋放大量水分,當進行熱解吸時,達到-150℃的襯墊會部份或是完全結凍。

=>結果: 過低的數據或分析會完全被中斷(壓力過高)。

這些影響會出現在及家民或是天然纖維樣品。=>補救方法: 減少重量。

6.6 物質鑑定時的混淆

某些情況下,當物質未與系統參數完全分開時,會產生混淆。特別是當濃度差別相當大的物質一起提取,則有可能忽略較小的峰。

具有相同或是相似至留時間的物質例子

名稱	重要的	附註
苯(Benzol)	78/	
甲基-環戊烷	69/	
(Methyl-cyclopentan)	31	

丁醇(n-Butanol)		
1.3 丁二烯(1,3-Butadien)	39, 54/	
乙醛(Acetaldehyd)	29, 44	
間二甲苯(o-Xylol)	91	當甲苯-MS自p/m-二甲苯
環已酮(Cyclohexanon)	98	-MS 減去時,微量的環己
丁基丙烯酸丙酯	73	酮也有可能很明顯
(Butylacrylat)		
對二甲苯+間二甲苯	91/	
(p+m-Xylol)	44 72 87/	
乙醯胺(Acetamid)、氮	43 58 72 87	
(N) 、 氮 (N) 、 乙 烷		
(-dimethyl)		\sim
甲基乙酸丙酯		\'\'\'\
(Methoxypropylacetat)	X	

6.7 高排放値下的偵測器線性模式

當值測器的線性被超過時,具高排放值的樣品則會得到錯誤的測量值。 值測器的敏感性和線性區有可能相當不同,利用不敏感的之器在校正的線性區, 較高的測量訊號早已被中斷。

此問題可以在顯示出相當大的單一物質峰之樣品發現,且其樣品可由 MSD (型號: Agilent 5973)偵測,此偵測器之敏感度較舊型號 HP 5972 高十倍。

方法: 當線形模式運貨時, 偵測和校正需重新進行, 並將 KUEHLFALLE 的 SPLIT 提高, 例如: 將 30:1 改成 60:1

7 附件

7.1 物質特殊的秤重量

樣品重量一般各為標準的 30±5 毫克。一般來說,使用小刀將樣品切割成條狀,再進行秤重。 70物質的重量爲固定的:

物質	秤重(毫克)	附註
海綿	15 <u>+</u> 2	物質盡可能鬆散地置放於管柱。秤重對
		於海棉具有相當大的影響,因此有相當
		嚴謹的限制。
		樣品採集位置:海面表面(原因在於分
		割工具的影響)
合成纖維原料	60 <u>+</u> 20	較厚的樣品通常會被夾在一層一層內

(SMC、碳纖維等)		
薄片狀的樣品	30 <u>+</u> 5	盡量以單一條狀秤量
皮製樣品	10 <u>+</u> 2	進行較厚的皮製樣品測驗時,爲了能夠
		掌握皮製樣品使用範圍的影響,且爲了
		顧及到有可能存在的劣質品之影響,需
		將內層的一部分取下。如此一來,才能
		減低含水份的皮製樣品在冷凝器內所
		產生之危險。
		若冷凝器也按照操作方式冷卻,重量即
		可減半。
烤漆	產生	烤漆置放於鋁箔紙上,並且按照樣品組
		條件使其乾燥。
		樣品厚度: 50±5、μm
		樣品裁剪成 30公厘*3 公厘大小,並且
		秤重與分析》(秤重時需扣除鋁箔紙重
		量) 🗸
	•	炸 漆薄片製造: 見 / 2
黏著劑/黏接材	30 <u>+</u> 5	盡量按照一般使用時的厚度去秤重
料		

秤重偏差的原因必須記錄下來。

7.1.1

多層的三明治樣品之

操作方法

爲了使測驗開銷减至最低。可以將許多連續的樣品層一起進行分析。若是其中有幾層相對較學(大於 0.4.4) 厘1, 則必須每一層各自分析。

此外,還會得到一家生力,果確定性,因爲排放值係針對每一個單一物質。在進行樣品加工時人也不需要顧慮到每一層的厚度。(對於物質影響,具有較佳相似性)

若能夠根據樣品結構預測不確定性,則須對每一成分進行分析。(例如: 放置於後海綿上的黏著物之薄膜)

熱解析檢驗中的漆薄

膜製造

爲確保相同性與測量值穩定性,烤漆乾燥的條件需加以限制,並且盡可能使其平滑。前提是,烤漆用具的條件須符合製造商的加工處理規定。

以下爲製作漆薄膜的方法:

將漆噴於 DIN-A5 大小、厚度最多 30hm??、乾淨的鋁箔紙。單層薄膜系統之薄膜厚度: $50\,\mu\,\text{m}\pm5\,\mu\,\text{m}$ (即使和連續薄膜有偏差)。使用多層薄膜系統時的乾燥薄膜厚度: 整體結構符合連續層厚度

潮濕的漆先短暫風乾後,放置於實驗用乾燥箱烘乾。

乾燥箱不得同時有其他樣品種類。爲了避免汙染,乾燥箱必須以 200℃預熱至少兩個小時。設定好預熱溫度的乾燥箱,只能在放入樣品時,短暫打開箱門。

乾燥箱的放置:

· (中間夾層)

乾燥箱操作力式: 循

環送風開至最大(>10[1/分])

新鮮空氣供給 10±5%

-操作方式: 1+0.2[1/m]

- a. 乾燥箱大小= 0.13 立方公尺
- b. 漆的面積= 0.12 平分公尺(符合 4 DIN-A) 面積)
- => c. 乾燥箱操作方式=0.12 平方公尺/0.13 立方公尺= 1[1/m]

若使用其他大小之乾燥箱,樣品表面面積別須利對應地改變

乾燥箱時間與乾燥箱溫度:

實際上的乾燥溫度與時間電記錄下來,並且在檢驗時說明。對於連續檢驗之樣品也是在同樣的溫度與於爆時間下製作而成。

從乾燥箱取出漆/P品後,需置放於室溫(最高 23°C)下風乾 24 小時。接著用鋁箔 紙將漆樣品的表面覆蓋,並包裝於密封的 PE 袋子送去實驗室。另外也可將樣品 先包裝後,儲存於最高-18°C的環境下十四天。

實驗室從上漆的鋁箔紙取大小30公厘*3公厘之長條,秤重後馬上放置於熱分析管柱。實際的漆樣品重量需先將鋁箔紙重量扣除,因此實驗室必須備有一沒有樣品的鋁箔紙。

由於殘留於漆樣品上的溶劑量,基本上係取決於乾燥狀況(特別是溫度),因此必須按照上述之溫度進行設定。

7.2.2

木頭漆的樣品製備規

定

使用於汽車車內的木頭漆具有相當厚的厚度(大約 $800 \mu m$),因此此種類的漆不被 視為 "漆"(=> $50 \mu m$ -置於鋁箔紙上的薄膜),而是被視為與塑料樣品相似。將木 頭漆噴在鋁箔紙上厚,以連續樣品的乾燥條件進行乾燥。

薄膜厚度: 800+50 μ m

鋁箔紙硬度: 30 µ m(光滑的表面)

面積: 大約 DIN A4

風乾時間: 五天、室溫,其餘無規定。接著將樣品包裝於密封袋內(包在路

箔紙內,再放入PE袋)

實驗室會將上漆的鋁箔紙剪成 10 公厘*3 公厘大人的方形(秤重: 3) 毫克±5 毫克),接著將鋁箔紙拿掉秤重,再馬上放入熱分析管左進行檢驗

7.3

数分析檢驗之草圖

Scheme of Thermal Desorption Analysis: 熱分析檢驗工享圖

Desorptiontube with sample: 裝有樣品的分析管柱

Carrier gas: 載流氣體

Cryo-Trap: 冷凍捕集裝置系統

Mass Selective Detector: 質譜儀偵測器

MS-Spectra-Identification: 質譜鑑定

Chromatogram: 色層析譜 Calculation/Report: 計算域等

7.4

檢驗色層析譜

Komponente: 冷實 Ret-Zeit: 滯留時間

Benzol: 苯 Alkan 烷烴 Toldol: 甲苯 Xylol: 二甲苯

ЛУЮ1. — Т 4

Ethylhexanol: 乙基己醇

Di: 釹鐠混合物

DOA: 己二酸二辛酯

7.5

見 Excel 表格 A

7.6 Excel 報告(原件)

見 Excel 表格 B

Muster für Excel-Report Zellenbelegung: Excel 報告表格製作範例 Ergebnis der Thermodesorptionsanalyse: 熱解析分析之結果 File: Dateiname des GC-Laufes: 檔案: GC 程序之檔案名稱

Pfad: Ablage Verzeichnispfad: Operator: Name 操作者:名稱

Datum: Datum Analysenlauf 日期: 日期: 分析過程

Methode: Name der GC-Analysenmethode 方法: GC 分析方法之名稱

Probe: aussagefähige Probenbezeichnung: Probenart/ Werkstoff/Bauteil 樣品 可說明之

樣品名稱: 樣品種類/原料/構造

Info: Zusätzliche Probeninfo(Einwaage, Abmessung, Hersteller):資訊.額外的樣品資訊 (秤重,尺寸,製造商)

Rohr-Nr.: Sequenz-Platznummer(Descriptionsröhrchen): 管粧編號(順序-位置編號)(分析管柱)

VOC oder Fog-Wert Gesamtemmission in μ g/g: VOC 或 Fog 値的總排放値

Summe der nachfolgenden identifizierten Substanzen in ppm: 以鑑定之物值總值(ppm)

Retention Time(min.): 滯留時間

Substanzname: 物質各稱

Leerzeile: 空白 Minuten: 分鐘

Bezeichnung der ersten Schstanz. 第一個物質的名稱

Variable Zeilenanzah (adhangig von Anzahl der Substanzen): 變化的排列數(依物質數而定)

Bezeichnung der letzten Substanz: 最後一個物質之名稱

Summe der identifizierten oder zugeordneten Substanzen: 以鑑定或以代入物質之總值 Bemerkung: Bemerkungsfeld zur Gesamtbewertung der Probe: 樣品總評估之評估區

freibleibend: 保留空白 Externe Nr.: 外部日期

Datum für Labor: 實驗室日期

Wareneingang: 貨品入口

Probenahme: 取樣

Prod. Datum: 製造日期

Datum für Hersteller: 製造商日期

Laborinterne Nr.: 實驗室內部編號

Bauteil-Part-Nr.(falls bekannt): 成分編號(如果知道的話)

Höchstwert: 最高値

Totalsumme: 全部的總值

Zweitwert: 第二次値

Total Zweitwert: 全部的第二次值

Flächen: 面積 Bewertung: 評估

Flächen%-Anteil der Substanz: 物質所占面積

Substanz-Konzentration: 物質濃度

Summe Liste: 總值表 Summe Flächen: 總值面積

の適意許は配 Optionales Bewertungsfeld für die Substanz: 物質的隨意記