1.31(3H,d,J=3.0 Hz,C6"H)。 ¹³ C-NMR(CD3OD,8):
167.06(C-2),104.56(C-3),184.39(C-4),163.30(C-5),
101.42(C-6),164.77(C-7),96.34(C-8),159.30(C-9),107.
44(C-10),123.37(C-1'),130.13(C-2',C-6'),117.50(C-3',C-5'),163.36(C-4'),糖上碳核:100.18(C-1"),79.49(C-2"),78.48(C-3"),71.87(C-4"),78.76(C-5"),62.92(C-6"),
103.01(C-1"),72.69(C-2",C-3"),74.48(C-4"),70.48(C-5"),18.79(C-6")。以上数据与文献[9-10]记载的Rhoifolin一致 故鉴定 Ⅵ为:芹菜素-7-0-新橙皮糖苷,即野漆树苷(Rhoifolin)。

化合物 I 灰色粉末 mp 293~296 °C 溶于甲醇 吡啶 二甲亚砜,I 在甲醇中测得 UV 光谱 最大吸收峰 205 nm , 13 C-NMR(C5D5N 600 MHz) δ : 38.81(C-1) 26.45(C-2) 78.21(C-3) 39.50(C-4) 55.79(C-5) , 18.47(C-6) 33.08(C-7) , 39.98(C-8) ,47.87(C-9) ,36.76(C-10) ,23.82(C-11) , 122.50(C-12) ,144.84(C-13) ,42.33(C-14) ,33.08(C-15) , 77.77(C-16) ,46.61(C-17) ,41.86(C-18) ,46.77(C-19) , 30.90(C-20) ,42.28(C-21) ,75.55(C-22) ,28.19(C-23) , 15.76(C-24) ,16.85(C-25) ,17.13(C-26) 23.82(C-27) 28.66(C-28) ,33.32(C-29) ,21.21(C-30)。 δ 122.50(C12) , δ 144.83(C13)为典型的齐墩果酸型骨架构型。根据以上数据[11]确定化合物 I 的结构是 3 β ,16 β ,22 α —三羟基齐墩果—12-烯。

参考文献:

- [1] 中国科学院中国植物志编辑委员会. 中国植物志(41卷) [M]. 北京:科学出版社,1995:69.
- [2] 江苏新医学院. 中药大辞典(上册) [M]. 上海: 上海科技出版 社 ,1977:1417.
- [3] Igboechi AC, Osazuwa EO, Igwe UE. Laboratory evaluation of the carotidal properties of extracts from Uraria picta [J]. J Ethnopharmacol, 1989, 26(3):293-298.
- [4] Grampurohit N D , Baichwal M R. Fatty acids of Uraria Lagopodioides [J]. Indian J Nat Prod 1993 9(2):8.
- [5] 温晓凡. 兔尾草抗蛇毒有效部位(05)植化成分研究[J]. 暨南大学理医学报,1986,(1):85-94.
- [6] 陈 艳 思秀玲 韦 松 等. 兔尾草化学成分的研究 [J]. 中成药 2009 31(2):266-269.
- [7] Prox A. Tetrahedron ,1968 24(9):3697.
- [8] Ghosal S Jaiswal D K. J Pharm Sci ,1983 69(1):53.
- [9] 雷海民 孙文基. 化洲橘红的化学成分研究 [J]. 西北药学杂志 2000 ,15(5):203-204.
- [10] 袁旭江 林 励 陈志霞. 化橘红中酚性成分的研究[J]. 中草 药 2004 35(5):498-500.
- [11] Khong P W , Lewis K G. New Triterpenoid Extractives from Lemaireocereus chichipe [J]. Aust J Chem, 1975, 28, 165-172.

高效液相色谱法同时测定苦荞中芦丁、槲皮素和山柰酚的含量

黄兴富¹² , 黎其万¹ , 刘宏程¹ , 王继良² , 孙浩岩² , 邵金良¹

(1. 云南省农业科学院质量标准与检测技术研究所,云南 昆明 650223; 2. 昆明医学院药学院,云南 昆明 650031)

关键词:高效液相色谱; 芦丁; 槲皮素; 山柰酚

摘要:目的:新建高效液相色谱法同时测定苦荞中芦丁、槲皮素和山柰酚的分析方法。方法:用 Diamonsil- C_{18} (4.6 mm 150 mm 5 μ m) 色谱柱分离 ,乙腈 -0.2% 磷酸进行梯度洗脱 ,流速:1.0 mL/min 检测波长:365 nm。结果:芦丁、槲皮素和山柰酚的线性范围分别为 $40\sim200$ g/mL $2\sim16$ g/mL , $1\sim12$ g/mL , μ 中,四收率均大于 97%。结论:应用该方法对 17 种不同产地和不同来源苦荞的主要黄酮进行测定 ,为寻找利用高含量黄酮特性的荞麦提供了可能 ,为以后品质性状的选择或杂交选育提供了依据。

中图分类号:R284.1 文献标识码:B 文章编号:1001-1528(2011)02-0345-03

苦荞麦 Fagopyrum tataricum 又名鞑靼荞麦 ,是适于在寒冷气候下生长的寥科荞麦属一年生草本双子叶植物 ,其根、茎、叶、花、种子及籽壳中都含有大量黄酮类化合物 ,主要成分有槲皮素、山柰酚和芦丁等[1]。传统医学和现代医学都证

实苦荞具有降血糖、降血脂、降尿糖、防便秘等功效^[23]。被权威专家称为"三降食品"和"21世纪人类的健康食品"。此外,苦荞中蛋白质含量也较高,有极高的营养和医药价值^[4]。 荞麦蛋白除能显著降低血液胆固醇浓度,其效果优于大豆蛋

收稿日期:2010-09-16

作者简介:黄兴富(1983 -) 男 硕士生 主要从事药物分析等方面的研究。

^{*} 通讯作者:王继良(1963 –) 男 副教授 硕士生导师 注要从事天然药物化学研究。Tel:13888962148 E-wangjiliangkm@ yahoo.com.cn

白质^[5] .还具有抗衰老、抑制大肠癌的发生等作用。目前国内对植物中的黄酮类化合物的测定主要有比色法 紫外分光光度法和 HPLC 法^[6] .但比色法的干扰因素较多 .而紫外分光光度法准确度不高。近年来国内有采用高效液相色谱法测定苦荞黄酮中芦丁、金丝桃苷、牡荆苷、槲皮素等黄酮化合物的含量^[78] .但尚未见文献报道同时测定芦丁、槲皮素和山柰酚的含量。本试验建立了用高效液相色谱同时测定苦荞中芦丁、槲皮素和山柰酚含量的方法 .并对用 90% 甲醇索氏提取物芦丁、槲皮素和山柰酚的含量进行测定。

1 仪器与试药

- 1.1 仪器 戴安 Summit 高效液相色谱仪;电子分析天平 (德国赛多利斯 CP-224S 0.1 mg/100 g)。
- 1.2 试药 芦丁(含量>98%,批号:100080-200707)、槲皮素(含量>98%,批号:100081-200406)和山柰酚(含量>98% 批号:0861-200002)对照品均购于中国药品生物制品检定所;17种不同品种的荞麦(云南省农科院生物与种资资源研究所提供);乙腈为色谱纯(Tedia 美国)流动相用水为去离子水经0.45 μm 膜过滤;甲醇和磷酸均为分析纯。

2 溶液的配制

2.1 对照品溶液的制备 分别精密称取对照品芦丁 10 mg、槲皮素 1 mg 和山柰酚 1 mg ,于 10 mL 量瓶中 ,用甲醇定容 配成浓度分别为 1 0.1 和 0.1 mg/mL 的对照品贮备液。 2.2 供试品溶液的制备 分别精密称取样品 10.0 g ,用 90% 甲醇索氏提取 旋转蒸发浓缩 ,于 100 mL 量瓶中 ,加甲醇定容 ,取 1 mL 于 10 mL 量瓶中 加甲醇稀释至刻度。

3 色谱条件

色谱柱: Diamonsil- C_{18} (4.6 mm × 150 mm ,5 μ m); 流动相组成: 乙腈-0.2% 磷酸溶液线性梯度洗脱 ,洗脱程序见表 1; 流速: 1.0 mL/min; 检测波长: 365 nm; 进样量: 20 μ L。色谱图见图 1。

表1

梯度洗脱程序

时间/min	7 II /0/	0.2 % 磷酸水溶液		
	乙腈/%	$(0.2 \% H_3 PO_4) / \%$		
0 ~8	20	80		
8 ~ 13	40	60		
13 ~ 22	40	60		
1 000	140 125 113	1		

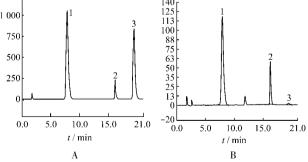


图 1 混合对照品(A)、样品(B)的色谱图 1. 芦丁 2. 槲皮素 3. 山柰酚

4 方法与结果

4.1 线性关系考察 精密吸取芦丁、槲皮素和山柰酚对照 346 品贮备液 $0.4 \cdot 0.8 \cdot 1.2 \cdot 1.6 \cdot 2.0$ mL; $0.2 \cdot 0.4 \cdot 0.8 \cdot 1.2 \cdot 1.6$ mL; $0.1 \cdot 0.2 \cdot 0.4 \cdot 0.8 \cdot 1.2$ mL ,于 10 mL 量瓶中,加甲醇稀释至刻度 摇匀 配成系列浓度的对照品混合溶液,取 20 μ L 进样后记录峰面识,以峰面积 Y 对对照品浓度 X 绘制标准曲线。得到芦丁、槲皮素和山柰酚的回归方程分别为:

$$Y = 0.575 \ 9 \ X - 2 \ .206 \times 10^{-3} \ r = 0 \ .999 \ 9;$$

 $Y = 2.457 \ 8 \ X + 8.151 \times 10^{-4} \ r = 0 \ .999 \ 9;$
 $Y = 1.652 \ 5 \ X - 7.401 \times 10^{-4} \ r = 0 \ .999 \ 9.$

芦丁、槲皮素和山柰酚的线性范围分别为: 40 ~ 200 μg/mL、2 ~ 16 μg/mL、1 ~ 12 μg/mL。液相色谱的信噪比 S/N = 3。 芦丁、槲皮素和山柰酚的最低检测限分别为 0.03 μg/mL、0.009 μg/mL、0.005 μg/mL。

- 4.2 精密度试验 精密称取 6 份样品 (西苦 6-14) 10.0 g 按 2.2 项下方法制备供试品溶液 进样测定 记录峰面积,计算芦丁、槲皮素和山柰酚的 RSD 分别为 0.84%、0.57%、1.27%。
- 4.3 稳定性试验 精密吸取芦丁、槲皮素和山柰酚的对照品溶液 配成浓度分别为 $120 \times 8 \times 4 \mu g/mL$ 在室温下放置,分别在 $0 \times 2 \times 4 \times 8 \times 12 \times 24 h$ 时测定,计算得芦丁、槲皮素和山柰酚峰面积 RSD 分别为 $0.78\% \times 0.83\% \times 1.34\%$ 。表明对照品溶液在 24 h 内稳定。
- 4.4 重复性试验 分别精密称取样品 (西苦 6-14) 6 份,按 2.2 项下的供试品溶液制备方法制备 进样 $20~\mu$ L,记录峰面积 测得样品中芦丁、槲皮素和山柰酚含量的 RSD 分别为 0.77%~0.51%~1.18%。
- 4.5 加样回收率试验 精密称取样品(西苦 6-14)11份,每份约10.0g样品按2.2项处理。1份是空白,其余10份分为2组,分别精密加入约相当于样品中芦丁、槲皮素和山柰酚含量80%、120%的对照品(各5个),按供试品溶液制备和测定方法操作,计算芦丁、槲皮素和山柰酚的平均回收率分别为:97.86%、99.02%、97.85%。见表2。
- 4.6 样品含量测定 分别精密称取每个品种的苦荞 3 份 , 按 2 . 2 项下方法制备供试品溶液 ,按上述色谱条件和测定方法 ,测定峰面积 ,外标法计算 ,结果每个品种的苦荞中芦丁、槲皮素和山柰酚的含量分别见表 3。

5 讨论

- 5.1 波长的选择 本试验考擦了 260 nm 和 365 nm 不同吸收波长的图谱 发现芦丁、槲皮素和山柰酚的最大吸收波长不一 在 365 nm 波长下槲皮素和山柰酚有最大吸收 "而芦丁也有较好的吸收 且干扰少 图谱特征性强。故选择 365 nm 为检测波长。
- 5.2 流动相的选择 在实验过程中曾试过甲醇-水,乙腈-水溶液等为流动相,分离效果均不理想,色谱峰拖尾严重,而采用乙腈-0.2%磷酸水溶液后分离效果有明显的改善,且峰形均较好,无拖尾现象,故最后选择乙腈-0.2%磷酸水溶液为流动相。
- 5.3 提取方法的选择 对苦荞的提取方法做了下列考察 (溶剂为甲醇和乙醇):索氏提取法、浸渍法、回流提取法、超

表 2

加样回收率试验(n=5)

化合物	空白值	加入量/mg			测得量/mg			回收率/%	RSD/%
	/mg	加八里/mg	/则行重/mg				四収率/%	RSD7 %	
芦丁 99.766	00. 766	80	177.331	177.361	178.021	177.615	178.176	97.42	0.49
	99.700	120	217.646	217.483	218.027	218.112	217.357	98.30	0.29
槲皮素	2 200	4	6.147	6.155	6.141	6.097	6.132	98.14	0.57
	2.209	8	10.197	10.201	10.199	10.204	10.199	99.89	0.03
山柰酚	0. 225	0.2	0.419	0.421	0.421	0.419	0.422	97.70	0.69
	0.225	0.4	0.620	0.615	0.617	0.619	0.614	98.00	0.65

表3

不同来源苦荞中芦丁、槲皮素和山柰酚的含量(n=3)

苦荞品种	产地	芦丁/(10 ³ μg/g)	RSD/%	槲皮素/(μg/g)	RSD/%	山柰酚/(μg/g)	RSD/%
KQ08-0	宁蒗县	11.7	0.49	636.7	0.61	188.3	0.11
KQ08-10	宁蒗县	7.7	0.32	770.6	0.43	52.7	0.34
内蒙白荞	宁蒗县	10.8	0.03	319.4	0.54	22.3	0.47
羊荞	宁蒗县	8.8	0.17	474.4	0.73	42.3	0.82
迪苦1号	迪 庆	8.7	0.26	215.3	0.81	14.0	0.96
迪苦4号	迪 庆	9.1	0.08	213.8	0.92	22.4	0.53
迪苦 8 号	迪 庆	8.2	0.73	321.9	0.31	94.2	0.47
西苦6-14	迪 庆	9.9	0.66	219.9	0.49	20.9	0.51
西农 9940	迪 庆	10.3	0.21	176.8	0.23	11.8	0.07
昭苦	迪 庆	9.3	0.40	167.2	0.42	40.9	0.16
江西苦荞	江西九江	13.1	0.27	393.9	0.37	112.6	0.39
贵州威宁苦	贵州威宁	10.6	0.43	139.7	0.76	85.6	0.71
四川西昌苦	四川西昌	12.7	0.13	80.2	0.83	3.8	0.52
四川梁山苦	四川梁山	9.9	0.36	490.3	0.05		0.29
云荞 53	昆明	13.3	0.19	230.5	0.61	13.9	0.43
云荞 63	昆明	11.7	0.21	190.7	0.04	0.2	0.71
云昭苦荞2	昆明	11.1	0.72	97.7	0.35	1.1	0.21

声波提取法,发现用索氏提取法,溶剂为甲醇的效果最好。 又对60%、80%、90%和100%的甲醇做了考擦,结果发现90%的甲醇提取的黄酮是最多的,尤其是山柰酚。

5.4 样品测定结果分析 从测定结果看,10 个不同来源苦荞中芦丁、槲皮素和山柰酚的含量存在较大的差异: 云荞 53 中芦丁的含量最高,KQ08-10 中芦丁的含量最少; KQ08-10 中槲皮素的含量最高,四川西昌苦 3-7 中槲皮素的含量最少; KQ08-06 中山柰酚的含量最高,四川梁山苦和云荞 63 中都没检测到山柰酚。

这为寻找苦荞同时具有高含量芦丁、槲皮素和山柰酚等 黄酮化合物提供了可能,为以后品质性状的选择或杂交选育 提供了依据。

5.5 小结 本试验采用 HPLC 法同时测定苦荞中芦丁、 槲皮素和山柰酚 3 种成分的含量 ,方法简便快速 ,结果准确 ,可用于苦荞的质量控制。

参考文献:

- [1] Zhang Zheng ,Zhou Yuan ,Wang Zhuanhua ,et al. Study of antioxidang activity of flavonoid in tartary buckwheat [J]. Pharm Biotechnol ,2001 ,8 (4): 217-220.
- [2] Ren W Qiao Z , Wang H , et al . Tartary buckwheat flavoniod activatea caspase 3 and induces HL-60 cell apoptosis [J]. Methods

Find Exp Clin Pharmacol 2001 23(8): 427-432.

- [3] 刘淑梅 韩淑英 霍国金 等. 甜荞麦叶总黄酮降糖降脂作用及机制[J]. 第四军医大学学报 2003 22(19):1815-1817.
- [4] 祁学忠,吉锁兴,王晓燕,等. 苦荞黄酮及其降血糖作用的研究[J].科技情报开发与经济 2003,13(8):111-112.
- [5] 李 丹,丁霄霖. 苦荞黄酮抗氧化作用的研究. 食品科学, 2001 22(4):22-23.
- [6] 林汝法 周小理 任贵兴. 中国荞麦的生产与贸易、营养与食品 [J]. 食品科学 2005 26(1):259-263.
- [7] Kayashita J ,Shimaoka I , Nakajioh M. Production of buckwheat protein extract and its hypoholesterlemic Effect [G]//. Current Advances in Buckwheat Research ,1995:919-926.
- [8] 庄向平 虞杏英. 银杏叶中黄酮含量的测定和提取方法 [J]. 中草药 ,1992 23(3):122-124.
- [9] 张鹤鸣, 王宁生. 银杏提取物及其制剂中黄酮苷类的质量控制方法评述[J]. 广东药学院学报 2001, 17(2):127-129.
- [10] 徐宝才 李 丹,丁霄霖.荞麦黄酮的提取、测定及其抗氧化研究进展[J].中草药 2001 (增):189-191.
- [11] 卫星星 ,王转花. 高效液相色谱法测定苦荞籽壳中芦丁和槲皮素的含量[J]. 药物分析杂志 2007 27(12):1909-1910.
- [12] 徐宝才,肖 刚,丁霄霖.液质联用分析测定苦荞黄酮[J].食品科学 2003,12(6):113-17.