Fe³⁺、Ce³⁺ 掺杂 TiO₂ 光催化降解气相二苯并呋喃

夏启斌、黄思思、张志娟、李忠

(华南理工大学传热强化与过程节能教育部重点实验室,广州 510640)

摘要:以气相二苯并呋喃为研究对象,考察了在 TiO, Ce³⁺/TiO,和 Fe³⁺/TiO,3 种不同光催化剂作用下,反应物初始浓度,湿 度、气体循环速率和光强等因素对间歇式光催化反应速率的影响,并建立了估算和测定二苯并呋喃光催化反应常数和 Langmuir 吸附常数的数学模型和方法.结果表明, Fe³⁺和 Ce³⁺ 掺杂修饰 TiO₂ 光催化剂后, 提高了对二苯并呋喃的光催化降解 活性,其中 Fe³⁺/ TiO₂ 光催化活性最高:随着二苯并呋喃初始浓度的增大,其光催化降解速率也随之增大:适量的水蒸气存在可 以促进二苯并呋喃的降解,但当水蒸气过量后,反而阻碍二苯并呋喃光催化降解:随着气体循环速率加快和光强的增大,二苯 并呋喃光催化降解初始速率也随之增大; TiO,、Ce³⁺/ TiO, 和 Fe³⁺/ TiO, 光催化降解二苯并呋喃反应速率 常数 k 分别为 34.54× 10^{-5} , 36. 23× 10^{-5} 和 37. 95× 10^{-4} mg[•] (min[•] m²)⁻¹.

关键词: 二 英; 二苯并呋喃; 光催化; TiO₂; 金属离子掺杂

中图分类号: X701 文献标识码: A 文章编号: 0250-3301(2009) 11-3177-07

Photocatalytic Degradation of Gaseous Dibenzofuran by TiO₂ Doped with Fe^{3+} , Ce^{3+}

XIA Qi bin, HUANG Si si, ZHANG Zhi juan, LI Zhong

(Key Laboratory of Enhanced Heat Transfer and Energy Conservation of the Ministry of Education, South China University of Technology, Guangzhou 510640, China)

Abstract: The gaseous photocatalytic degradation of dibenzofuran, dioxins like substance, was investigated by using TiO₂, Ce³⁺/TiO₂ and Fe^{3+}/TiO_2 as photocatalysts. The batch-type photocatalytic reaction experiments were conducted, and the effects of initial concentration of reactant, humidity, circulation flow rate and light intensity on the photocatalytic degradation of dibenzofuran were studied. And the models and methods for estimating photocatalytic reaction constants and Langmuir adsorption constants were proposed. Results showed that the photocatalytic activity of the TiO₂ photocatalytic activity improved after doping with Fe^{3+} and Ce^{3+} , and the photocatalytic activity of Fe³⁺/TiO₂ was the best in three photocatalysts. The degradation rate of dibenzofuran increased with the increase of the initial concentration of gaseous dibenzofuran in the batch-type photocatalytic reaction system. The photocatalytic degradation of gaseous dibenzofuran was enhanced when proper quantities of water vapor existed. However, it would be inhibited if there was excessive water vapor. As the circulation flow rate and the light intensity increased, the photocatalytic degradation rate of gaseous dibenzofuran also increased. The photocatalytic reaction rate coefficients of dibenzofuran on the photocatalysts TiO₂, Ce^{3+}/TiO_2 and Fe^{3+}/TiO_2 , were 34.54× 10⁻⁵, 36.23× 10⁻⁵ and 37.95× 10⁻⁴ $mg^{\bullet} (min^{\bullet} m^2)^{-1}$ respectively.

Key words: dioxins; dibenzofuran; photocatalysis; TiO₂; metal ions doping

— 英是世界公认的强致癌物质,具有突出的 "三致"(致癌、致突变、致畸形)作用,对人体健康危 害极大^[1]. 早在20世纪70年代, 二英就被美国环 保署(EPA)列为最重要的污染物,世界卫生组织已 将其列为一级致癌物质,世界各国相继通过《鹿特丹 公约》来限制二 英的产生和排放.目前.二 英主 要来源于城市废弃物、医院废弃物和化学废弃物的 焚烧和氯化工生产过程. 还有制浆造纸中氯化漂白 过程等^[23].其中,城市固体废弃物焚烧是二 英排 放的主要污染源,据统计,发达国家垃圾焚烧产生的 英占已知生成量的95%^[1],因此,如何有效控 制和治理烟气中二 英对环境的污染是目前迫切需

光催化氧化技术具有选择性好、可在常温常压 下进行、适用范围广等优点,并且 TiO2 光催化剂具 有耐酸碱和光化学腐蚀、成本低、无毒、被认为是一 种极有前途的有机污染物深度净化技术^[4,5]. Muto 等^[6]利用 TiO2 光催化降解乙腈/水溶液中的 PCDD/ Fs, 光照 24 h 后 PCDD/Fs 降解率> 70%, 反应速率常 数为4.8×10⁻³~6.1×10⁻³min⁻¹,光催化反应遵循 准一级反应动力学模型. 张志军等^[7]利用中压汞灯 作光源,研究了水溶液中氯代二苯并对二 英在二

要解决的问题 994-2012 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

收稿日期: 2008-12-15;修订日期: 2009-04-12

基金项目:国家自然科学基金重点项目(20336020)

作者简介:夏启斌(1974~),男,博士,讲师,主要研究方向为环境功

氧化钛催化下的光催化反应,发现二氧化钛能有效 地催化 CDDs 的光降解. 在室温下.4h内 DCDD、 PeCDD 和 OCDD 分别降解了 87.2%、 84.6%、 91.2%.光催化技术在降解水、土壤或者有机溶剂中 的二 英方面取得了一定的研究进展^[8-11]. 垃圾焚 烧是环境中二 英的主要来源. 排出烟气中的二 英主要以气相形式存在,陈彤等^[12]采用紫外/微臭氧 氢化法降解烟气中的二 英二 英总量和毒性当 量的降解率在 69% 左右, 然而, 目前国际上还没有 看到应用光催化技术降解气相二 英的研究报道. 研究气相二 英的光催化降解行为将会为治理垃圾 焚烧排出气中二 英提供技术基础,具有极其重要 的现实意义.

本实验以二 英类化合物(二苯并呋喃)作为研 究对象,以玻璃纤维为催化剂载体,在紫外光照和 TiO_2 、 Fe^{3+}/TiO_2 、 Ce^{3+}/TiO_2 3种不同光催化剂作用 下,利用自行设计的光催化反应系统,间歇式光催化 降解气相二苯并呋喃 考察了气相二苯并呋喃的初 始浓度、湿度、气体循环速率和光强对二苯并呋喃光 催化降解效率的影响.确定光催化降解二苯并呋喃 的最佳的实验条件,建立其光催化降解动力学模型,

1 材料与方法

1.1 试剂和材料

二苯并呋喃常温下为无色晶体(纯度 98%、 ACROS ORGANICS, USA), 高强玻璃纤维布(深圳市 赛龙玻璃纤维有限公司). 气相色谱仪使用气体: 高 纯氮(纯度 99.99%, 广州气体厂), 氢气(纯度 99.9%, 广州气体厂), 干燥空气(纯度 99.9%, 广州 气体厂).

1.2 催化剂制备

采用溶胶 凝胶法在玻璃纤维表面负载 TiO。薄 膜,并分别使用 Ce^{3+} 和 Fe^{3+} 掺杂修饰 $TiO_2^{[5]}$, 掺杂 量为 0.2%, 具体制备方法见文献[9]. 玻璃纤维布 负载 TiO₂ 催化剂的量为 5.983 g/m², 负载 TiO₂、 Ce^{3+}/TiO_2 和 Fe^{3+}/TiO_2 玻璃纤维BET比表面积分别 为4.003、4.213和4.677 m²/g.

1.3 光催化反应装置和实验方法

气相光催化氧化实验装置如图 1 所示,主要由 三部分组成:配气系统、光催化反应器和检测分析系 统. 配气系统利用三路质量流量控制器调节干燥空 气流速来控制进入反应器的气相二苯并呋喃的初始 浓度1流量和湿度hina Academic Journal Electronic Publis 新39(13 mm AA mylat 载气(Ne)压力th 20 kPer.氯氘流

1. 干燥空气: 2. 气体净化器: 3.4.5. 质量流量控制器: 6.7. 鼓泡管: 8. 混气瓶: 9. 流量计: 10. 四通阀: 11. 真空泵: 12. 光催化反应器: 13. 电磁六通阀: 14. 气相色谱仪: 15. 色谱工作站 图1 气相光催化实验装置 Fig. 1 Schematic diagram of the reaction system

光催化反应器为底部开口的半封闭同心石英玻 璃圆柱体,高130 mm,外径50 mm,内径30 mm,有效 体积为 780 mL. 石英玻璃反应器底部与 220 mm × 220 mm 的不锈钢板紧密连接,该层不锈钢板和另一 层同样大小的不锈钢板用螺母固定,钢板之间填有 密封圈,拧紧钢板保持反应器良好的气密性,实验 前,可卸开钢板将负载TiO2的玻璃纤维放入石英玻 璃反应器内,每次使用 30 cm × 30 cm 的负载光催化 剂的玻璃纤维布,负载量约0.538g.反应器中心插 入紫外灯光源,主波长为365 nm,功率为400W.检测 分析系统主要有气相色谱仪(GG-950,上海海欣色谱 公司)、色谱工作站(HW-2000. 南京千谱软件公司)、 电磁六通阀(进样管 0.1 mL)、四通阀、湿度计(Max-Min T H, 深圳深明电子有限公司)、真空泵 (PC4010B, 成都锐意机械设计中心)等器件组成.

首先. 二苯并呋喃气体沿着四通阀 b[→] 四通阀 c [→]真空泵[→]光催化反应器[→]电磁六通阀[→]四通阀 d → 四通阀 a 方向流动, 电磁六通阀间歇式程序控制 取样进入气相色谱分析二苯并呋喃浓度变化.待整 个体系达到吸附平衡后,旋转四通阀改变气体流向, 使二苯并呋喃气体沿着四通阀 c[→] 真空泵[→] 光催化 反应器[→] 电磁六通阀[→] 四通阀 d[→] 四通阀 c 方向闭 路循环流动.待体系中二苯并呋喃浓度达到平衡后. 开启紫外灯进行光催化降解实验,实验过程中气体 管路进行加热保温,防止二苯并呋喃降温结晶堵塞 气路.

采用气相色谱仪检测光催化反应过程中的二苯 并呋喃的浓度变化,色谱分析条件为:不锈钢填充柱 速 30 mL/min, 空气流速 300 mL/min, 柱温 150 ℃, FID 检测器温度为 200 ℃.

2 结果与讨论

11 期

2.1 二苯并呋喃初始浓度的影响

图 2~4为TiO₂、Ce³⁺/TiO₂和Fe³⁺/TiO₂光催化 剂作用下不同初始浓度的气相二苯并呋喃光催化降 解动力学曲线.从中可看出,在光催化反应4min 内,气相中二苯并呋喃的浓度急剧下降,此后,二苯 并呋喃的降解速率缓慢变小.在3种光催化剂作用 15min后,气相二苯并呋喃降解率最高可以达到 98%以上.掺杂0.2%Fe³⁺和掺杂0.2%Ce³⁺的TiO₂ 光催化剂相对于原始TiO₂光催化剂,降解二苯并呋 喃的效率可得到进一步提高,其中掺杂0.2%Fe³⁺ 的TiO₂光催化剂对气相二苯并呋喃的降解效果 最好.

按照传统的一级反应定律, 若催化剂不变, 某一反应的反应速率常数不会随着初始浓度的变化而变化, 然而, 通过大量的文献报道以及笔者的研究结果表明, 在光催化反应中, 反应速率是随着反应物初始浓度变化而变化的.显然, 光催化反应并不完全符合一级反应定律.因此, 通常采用 Langmuir-Hinshelwood动力学方程来表征气相多相光催化反应, Langmu ir-Hinshelwood(L-H)反应动力模型建立前提是^[13]:① 被吸附分子呈单分子层, 遵循 Langmuir 等温吸附方程: ②吸附 脱附同时发生, 最终达到平衡.

Fig. 3 Kinetic curves of photocatalytic degradation of the dibenzofuran with different initial concentration on ${\rm Ce}^{3+}\,/{\rm TiO}_2$

如果反应物占据在催化剂表面的单一位置,且 遵循Langmuir 等温吸附方程,则有:

$$\theta = \frac{Kc}{1 + Kc} \tag{1}$$

在间歇式非均相催化反应体系中,系统体积恒 定而浓度随着时间而变,反应速率可采用单位表面 积催化剂加以定义,称之为表面比反应速度,表示

© 1994-2012 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

为:

$$= - \frac{V}{S} \frac{dc}{dt}$$
(2)

式中, V 为间歇式反应器的体积, S 为光催化剂的表面积. Langmui+Hinshelwood 反应动力模型认为反应 速率 r 与表面覆盖率 θ 成正比, 故有:

$$r = k\theta \tag{3}$$

联立式(1)~(3)可得:

$$r = -\frac{V}{S}\frac{dc}{dt} = \frac{kKc}{1+Kc}$$
(4)

式中, c为反应物浓度, r为反应速率, θ 为表面覆盖 率, k为光催化反应速率常数, K为 Langmuir 吸附常 数, 其相当于吸附速率常数与脱附速率常数的比值.

设 c_0 为反应物初始浓度, 当 t=0 时, $c=c_0$, 对式(4) 积分可得:

$$\frac{\ln(c_0/c)}{c_0 - c} = kK \frac{S}{V} \frac{t}{c_0 - c} - K$$
(5)

由 $\frac{\ln(c_0/c)}{c_0 - c}$ 对 $\frac{St}{V(c_0 - c)}$ 作图,线性拟合后得 一条直线,直线斜率为 kK,截距为 – K,据此可求得 光催化反应速率常数 k 和 Langmuir 吸附常数 K.

图 5 是根据 3 种不同光催化剂光催化降解气相 二苯并呋喃得出的 $\frac{\ln(c \circ c)}{c_0 - c} - \frac{St}{V(c_0 - c)}$ 关系图, 求 出的光催化反应速率常数 k 和 Langmuir 吸附常数 K结果见表 1.

图 5 光催化降解二苯并呋喃的 Ь Η 反应动力学模型参数线性拟合

Fig. 5 Linear fit plots of L-H reactive kinetic model of gaseous dibenzofuran

© 1994-2012 China Academic Journal Electronic Publi

表 1 二苯并呋喃间歇式光催化反应 Langmuir Hinshelwood 模型参数

Table 1 Estimation of Langmuir-Hinshelwood parameters in batch-type

dibenzofuran photo catalytic degradation				
光催化剂	$k /\mathrm{mg}^{\bullet}(\mathrm{min}^{\bullet}\mathrm{m}^2)^{-1}$	$K/\mathrm{m}^{3\bullet}~\mathrm{mg}^{-1}$	<i>kK</i> / m• min ⁻¹	

	ē (0	
TiO ₂	34. 5× 10 ⁻⁵	8. 82×10^{-2}	3.05×10^{-5}
$\mathrm{Ce}^{3+}/\mathrm{TiO}_2$	36. 2× 10 ⁻⁵	8. 28 × 10 ⁻²	2 99×10 ⁻⁵
$\mathrm{Fe}^{3+}/\mathrm{TiO}_2$	38. 0 × 10 ⁻⁴	5. 86×10 ⁻²	2 22× 10 ⁻⁵

从表1中可看出,在3种光催化剂中, Fe^{3+}/TiO_2 光催化降解气相二苯并呋喃反应速率常数 k 最大, Ce^{3+}/TiO_2 光催化剂次之, TiO_2 最小.说明 TiO_2 改性 掺杂 Fe^{3+} 和 Ce^{3+} 金属离子后,其对气相二苯并呋喃 的光催化降解速率加快,光催化性能得到提高,而且 掺杂 Fe^{3+} 的 TiO_2 光催化性能比 Ce^{3+} 掺杂的 TiO_2 光 催化剂还要好.这是由于经 Ce^{3+} 和 Fe^{3+} 掺杂后的 TiO_2 光催化剂其表面 Ti^{3+} 浓度增高^[5],表面羟基浓 度减小.而光催化剂表面 Ti^{3+} 浓度越高引起更多的 氧缺陷位,从而使光催化剂更容易吸附氧气.同时 在光催化反应过程中,光催化剂表面 Ti^{3+} 与吸附 氧反应形成 Ti^{4+} 的同时形成 O_2^- ,促使修饰后的 TiO_2 光催化活性增强.在3种光催化剂中 Fe^{3+}/TiO_2 表面 Ti^{3+} 浓度最高,因而其光催化活性最高.

气相二苯并呋喃在 TiO₂ 光催化剂表面 Langmuir 吸附平衡常数 K 最大, Ce³⁺ /TiO₂ 光催化剂次之, Fe³⁺/TiO₂ 光催化剂最小. 气相二苯并呋喃在光催化 剂表面 Langmuir 吸附平衡常数 K 的大小顺序并不 与光催化降解反应速率常数 k 大小顺序相一致, 气 相二苯并呋喃在 TiO₂ 光催化剂表面 Langmuir 吸附 平衡常数 K 要大于 Ce³⁺ /TiO₂ 光催化剂, 而其在 Ce³⁺ /TiO₂ 光催化剂表面光催化降解反应速率常数 k 小于 TiO₂ 光催化剂. 说明较大的 Langmuir 吸附常 数 K 并不导致其反应速率常数 k 也会较大.

2.2 湿度对光催化降解气相二苯并呋喃的影响

气相反应分为有水蒸气和无水蒸气 2 种体系, 研究发现不同类型的污染物光催化降解过程中,水 蒸气有促进或阻碍光催化降解反应.为了考察湿度 对光催化气相二苯并呋喃的影响,分别采用 TiO2、 Ce³⁺ /TiO2和 Fe³⁺ /TiO2光催化剂,在相同的气相二苯 并呋喃初始浓度条件下,得出不同湿度时的光催化 降解动力学曲线,实验结果见图 6~8.实验结果显 示:存在微量的水蒸气可以促进二苯并呋喃的降解, 但水蒸气含量增大到一定值后,反而阻碍二苯并呋 喃光催化降解.

-🗆 – RH 0%

10

12

 Δ Fe³⁺/TiO₂

- Ce³⁺/TiO₂

80

60

催化剂时,相对湿度在0%~35%范围内,随着湿度

增大,二苯并呋喃的初始光催化反应速率随之增大,

当相对湿度> 35% 后,水蒸气含量增大也会阻碍光

催化反应的进行. 以 Fe^{3+}/TiO_2 为光催化剂时, 相对

湿度在 0%~ 55% 范围内, 随着湿度增大, 二苯并呋

100

ww.cnki.net

1/

- RH 35%

RH 55%

- RH 82%

对不同相对湿度下气相二苯并呋喃降解随时间 变化曲线进行数据拟合, 可得到 c(t), 求出 $t \stackrel{\rightarrow}{\rightarrow} 0$ 时 曲线斜率,得到气相二苯并呋喃的光催化降解初始 速率 r_0 ,以相对湿度(RH)对光催化降解初始速率 (r₀)作图,见图 9.

以TiO2 为光催化剂时,相对湿度在 0%~ 70% 喃的初始光催化反应速率随之增大,当湿度> 55% 范围内。随着湿度增大,二苯并呋喃的初始光催化反 <u>記含量增大对光催化反应不利.</u> 后,水蒸~

湿度对不同光催化剂的催化氧化性能影响是不同的^[14].Obee 等^[5] 归纳相关文献认为,湿度对光催 化反应速率的影响有 2 种不同的机制:①光催化剂 表面吸附位与•OH的结合,促使光催化反应速率增 大;②水分子和污染物对光催化剂表面吸附位的相 互竞争,使光催化反应速率减小.

一般而言,水分子会吸附在 Ti⁺⁺ 上解离成•OH, •OH 会进攻有机污染物使之氧化成小分子.在适宜 的湿度条件下,随着湿度的增大,更多的水分子会吸 附在 Ti⁺⁺ 上解离成较多的•OH,从而促使光催化降 解二苯并呋喃的初始反应速率会随之增大.当处于 高湿度条件下,水分子与气相二苯并呋喃在光催化 剂吸附位上发生竞争吸附,使气相二苯并呋喃在光 催化剂上吸附量减小,使其光催化反应速率减小. 2.3 气体循环速率对光催化降解气相二苯并呋喃

2.3 气体循环逐举对无催化阵解飞怕二本开呋喃 的影响

设定光反应器进口气相二苯并呋喃初始浓度为 一定值,干燥空气为载气,改变气体循环速率进行光 催化反应,实验结果见图 10.可以看出,气相二苯并 呋喃的降解初始速率随着循环速率的增大而增大, 且当气体循环速率超过 60 mL•min⁻¹后,气相二苯并 呋喃的降解初始速率增大趋势变缓.说明加快气体 循环速率,能够加快光催化反应器内的气相二苯并 呋喃的混合,减小反应器内的浓度梯度,从而促使气 相二苯并呋喃光催化速率的增大.

© 1994-2012 China Academic Journal Electron

2.4 紫外灯功率对光催化降解气相二苯并呋喃的 影响

采用调压器改变输入电压,从而改变紫外灯的 输出功率,达到调节光强大小的目的.图 11 为光强 与二苯并呋喃间歇式光催化初始反应速率的关系. 可以看出,降解速率常数与紫外灯功率(光强)呈线 性关系,采用TiO₂、Ce³⁺/TiO₂和Fe³⁺/TiO₂光催化剂, 随着紫外灯功率的增大,光强增大,气相二苯并呋喃 间歇式光催化降解初始速率也随之增大.因为光强 增大,照射到光催化剂表面的光量子数增多,因而使 更多的半导体电子被激发产生电子空穴对,促使光 催化降解二苯并呋喃的初始反应速率提高.

图 11 光强对二苯并呋喃间歇式光催化初始 反应速率的影响

3 结论

(1)TiO2 改性掺杂 Fe³⁺ 和 Ce³⁺ 后, 气相二苯并 呋喃的光催化降解速率加快, 光催化活性得到提高, 其中 Fe³⁺/TiO2 在三者之间光催化性能最佳.

(2) 微量的水蒸气存在可以促进二苯并呋喃的 降解, 但水蒸气含量增大到一定值后, 反而阻碍二苯 并呋喃光催化降解.

(3)随着气体循环速率的增大、紫外灯功率的增大,气相二苯并呋喃间歇式光催化降解初始速率也随之增大.

(4) 气相二苯并呋喃在 TiO₂ 光催化剂表面 Langmuir 吸附平衡常数 K 最大, Ce^{3+}/TiO_2 光催化剂 次之, Fe^{3+}/TiO_2 光催化剂最小. 气相二苯并呋喃在 光催化剂表面 Langmuir 吸附平衡常数 K 的大小顺 序并不与光催化降解反应速率常数 k 大小顺序相 一致.

参考文献:

- [1] Hays S M, Aylward L L. Dioxin risks in perspective: past, present, and future [J]. Regulatory Toxicology and Pharmacology, 2003, 37 (2): 202-217.
- [2] 奚红霞,李忠.环境中剧毒物二 英的来源、毒性和治理技术[J]. 化学工程,2002,30(6):4449
- [3] Kulkarni P S, Crespo J G, Afonso C A M. Dioxins sources and current remediation technologies — A review [J]. Environment international, 2008, 34 (1): 139-153.
- [4] Hermann J M. Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants [J]. Catalysis Today, 1999, 53 (1): 115-129.
- [5] 夏启斌,李忠,奚红霞,等. Fe³⁺、Ce³⁺ 掺杂对 TiO₂ 光催化剂
 性能的影响 [J]. 化工学报, 2005, 56(5): 1666-1672.
- [6] Muto H, Saitoh K, Funayama H. PCDD/DF formations by the heterogeneous thermal reactions of phenol and their TiO₂photocatalytic degradation by hatch-recycle system [J]. Chemosphere, 2001, 45 (2): 129-136.
- [7] 张志军,包志成,王克欧,等.二氧化钛催化下的氯代二苯并 -对二 英光解反应 [J].环境化学,1996,15(1):47-51.
- [8] Kim JK, Choi K, Cho I H, et al. Application of a microbial toxicity assay for monitoring treatment effectiveness of pentachlorophenol in water using UV photolysis and TiO₂ photocatalysis [J]. Journal of

Hazardous Materials, 2007, 148 (1-2): 281-286.

- [9] Wu C H, Ng H Y. Photodegradation of polychlorinated dibenzo-pdioxins and polychlorinated dibenzofurans: Direct photolysis and photocatalysis processes [J]. Journal of Hazardous Materials, 2008, 151(2-3): 507-514.
- [10] Pelizzetti E, Borgarello M, Minero C, et al. Photocatalytic degradation of polychlorinated dioxins and polychlorinated biphenyls in aqueous suspensions of semiconductors irradiated with simulated solar light [J]. Chemosphere, 1988, 17: 499-510
- [11] Choi W Y, Hong S J, Chang Y S, et al. Photocatalytic degradation of polychlorinated dibenze-p-dioxins on TiO₂ film under UV or solar light irradiation [J]. Environmental Science Technology, 2000, 34 (22): 4810-4815.
- [12] 陈彤, 严建华, 李晓东, 等. 烟气中二 英的光降解实验研究 [J]. 中国电机工程学报, 2008, **28**(20): 61-65.
- [13] Coronado J M, Zorn M E, Tejedor-Tejedor I, et al. Photocatalytic oxidation of ketones in the gas phase over TiO₂ thin films: a kinetic study on the influence of water vapor[J]. Applied Catalysis B: Environmental, 2003, 43 (4): 329-344.
- [14] Bouazza N, Lille-R denas M A, Linares-Solano A. Photocatalytic activity of TiO₂-based materials for the oxidation of propene and benzene at bw concentration in presence of humidity [J]. Applied Catalysis B: Environmental, 2008, 84 (3-4): 691-698.
- [15] Obee T N, Brown R T. TiO₂ Photocatalysis for indoor air applications: effect of humidity and trace contaminant levels on the oxidation rates of formaldehyde, toluene and 1, 3-butadiene [J]. Environmental Science Technology, 1995, 29 (5): 1223-1231.