改性乙醇胺富集烟道气中 CO₂ 的 FTIR 研究

尹文萱^{1,2},刘建周¹,高丽平¹,江晶亮¹,王志华¹

1. 中国矿业大学化工学院, 江苏 徐州 221116

2. 煤炭加工与高效洁净利用教育部重点实验室, 江苏 徐州 221116

摘 要 以四(3,5-二叔丁基-4羟基苯基丙酸) 季戊四醇酯(抗氧剂 1010)、Na₂SO₃ 作为乙醇胺(MEA) 的氧 化降解的改性剂,考察改性 MEA 富集模拟烟道气中 CO₂ 的效果,利用气相色谱、红外光谱分析抗氧剂 1010 与 Na₂SO₃ 的适宜用量、比较两种抗氧剂的抗氧化性能。结果表明,抗氧剂 1010 和亚硫酸钠的添加量在 0 15% 时效果均较好。红外光谱显示,其再生样品中存在酰胺的 —C=O 吸收峰,酰胺在碱性溶液中转变 成伯胺,有利于 MEA 溶剂富集 CO₂; 1010/20% MEA 溶液的氧化产物为羧酸, Na₂SO₃/20% MEA 溶液的氧 化产物为酰胺,酰胺有利于溶液吸收 CO₂, Na₂SO₃ 的抗氧化性能优于抗氧剂 1010。添加抗氧剂后的有机胺 的氧化降解程度降低,胺溶液的再生能力显著提高。

关键词 烟道气;有机胺改性;吸附解吸;抗氧剂1010/Na2SO3 中图分类号:06211;06237 文献标识码:A **DOI**:103964/jissn.10000593(2011)05-1241-04

引 言

随着世界工业的发展, CO₂ 一直作为废气大量排放,为 了遏制温室效应, CO₂ 作为一种新型的碳资源其研究和应用 领域广泛, 烟道气中 CO₂ 低浓度、杂质多不能直接应用^[14]。 从烟道气中分离富集 CO₂ 有多种方法^[2],其中有机胺吸收法 以其吸收速率快、吸收效率高等优点得到了广泛的关注^[59]。

有机胺在吸收 CO₂ 的过程中易氧化降解,其产物较为复 杂,添加抗氧剂后的有机胺改性的效果通过红外来检测,通 过判断某些物质的特征吸收峰,可以来定性的说明循环吸收 后的有机胺溶液中新物质的产生以及产物的多少。用 FTIR 进行表征,从官能团层面比较改性剂的机制,对有效实现低 碳化具有重要意义。

- 1 实验部分
- 1.1 试剂及仪器

试剂:乙醇胺 $[HOCH_2CH_2NH_2]$,分析纯AR,上海市 苏懿化学试剂有限公司。

烟道气:常规燃气、燃油、燃煤烟道气的组成(体积分数)如下:N₂:82%~89%,CO₂:8%~15%,O₂:3%~

5%, 少量 SO₂。本实验不考虑 SO₂ 的存在,利用干燥后的空 气,再配上分析纯的 CO₂,可以比较准确的模拟 烟道气的组 成。CO₂ 由徐州市特种气体有限公司提供。

仪器:气相色谱仪,GG-9800型气相色谱仪,中国上海 科创色谱仪器有限公司。

傅里叶变换红外光谱(FTIR), Nicolet Arartar 360型。

1.2 实验方法

2 结果与讨论

- 21 气相色谱分析
- 21.1 MEA/1010 溶液对CO2 吸收效果

在反应温度、MEA 溶液浓度及体积确定的条件下^[7], 通入模拟烟道气体直至饱和,经气相色谱分析得到不同抗氧 剂加入量的吸附解吸量,如表1所示,3[#]吸收量、解吸量均 较其他几号标样吸收量、解析量大。故3[#]标样吸收解吸效果 较好。即抗氧剂1010的最佳用量为0.15%。

212 MEA/ Na2SO3 溶液吸收 CO2 效果

亚硫酸钠与氧气的初始反应速率小于 MEA 与氧气反应 速率,随着反应的进行, MEA 浓度降低,使得 MEA 氧化速

- 基金项目:国家自然科学基金项目(20943005),中央高校基本科研业务费专项基金项目(2010LKH X04)和中国矿业大学校基金项目 (2007B009)资助
- 作者简介: 尹文萱, 女, 1964 年生, 中国矿业大学化工学院副教授 e mail: ywx6499@ 163 com; ywx6499@ cumt edu en © 1994-2012 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

收稿日期: 2010-06-30, 修订日期: 2010-10-02

率小于亚硫酸钠的氧化速率,从而阻止 MEA 的氧化降解, 故其吸收速率下降趋势较为缓慢。

编号	1010 加入量/%	吸收量/mL	解吸量 /mL
1	0	2 306 54	550 00
2	0 05	1 504 18	440 00
3	0 15	2 503 53	982 00
4	0 25	2 170 10	690 00
5	0 35	1 700 00	572 00
6	0 45	1 586 81	575 00
7	0 55	1 565 73	506 00

 Table 1
 Absorption/desorption quantity of MEA/1010

Table 2	Absorption/	desorption	quantity	of	'MEA/	'Na:	SO.
---------	-------------	------------	----------	----	-------	------	-----

编号	Na2SO3加入量/%	吸收量/mL	解析量/mL
1	0	2 306 54	550 00
2	0 05	2 388 25	542 00
3	0 15	2 922 88	723 00
4	0 35	2 499 19	578 00
5	0 65	2 598 01	500 00

Na₂SO₃ 在水溶液中的溶解存在以下平衡:

 $SO_3^{2-} + H_2O \leftarrow HSO_3^{-} + OH^{-}$

亚硫酸钠的用量越多,平衡向右移动,溶液呈碱性,史 焱等¹¹⁰ 研究表明在弱碱性条件下亚硫酸钠反应速率较快, 抗氧化能力较强;在中性和弱酸性条件下反应速率较慢,抗 氧化能力较弱。故 Na₂SO₃ 添加量为 0 15% 时改性 MEA 对 CO₂ 的吸收量、解吸量较为理想。

2.2 红外光谱分析^[11,12]

2.2.1 MEA/1010 溶液对 CO₂ 吸收解吸 后的 FTIR 光谱分析

图 1 为 MEA 溶液几个标样吸收一次后 MEA 再生样品 的红外光谱表征,由图可以看出,几个标样的特征吸收峰波 数基本相同,总结这些吸收峰,可得表 3 所列官能团及其特 征吸收峰。从图中可以看到五条谱线的形状具有相似性,这

Fig 1 FTIR spectra of MEA solution with different amounts of antioxidants 1010

a: 0; b: 0 15% 1010; c: 0 25% 1010;

© 1994-2014; @135% 1010; e:

0 55% 1010

说明吸收解析 1 次的溶液中的产物在很大程度上是一致的。 在高波数区,未加 1010 的有机胺溶液空白样(a 谱线)在 3 361 cm⁻¹处出现一宽峰,这主要是由伯胺—NH₂ 和—OH 的伸缩振动引起的,由于—NH₂ 和—OH 容易缔和产生氢 键,导致峰连在一起,形成宽峰。随着 1010 的加入量增大, 振动频率先增大后减少,b 谱线的峰偏移至 3 416 cm⁻¹,而 且其峰面积也较其他峰大说明加入 1010(0.15%)的有机胺 溶液的再生情况最好,这与通过测定吸收量得到的效果— 致。1010 的加入在很大程度上,抑制了 MEA 的氧化降解, 再生能力得到了提高。

Table 3	Characteristic absorption peaks
	of main functional groups

古代田	波数/ cm ^{- 1}					
后能凶	a	b	c	d	e	
$-NH_2/-OH$	3 661	3 559	3 416	3 359	3 356	
$-CH_{3}/-CH_{2}$	2 944	2 937	2 944	2 935	2 934	
CH 3	2 876	2 876	2 877	2 877	2 869	
-COO-	1 597	1 570	1 568	1 568	1 578	
CH 2	1 483	1 484	1 488	1 484	1 478	
CH 3	1 385	1 387	1 388	1 387	1 387	
CH 2	1 322	1 319	1 324	1 318	1 317	
-C-O(醇类)	1 074	1 071	1 071	1 071	1 074	
CO	1 027	1 026	1 024	1 025	1 029	

2 2 2 MEA/ NæSO3 溶液对CO2 吸收解吸 后的 FTIR 光谱 分析

图 2 为 N_wSO₃/MEA 溶液 N_wSO₃ 不同添加量再生后 M EA 溶液的红外光谱图。由图 2 可得主要官能团及其特征 吸收峰如表 4。MEA 样品再生后均含有一OH 和一NH₂,故 在 3 361 cm⁻¹处每个标样均有-OH 缔和与一NH₂ 的特征 吸收峰。N_wSO₃ 添加量分别为 0, 0 05% 和 0 35% 的 MEA 吸附解吸后回收液的一COO⁻ 吸收峰相对较强, N_wSO₃ 添 加量为 0.15% 的 M EA 吸附解吸后回收液的1 634 cm⁻¹处的 吸收峰可能是 MEA 氧化后生成的酰胺中的 一C=O, 酰胺 在碱性溶液中可脱去羰基生成 伯胺,有利于吸收CO₂,

Fig 2 FTIR spectra of MEA solution with different

amounts of antioxidants Na₂SO₃

a: 0; g: 0 05% 1010; h: 0 15% 1010;

i: 0 35% 1010; *j*: 0 65% 1010 Electronic Publishing House. All rights reserved. http://www.cnki.net Na₂SO₃ 添加量为 0 65% 的 M EA 吸附解吸后回收液则具有 这两处的吸收峰。从峰 形面 积来 看, N a₂SO₃ 添加 量为 0.15% 的 MEA 主要氧化产物为酰胺,基本没有 $-COO^{-}$ 氧 化物的产生,所以 Na₂SO₃ 的最佳添加量为 0 15%。

 Table 4
 Characteristic absorption peaks of main functional groups

	波数/ cm ⁻¹					
日形凶	a	g	h	i	j	
$-OH/-NH_2$	3 361	3 419	3 450	3 360	3 417	
$-CH_3/CH_2$	2 944	2 940	2 936	2 941	2 950	
-C00-	1 597	1 574	1 634 (C━O)	1 575	1 636	
-CH ₂	1 483	1 487	1 486	1 483	1 489	
—СН 3	1 385	1 388	1 391	1 387	1 386	
-CH ₂	1 322	1 321	1 321	1 320	1 324	
-CO	1 074	1 072	1 073	1 073	1 071	
	1 027	1 026	1 027	1 027	1 023	

2.2.3 抗氧剂1010与 Na2SO3 抗氧化性能对比

1010/ MEA 溶液与 Na₂SO₃/ MEA 溶液再生后其氧化产 物不同, 1010/ MEA 溶液氧化产物主要为羧酸, 而 Na₂SO₃/ M EA 溶液在 Na_2SO_3 添加量为 0 15% 时, 其氧化产物为酰 胺, 酰胺在碱性溶液中可生成伯胺, 有利于 MEA 富集 CO_2 , 所以, Na_2SO_3 的抗氧化性能优于抗氧剂 1010。

3 结 论

本文对改性乙醇胺溶液富集模拟烟道气中 CO₂ 进行了 实验研究。利用气相色谱、红外光谱表征比较了抗氧剂 1010、亚硫酸钠改良 MEA 溶液后,溶液富集燃煤尾气中 CO₂ 的效果,得出以下结论:

(1) 抗氧剂 1010 用量为 0.15% 时,吸收解吸量均大于 M EA,由红外光谱分析,其再生样品中一OH 缔合现象不明显,MEA 的氧化产物中羧酸较少,MEA 的氧化初产物与抗 氧剂 1010 充分反应生成稳定的非自由基化合物。1010 改性 M EA 溶液富集 CO₂ 效果的 1010 适宜加入量为 0.15%。

(2) 抗氧剂 Na₂SO₃ 用量为 0 15% 时,吸收量为 2 922 88 mL,解吸量为 723 00 mL,由红外光谱分析,其再生 样品中存在酰胺的 —C==O 吸收峰,酰胺在碱性溶液中转 变成伯胺,有利于 MEA 溶剂富集 CO₂。

(3) 由红外谱图分析, 1010/ MEA 溶液的氧化产物为羧酸, Na₂SO₃/ MEA 溶液的氧化产物为酰胺, 酰胺有利于溶液吸收 CO₂, Na₂SO₃ 的抗氧化性能优于抗氧剂 1010。

从解吸后的残液的红外光谱显示,添加 1010 和亚硫酸钠的 M EA 和 DEA 的氧化降解程度降低, 胺溶液的再生能力得到提高。

References

- [1] Mustacchi C, Armenante P, Cena V. Environment International, 1979, 2: 453.
- [2] Arnold D S, Barren D A, Isom R H. Environmental Progress, 1994, 139(3): 214.
- [3] Tomio Mimura, Hidenobu Simayoshi, Taiichiro Suda, et al. Energy Convers and Management, 1997, 38(S1): 57.
- [4] Tomio Mimura, Takashi Nojo, Masaki Iijma, et al. Greenhouse Gas Contral Technologies. 6th International Conference, 2003. 1057.
- [5] LITian-cheng, FENG Xia, LIXin-gang(李天成,冯 霞,李鑫钢,等). Chemical Industry and Engineering(化学工业与工程), 2002, 19 (2): 17.
- [6] YIN Wen-xuan, LIU Jian-zhou, WANG Zhi-hua, et al. Coal Engineering, 2009, 5: 79.
- [7] LU Jian-gang, CHEN Min-dong, J+Yan, et al(陆建刚, 陈敏东, 嵇 艳, 等). Journal of Fuel Chemistry and Technology(燃料化学学报), 2009, 37(6): 740.
- [8] LI Si fang, REN Zheng-wei, LI Pan-sheng, et al(黎四芳, 任铮伟, 李盘生, 等). Journal of Chemical Industry and Engineering(化工学报), 1994, 45(6): 698.
- [9] Alie C, Backham L, Croiset E, et al. Energy Conversion and Management, 2005, 46: 475.
- [10] SHI Yan, ZHAN Xian-cheng, LÜ Tai ping, et al(史 焱, 詹先成, 吕太平, 等). Acta Chimica Sinica(化学学报), 2006, 64(6): 496.
- [11] WU Jin-guang(吴瑾光). Modern Fourier Transform Infrared Spectroscopy, Technology and Applications(近代傅里叶变换红外光谱技术 及应用). Beijing: Scientific and Technical References Press of China(北京:科学技术文献出版社), 1994.
- [12] WENG Shi fu(翁诗甫). FTIR Spectrograph(傅立叶变换红外光谱仪). Beijing: Chemical Industry Press(北京:化学工业出版社), 2005.

Investigation of FTIR spectra Analysis on Carbon Dioxide Absorption with Improved Amine Solution

YIN Wen-xuan^{1,2}, LIU Jian-zhou¹, GAO Li ping¹, JIANG Jing-liang¹, WANG Zhi hua¹

1. College of Chemical Engineering, China University of Mining Technology and Engineering, Xuzhou 221116, China

 Key Laboratory of Coal Processing and Efficient Utililation, China University of Mining Technology and Engineering, Xuzhou 221116, China

Abstract Carbon dioxide is a major sort of greenhouse gas as well as important carbon resource. With the developments of industries, emission of carbon dioxide has increased sharply. Hence, controls of carbon dioxide emission and resource transformation have become the hotspot of current study. As a new kind of carbon resource, the fields of CO2 research and application are very extensive. Among those methods, the amine absorption has good qualities of faster absorption rate, higher efficiency and so on, so it has been widely studied. But organic amine have such shortcomings: high consumption of heat energy, strong corrosive and easy oxidated, now pursuer mainly focused on the organic amine modified. The results showed that, when the time the amount of antioxidant 1010 is 0.15%, the absorption capacity is 2.503.53 mL, the volume of analysis is 982.00 mL, and the absorption rate changes more slowly, by FTIR, Samples of its renewable OH associating is not apparent that the antioxidant content in 1010, oxidation products of the MEA is acid or less oxidation and antioxidant 1010 product in early to respond fully to form stable non-radical compounds. Therefore, the best dosage of antioxidant 1010 is 0.15%. When the time that the amount of Na₂SO₃ is 0 15%, the absorption capacity is 2 922 88 mL. Analysis of the volume is 7 23.00 mL, by FTIR, which reveals the oxidation products of the MEA is amide —C=O which in alkaline solution can be transiting into primary amine, and be easy absorbing CO₂. Comparing the antioxygenic proerty of antioxidant 1010 with Na₂SO₃, from the absorption rate, the amount of absorption, Na₂SO₃'s antioxidant properties is superior than antioxidant 1010; by infrared spectral analysis, 1010/20% MEA solution's oxidation products is the acid, Na₂SO₃/20% MEA solutions, the oxidation product is amide, amide solution is advantaged for absorbing CO₂, So Na₂SO₃'s antioxidant properties is superior than antioxidant 1010.

Keywords Flue gas; Improved MEA; Absorption/Desorption; Antioxidants 1010/Na2SO3

(Received Jun. 30, 2010; accepted Oct. 2, 2010)