DOI: 10.3724/SP. J. 1096.2011.01109

铱配合物的电致化学发光性能研究

魏巧华^{*} 韩李静 段亚男 肖方南 陈裕松 张 兰 陈国南

(福州大学食品安全与检测技术教育部重点实验室,化学化工学院,福州 350108)

摘要结构相关的铱配合物 [Ir(ppy)₂L1](PF₆)和 [Ir(ppy)₂L2](PF₆)(ppy=2-苯基吡啶,L1=4-(2 2′-联吡啶-3-乙炔基)-N-(吡啶-2-亚甲基)-N-(噻吩-3-亚甲基)苯胺,L2=4-(2 2′-联吡-3-乙炔基)-N-二(吡啶-2-亚甲基)-苯胺)都具有优良的电致发光(ECL)性能。在玻碳电极上,以TPrA为共反应物,其ECL电压分别在 1.52和1.36V左右,其最强的ECL发射波长在620~640 nm,且发光强度(I_{ECL})与其浓度分别在0.2~1.6 µmol/L和0.02~2µmol/L范围内呈良好的的线性关系。在相同条件下配合物[Ir(ppy)₂L2](PF₆)/TPrA体系的ECL强度比[Ir(ppy)₂L1](PF₆)强, [Ru(bpy)₃]²⁺/TPrA体系相当。

关键词 铱配合物; 电致化学发光

1 引 言

电致化学发光 (ECL) 是将电化学手段与化学发光结合 ,因集成了发光分析的高灵敏度和电化学 的电位可控性优点而备受关注^[1-4]。ECL 研究最深入的金属配合物是八面体配位的三联吡啶钌 (II) 配 合物^[5~15],已被广泛应用于免疫分析和光电传感器等方面。众所周知,同样是八面体配位的金属 Ir (III) 配合物,具有强的可见吸收和良好的光致发光性能,与联吡啶钌类配合物相比 Jr (III) 配合物具有发光效 率更高,寿命较长,灵敏度更高等优点^[16-18]。相对钌 (II) 配合物的 ECL 研究, Jr (III) 的 ECL 及其应用的研 究比较少,目前研究最多的是 2-苯基吡啶类 Ir (III) 配合物的 ECL 研究, Jr (III) 的 ECL 及其应用的研 究比较少,目前研究最多的是 2-苯基吡啶类 Ir (III) 配合物的 ECL 研究, Jr (III) 0 ECL 及其应用的研 究比较少,目前研究最多的是 2-苯基吡啶类 Ir (III) 配合物的 ECL 研究, Jr (III) 0 ECL 和光致发光的最大发射波长都在 605 nm 处, TPrA 做共反应物时,其 ECL 强度是 [Ru(bpy) $_{3}$]²⁺/ TPrA 体系的 2 ~4 倍^[16]。因此开展新颖结构的 Ir (III) 配合物的 ECL 研究, 对新 ECL 试剂的开发和拓展 ECL 的应用具有重要意义。本研究以三正丙胺 TPrA 为共反应物 ,发现 2 个结构相关的铱配合物 [Ir(ppy) $_{2}$ L1](PF₆) 和 [Ir(ppy) $_{2}$ L2](PF₆) (ppy =2-苯基吡啶, L1 =4-(2 2′-联 吡啶-3-乙炔基) -4-(吡啶-2-亚甲基) -4-(噻吩-3-亚甲基) 苯胺 J.2 =4-(2 2′-联吡啶-3-乙炔基) -4-二(吡 啶-2-亚甲基) -苯胺) (结构见图 1) 具有优良的 ECL 性能。在玻碳电极上,以 TPrA 为共反应物 配合物 [Ir(ppy) $_{2}$ L1](PF₆) 和 [Ir(ppy) $_{2}$ L2](PF₆) 分别在 1.52 和 1.36 V 处产生强的 ECL ,其最强的 ECL 发射 波长在 620 ~640 nm 处 与其光致发光光谱相比 发生了略微的红移 与已经和道的2-苯基吡啶类 Ir(III) 配合 物 [[ppy) $_{2}$ Ir (1)]⁺ (ppy =2-苯基吡啶; L = 联吡啶或菲啰啉) ^[16] 的 ECL 相比也发生了明显的红移。

2 实验部分

2.1 仪器与试剂

BPCL-I-KIC 微弱发光测量仪(中国科学院生物物理研究所); CHI630C 电化学分析仪(上海辰华仪 器公司),采用三电极体系,工作电极为玻碳电极,实验前用0.5和0.03 μm Al₂O₃依次抛光,然后依次用 6 mol/L HNO₃溶液、乙醇、二次蒸馏水冲洗,再用滤纸将附着的水滴吸去; 对电极为铂丝电极; Ag/AgCl 电极(饱和 KCl 溶液) 为参比电极。

发光试剂 [Ir(ppy) ₂L1](PF₆) 和 [Ir(ppy) ₂L2](PF₆) 由中科院福建物质结构研究所陈忠宁课题组 合成并惠赠^[19];1 × 10⁻⁴ mol/L 发光试剂乙腈溶液;4 mol/L 三丙胺(TPrA) –乙腈溶液;0.05 mol/L Tris– HCl-KCl 缓冲液。所用试剂均为分析纯;实验用水为去离子水。

²⁰¹⁰⁻¹⁰⁻⁰⁸ 收稿; 2010-12-31 接受

本文系国家青年基金(No. 20801013), 福建省人才创新基金(No. 2007F3050), 教育部留学回国人员科研启动基金(No. LXKQ0830)和 福州大学人才基金(No. XRC-0723)的资助

^{*} E-mail: qhw76@ fzu. edu. cn

2.2 实验方法

按照 ECL 装置,向 ECL 石英杯 中分别加入 1.935 mL 0.05 mol/L Tris-HCl 缓冲液,再分别加入 25 μL TPrA 共反应物及 40 μL [Ir(ppy)₂L1](PF₆)或[Ir(ppy)₂L2] (PF₆)的乙腈溶液,使试剂总体积为 2 mL。分散均匀后插入三电极系统, 置于暗室,施加 900 V 电压,调节电

图 1 发光试剂 [Ir(ppy) ₂L1](PF₆) 和 [Ir(ppy) ₂L2](PF₆) 的结构图 Fig. 1 Structure of [Ir(ppy) ₂L1](PF₆) and [Ir(ppy) ₂L2](PF₆)

化学参数、循环伏安法检测、记录 CV 和 ECL 信号。

3 结果与讨论

3.1 电化学参数对体系电致化学发光的影响

采用循环伏安法分别考察了 [Ir(ppy) $_{2}$ L1](PF₆) 和 [Ir(ppy) $_{2}$ L2](PF₆) 在铂电极、金电极、玻碳 电极、碳糊电极等工作电极上的 ECL 性能。结果表明,从低电位扫描到高电位时,在铂电极、金电极和 碳糊电极上,两种铱配合物的 ECL 都很弱,而在玻碳电极上则能产生强的 ECL。由图 2 和图 3 可知, [Ir(ppy) $_{2}$ L2](PF₆) 产生的 ECL 电位(1.36 V) 比 [Ir(ppy) $_{2}$ L1](PF₆) 的电位(1.52 V) 低,这是由于配 体 L2 中吡啶的给电子能力比 L1 中噻吩的强,导致配合物 [Ir(ppy) $_{2}$ L2](PF₆) 的金属中心比 [Ir (ppy) $_{2}$ L1](PF₆) 更容易被氧化。

图 2 [Ir(ppy) ₂L1](PF₆) 在 0.05 mol/L 的 Tris-HCl-KCl 缓冲液(pH 8.19) 中 ECL 曲线图

Fig. 2 ECL intensity of $[Ir(ppy)_2L1](PF_6)$ in 0. 05 mol/L Tris-HCl-KCl buffer (pH 8. 19)

图 3 [Ir(ppy) 2L2](PF₆) 在 0.05 mol/L 的 Tris-HCl-KCl 缓冲液(pH 8.79) 中 ECL 曲线图

Fig. 3 ECL intensity of [Ir(ppy) $_2L2$](PF₆) in 0.05 mol/ L Tris-HCl-KCl buffer (pH 8.79)

考察了扫描速度与峰电流及 ECL 发光强度的影响,实验表明,峰电流(1)随扫描速度(v)的增加而 增大,体系的氧化峰电流与 v^{1/2}在 0.02~0.14 V/s 的范围内呈良好的的线性关系,说明此时电极反应过 程受扩散控制。扫描速度的增加对 ECL 发光强度几乎无影响,本研究扫描速度选择 0.10 V/s。 3.2 缓冲液及其 pH 值的选择

考察了 Tris-HCl-KCl 缓冲液、NaH₂PO₄-Na₂HPO₄ 缓冲液、巴比妥钠-HCl 缓冲液和硼酸-硼砂缓冲液 等缓冲体系对发光试剂 [Ir(ppy)₂L1](PF₆) 和 [Ir(ppy)₂L2](PF₆)的 ECL 发光强度的影响。实验表 明,[Ir(ppy)₂L1](PF₆) 和 [Ir(ppy)₂L2](PF₆)发光试剂都是在 Tris-HCl-KCl 缓冲体系 ECL 发光强度最 强 且稳定。进一步考察 pH 值对 ECL 发光强度的影响发现,[Ir(ppy)₂L1](PF₆)在 pH 8.19 处的发光强 度最强 而 [Ir(ppy)₂L1](PF₆)发光试剂则在 pH 8.79 处的发光强度最强。本研究分别选择 pH 8.19 和 pH 8.79的 Tris-HCl-KCl 缓冲液作为试剂 [Ir(ppy)₂L1](PF₆)和 [Ir(ppy)₂L2](PF₆)的 ECL 介质。

3.3 共反应物及其浓度对体系电致化学发光强度的影响

由于 [Ir(ppy),L1](PF₆) 和 [Ir(ppy),L2](PF₆) 在缓冲体系中的电致化学发光都比较弱 在体系 中加入共反应物 TPrA, $S_2O_8^{2-}$ 和 $C_2O_4^{2-}$ 等,以期增 敏它们的发光信号。结果表明(图4),只有 TPrA 对 [Ir(ppy),L1](PF₆)和[Ir(ppy),L2](PF₆) ECL 发 光体系有很强的增敏作用,随着 TPrA 浓度的增大, 铱配合物的发光强度明显增大;相同浓度的 TPrA 对 [Ir(ppy),L2](PF₆)体系的 ECL 增敏作用显著强于 [Ir(ppy),L1](PF₆)。当 TPrA 浓度为 0.05 mol/L 时,有较好的信噪比。本研究的共反应物选择0.05 mol/L TPrA。此外, TPrA 做共反应物时, 配合物 [Ir(ppy),L1](PF₆) 和 [Ir(ppy),L2](PF₆)的 ECL 强度与 $[Ru(bpy)_3]^{2+}$ /TPrA 体系的基本相当。

3.4 发光试剂浓度对发光强度的影响

在 pH 8. 19 和 pH8. 79 的 Tris-HCl-KCl 缓冲液 中 共反应物 TPA 浓度为 0. 05 mol/L 时 ,考察了试 剂 [Ir(ppy), L1](PF₆) 和 [Ir(ppy), L2](PF₆) 的浓度 对 ECL 发光强度的影响。结果表明(图 5), [Ir (ppy),L1](PF₆) 和 [Ir(ppy),L2](PF₆) 的发光强

图 4 TPrA 的浓度对 2 µmol/L [Ir(ppy) 2L1](PF6) 在 pH = 8.19的Tris 缓冲体系(a)和[Ir(ppy)₂L2](PF₆)在 pH = 8. 79 的 Tris 缓冲体系(b) 的 ECL 发光强度的影响

Fig. 4 Effect of tri-n-propylamine(TPrA) concentration on ECL intension of 2 µmol/L [Ir(ppy) 2L1](PF6) (a) in pH 8.19 Tris -HCl -KCl buffer and [Ir(ppy) 2L2](PF₆) (b) in pH 8.79 Tris-HCl-KCl

度随发光试剂浓度的增加而增大,且 [Ir(ppy),L1](PF₆)体系的发光强度(I_{FCI})与发光试剂浓度在0. 2~1.6 μ mol/L 范围内呈良好的线性关系,线性回归方程为 I_{ECL} = 405.3784 + 7.3308 × 10⁹C(R = 0. 9972); [Ir(ppy) 2L2](PF₆) 体系的发光强度(I_{ECL}) 与发光试剂浓度在 0.02~2.0 μmol/L 范围内呈良好 的线性关系 线性回归方程为 $I_{\text{FCI}} = -554.1219 + 1.2652 \times 10^{10} C(R = 0.9945)$ 。 3.5 铱发光配合物的 ECL 光谱

如图 6 所示,两个铱配合物的最强 ECL 发射波长均在 620~640 nm,与文献 [19] 报道的最强光致发 光波长(617 nm)相比 均发生了略微的红移,说明光致和电致发光两种方式产生的激发态的能量是基 本相同。与已经报道的 2-苯基吡啶类 Ir(III)配合物 [(ppy), Ir(I)] (ppy = 2-苯基吡啶; L = 联吡啶或菲 啰啉)^[20]的 ECL 相比发生了明显的红移,这因为配体 L1 和 L2 比联吡啶具有更好的共轭性。

图 5 [Ir(ppy) 2L1](PF₆) 和 [Ir(ppy) 2L2](PF₆) 浓度 对 ECL 发光强度的影响

Fig. 5 ECL intensity curves of concentration of $[Ir(ppy)_2L1](PF_6)$ and $[Ir(ppy)_2L2](PF_6)$

3.6 方法的重现性

图 6 2 µmol/L [Ir(ppy) 2L1](PF₆) 和 [Ir(ppy) 2L2](PF₆) 乙 腈溶液含有 0.05 mol/L TPrA 的 ECL 光谱曲线图 Fig. 6 ECL spectra of 2 µmol/L [Ir(ppy) 2L1](PF₆) and [Ir

(ppy) 2L2] (PF₆) in CH₃CN solution containing 0.05 mol/L TPrA

对 [Ir(ppy) 2L1](PF₆) 和 [Ir(ppy) 2L2](PF₆) / TPrA 体系 ECL 分别进行了 10 次测定 相对标准 偏差分别为 2.96 % 和 3.09 % ,说明它们的 ECL 具有良好的的重现性。

实验结果表明: 在玻碳电极上, Tris-HCl-KCl 缓冲体系中,以 TPrA 为共反应物,结构相似的铱配合物 [Ir(ppy)_2L1](PF₆)和 [Ir(ppy)_2L2](PF₆)分别在1.52和1.36V能产生强的 ECL,其最强的 ECL 发射波长在 620~640 nm,发光强度随其浓度的增加而增大。在相同条件下,配合物[Ir(ppy)_2L2](PF₆)/TPrA 体系的 ECL 强度比 [Ir(ppy)_2L1](PF₆)的强,与 [Ru(bpy)_3]²⁺/TPrA 体系的相当;但其电致化学发光电位比 [Ir(ppy)_2L1](PF₆)的更低。

References

- 1 Lai R Y , Fabrizio E F , Lu L , Jenekhe S A , Bard A J. J. Am. Chem. Soc. , 2001 , 123(37): 9112 ~9118
- 2 Prieto I, Teetsov J, Fox M A, Vanden Bout D A, Bard A J. J. Phys. Chem. A, 2001, 105(3): 520 ~ 523
- 3 Richter M M. Chem. Rev. , 2004 , 104(6): 3003 ~ 3036
- 4 Miao W J. Chem. Rev. , 2008 , 108(7): 2506 ~ 2553
- 5 LI Hai-Juan, HAN Shuang, HU Lian-Zhe, XU Guo-Bao(李海娟,韩双胡连哲 涂国宝). Chinese J. Anal. Chem. (分 析化学), 2009, 37(11): 1557~1565
- 6 Zhou M , Robertson G. P , Roovers J. Inorg. Chem. , 2005 , 44(23) : 8317 ~ 8325
- 7 Stagni S, Palazzi A, Zacchini S, Ballarin B, Bruno C, Marcaccio M, Paolucci F, Monari M, Carano M, Bard A J. Inorg. Chem. , 2006, 45(2): 695 ~ 709
- 8 Wei H , Yin J Y , Wang E K. Anal. Chem. , 2008 , 80(14): 5635 ~ 5639
- 9 Yin X B , Dong S J , Wang E K. TrAC , Trends. Anal. Chem. , 2004 , 23(6): 432 ~ 441
- 10 Du Y, Wei H, Kang J Z, Yan J L, Yin X B, Yang X R, Wang E K. Anal. Chem. , 2005, 77(24): 7993 ~ 7997
- 11 Wei H , Du Y , Kang J Z , Wang E K. Electrochem. Commun , 2007 , 9(7): 1474 ~ 1479
- 12 Sun X P , Du Y , Dong S J , Wang E K. Anal. Chem. , 2005 , 77(24): 8166 ~ 8169
- 13 Dennany L , Forster R J , Rusling J F. J. Am. Chem. Soc. , 2003 , 125(17): 5213 ~ 5218
- 14 Li J G , Yan Q Y , Gao Y L , Ju H X. Anal. Chem. , 2006 , 78(8): 2694 ~ 2699
- 15 Miao W J , Bard A J. Anal. Chem. , 2004 , 76(18): 5379 ~ 5386
- 16 Kim J I , Shin I S , Kim H , Lee J K. J. Am. Chem. Soc. , 2005 , $127(\,6)$: $1614 \sim 1615$
- 17 Kapturkiewicz A, Nowacki J, Borowicz P. Electrochim. Acta , 2005, 50(16-17): 3395 ~ 3400
- 18 Kapturkiewicz A, Chen T M., Laskar I R, Nowacki J K. Electrochem. Commun., 2004, 6(8): 827~831
- 19 Zhao N , Wu Y H , Wen H M , Zhang X , Chen Z N. Organometallic , 2009 , 28(19): 5603 ~ 5611

Electrochemiluminescence of Two Iridium (III) Complexes

WEI Qiao-Hua* , HAN Li-Jing , DUAN Ya-Nan , XIAO Fang-Nan ,

CHEN Yu-Song , ZHANG Lan , CHEN Guo-Nan

(Key Lab of Analysis and Detecting Technology for Food Safety (Fuzhou University) of Ministry of Education,

Department of Chemistry, Fuzhou University, Fuzhou 350108)

Abstract It has been attracted great attention to develop new and high efficient electrochemiluminescent (ECL) reagents for increasing the application of ECL. The ECL studies on two complexes $[Ir(ppy)_{2}L]$ (PF₆) (ppy =2-phenylpyridine, L1 = (4-[2 2´]bipyridinyl-5-ylethynylphenyl) pyridin-2-ylmethylthiophen-2-ylmethylamine; L2 = (4-[2,2´]bipyridinyl-5-ylethynylphenyl) bispyridin-2-ylmethylamine) have been performed in this study. It was found that the ECL intensity peaks of two iridium (III) complexes at glassy carbon working electrode with tri-*n*-propyl-amine(TPrA) as coreactant appeared at potential of 1.52 and 1.32 V, and the maxima ECL emission centered at 620 – 640 nm. The ECL intensity was well linear with the concentration of $[Ir(ppy)_{2}L1](PF_{6})$ and $[Ir(ppy)_{2}L2](PF_{6})$ in the range of $2 \times 10^{-7} - 1.6 \times 10^{-6}$ mol/L and $2 \times 10^{-8} - 2 \times 10^{-6}$ mol/L, respectively. In addition, at the same condition, the ECL intensity of the $[Ir(ppy)_{2}L2](PF_{6})$ /TPrA system was higher than that of $[Ir(ppy)_{2}L1](PF_{6})$ /TPrA system , and was identical to that of $[Ru(bpy)_{3}]^{2+}$ /TPrA system.

Keywords Iridium complex; Electrochemiluminescence

(Received 8 October 2010; accepted 31 December 2010)