催化学报

Chinese Journal of Catalysis

Vol. 31 No. 7

文章编号:0253-9837(2010)07-0851-06

DOI: 10.3724/SP.J.1088.2010.00102

研究论文: 851~856

无氯Cu/AC催化剂的制备及其催化气相甲醇氧化羰基化反应性能

王瑞玉,李 忠,郑华艳,谢克昌

太原理工大学煤科学与技术教育部山西省重点实验室,山西太原 030024

摘要: 以 Cu₂(NO₃)(OH)₃/AC(活性碳)为催化剂前驱体,在惰性气氛中于不同温度热处理分别制得无氯的 CuO/AC, Cu₂O/AC和 Cu⁰/AC 催化剂,并用于甲醇直接气相氧化羰基化合成碳酸二甲酯 (DMC)反应.结果表明,200℃处理制得的催化剂中,Cu物种 以 CuO 为主.随着处理温度的升高,催化剂中 CuO 含量逐渐降低,而 Cu₂O 含量增加;400℃制备的催化剂中,Cu物种仅以 Cu₂O 形式存在;而 450℃以上处理时则以 Cu⁰形式存在.随着热处理温度的提高,相应催化剂活性逐渐增加,表明 CuO, Cu₂O 和 Cu⁰ 均具有催化活性,其活性大小的顺序为 CuO < Cu₂O < Cu⁰.在140℃, CO:MeOH:O₂ = 4:10:1, SV = 5 600 h⁻¹条件下,450℃ 处 理制备的 Cu⁰/AC 催化剂表现出较高的催化甲醇氧化羰基化活性,其中甲醇转化率达 11.5%, DMC 的时空收率和选择性分别为 261.9 mg/(g·h) 和 76.0%.

关键词:甲醇;氧化羰基化;铜;活性炭;无氯催化剂;热处理;碳酸二甲酯 中图分类号:O643 文献标识码:A

Preparation of Chlorine-Free Cu/AC Catalyst and Its Catalytic Properties for Vapor Phase Oxidative Carbonylation of Methanol

WANG Ruiyu, LI Zhong*, ZHENG Huayan, XIE Kechang

Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China

Abstract: Chlorine-free CuO/AC, Cu₂O/AC, and Cu⁰/AC catalysts (AC: activated carbon) were prepared by heat treatment of Cu₂(NO₃)(OH)₃/AC in an inert atmosphere, and their catalytic properties for the direct vapor-phase oxidative carbonylation of methanol to dimethyl carbonate (DMC) were investigated. When the Cu₂(NO₃)(OH)₃/AC was heated at 200 °C, the main copper species on AC was CuO. With the heating temperature rising, the CuO content decreased and the Cu₂O content increased on the AC support. The Cu species existed as Cu₂O when the heating temperature was 400 °C and as Cu⁰ when the heating tempareture was 450 °C. The catalytic activity also increased with the heating temperature rising. This indicated that the CuO, Cu₂O, or Cu⁰ was active, and the catalytic activity increased in the order CuO < Cu₂O < Cu⁰. Under the conditions of 140 °C, CO:MeOH:O₂ = 4:10:1, and SV = 5 600 h⁻¹, the Cu⁰/AC catalyst prepared at 450 °C had excellent catalytic activity, and the methanol conversion, space time yield, and selectivity for DMC reached 11.5%, 261.9 mg/(g·h), and 76.0%, respectively.

Key words: methanol; oxidative carbonylation; copper; active carbon; chlorine free catalyst; heat treatment; dimethyl carbonate

碳酸二甲酯 (DMC) 是一种用途广泛的绿色化 学品, 被誉为有机合成的"新基石"^[1]. 甲醇氧化羰基 化合成 DMC 在热力学上是十分有利的. 用于该反 应的活性炭负载的 CuCl₂(CuCl₂/AC)催化剂和 Wacker 型 (CuCl₂-PdCl₂/AC)催化剂由于 Cl⁻易流失, 导致催化剂寿命短和设备腐蚀等问题^[2,3], 而固相离 子交换法制备的 Cu/分子筛催化剂上 DMC 选择性高、稳定性好,但 DMC 收率较低,且仍存在 CI⁻离子 残留的问题^[4,5]. King^[6]通过热处理 Cu₂O 与 Y 型分 子筛的混合样品制得无氯 Cu₂O/Y 催化剂,该催化 剂具有较高的活性,但反应 1.5 h 后迅速失活.我们 的前期研究表明^[7,8],通过醋酸铜热分解制备的无氯

收稿日期: 2010-03-10.

基金来源:国家自然科学基金 (20976113, 20936003);国家重点基础研究发展计划 (973 计划, 2005CB221204).

联系人: 李 忠. Tel/Fax: (0351)6018526; E-mail: lizhong@tyut.edu.cn

Cu₂O/AC 催化剂具有较高的活性,以硝酸或氨水改 性载体 AC 可显著提高催化剂活性. Richter 等^[9,10] 将 Cu(NO₃)₂ 或与有机碱反应生成的 Cu(OH)₂ 浸渍 在 Y 型分子筛上,经 400 °C 焙烧获得无氯 CuO/Y 催化剂,该催化剂对气相甲醇氧化羰基化反应无催 化活性,但经 600~700 °C 高温活化后催化剂却表现 出较高的活性. 碱式硝酸铜 Cu₂(NO₃)(OH)₃ 化学性 质稳定,常被用作制备 Cu(OH)₂ 或 CuO^[11,12]. AC 比 表面积大,且其电子效应有利于氧化还原反应的电 子传递,本文在前期工作^[7,8]的研究基础上,以碱式 硝酸铜 Cu₂(NO₃)(OH)₃ 为前驱物,浸渍在 AC 上,通 过在 N₂ 气氛中不同温度下的热处理,分别制得无氯 的 CuO/AC, Cu₂O/AC 和 Cu⁰/AC 催化剂,考察了热 处理温度对活性物种的结构及其催化性能的影响.

1 实验部分

1.1 催化剂的制备

搅拌下, 将氨水 (AR, 25%~28%, 天津市化学试 剂三厂)逐滴加入到 0.1 mol/L Cu(NO₃)₂ (AR, 北京 化工厂)溶液中. 当溶液的 pH = 8 时, 加入 5 g 活性 炭 (AR, 上海化学试剂采购供应站, 比表面 1091.77 m²/g),继续搅拌 10 min, 静置 30 min. 过滤洗涤 3 次,将滤饼于 100 °C 干燥 过夜, 即得前驱体 Cu₂(NO₃)(OH)₃/AC, Cu 含量为10%. 然后在 N₂ 保 护下加热处理 4 h, 即得 Cu/AC 催化剂.

1.2 催化剂的表征

催化剂的 X 射线衍射 (XRD) 谱用日本 Rigaku D/max 2500 型 X 射线衍射仪测定, Cu K_{α} 射线 (λ = 0.154 nm), 石墨单色器, 管电压 40 kV, 管电流 100 mA, 扫描速率 8°/min, 扫描范围 2 θ = 5°~65°.

在德国 NETZSCH 公司 STA409C 型热分析仪 上进行热重 (TG-DTG) 分析, 氮气流量 50 ml/min, 升温速率 10°C/min.

样品的程序升温还原 (H₂-TPR) 谱采用美国 Micromeritics 公司 2920 II 型化学吸附仪测定.将 催化剂 (约 40 mg, 粒度 100~120 目) 置于 U 形石英 反应管中, 通入 50 ml/min He 气, 以 5 °C/min 的速 率升温至 120 °C, 恒温吹扫 30 min, 降至 35 °C, 再 切换成 10%H₂-90%He 混合气 (50 ml/min), 基线稳 定后, 以 5 °C/min 的速率升至 500 °C, TCD 检测 H₂ 消耗量.

1.3 催化剂的评价

甲醇氧化羰基化反应在常压连续固定床微型不 锈钢管反应器 (φ 6 × 450 mm) 中进行,甲醇由 2PBOOC型微量进样泵 (北京卫星制造厂)引入,随 后 CO和O₂经气化室混合后进入反应器,产物从底 部流出并通过自动进样阀进入 Agilent 6890N型气 相色谱仪进行在线分析.原料气O₂和 CO 流量分 别为 2.8和 28 ml/min,甲醇进料量 0.02 ml/min,催 化剂用量 0.45 g,反应温度 140 °C,反应时间 10 h, 每隔 20 min 自动取样分析. Agilent 6890N型气相 色谱仪配备三阀四柱,其中 HP-INNOWAX 毛细管 柱用以分离甲醇, DMC,二甲醚 (DME)、二甲氧基甲 烷 (DMM)和甲酸甲酯 (MF); Porapak Q 为预分离 柱,与 HP-PLOT/Q 毛细管柱及 5A 分子筛柱串联用 以分离 O₂, CO和 CO₂. He 为载气,分别由 FID 检 测器和 TCD 检测器对气相产物进行在线分析.

2 结果与讨论

2.1 前驱体 Cu₂(NO₃)(OH)₃的热分解

氨水滴加到 Cu(NO₃)₂ 溶液中生成产物的 XRD 谱如图 1 所示.可以看出,样品衍射峰与单斜晶系 的 Cu₂(NO₃)(OH)₃(JCPDS 15-0014) 一致.

图 2 为 Cu₂(NO₃)(OH)₃ 样品在 N₂ 气氛下的 TG-DTG 曲线.可以看出,在 150~300 和 800~950 °C 范围内出现两个失重峰,峰值温度分别为 215 和 886 °C,失重率分别为 32.71% 和 6.75%.研究表 明^[11,13],在 N₂ 气氛中 Cu₂(NO₃)(OH)₃ 于 150~300 °C 分解生成 CuO,在 250~800 °C 范围内无失重变化,

800 °C 以上的热失重未见文献报道.而本文发现于 800~900 °C 出现热失重,其失重率为 6.75%, 刚好接 近于 CuO 生成 Cu₂O 的理论失重率 6.67%.因此, 该过程极有可能是 CuO→Cu₂O.可见,在 N₂ 气氛 下, Cu₂(NO₃)(OH)₃ 的两个热失重过程对应的化学过 程为:

> $Cu_2(NO_3)(OH)_3 \rightarrow CuO + 33.75\%$ mass $CuO \rightarrow Cu_2O + 6.67\%$ mass

第一步 Cu₂(NO₃)(OH)₃分解为 CuO 的实际失 重率为 32.71%,低于理论计算值 (33.75%),而第二 步 CuO 生成 Cu₂O 的实验失重率大于理论计算值, 这是由于生成副产物所致.在制备过程中,随着氨 水的继续加入,OH⁻在固液界面形成了一层负电荷 保护膜,阻碍了 Cu₂(NO₃)(OH)₃ 的继续生成而转为 Cu(OH)₄²⁻的形式^[14],并热分解为 CuO^[15],从而使得 产物 Cu₂(NO₃)(OH)₃ 中含有少量的 CuO,导致第一 个失重峰减小,第二个失重峰增大.

2.2 催化剂的表征结果

图 3 为 AC 与 Cu₂(NO₃)(OH)₃/AC 催化剂前驱 体的 TG-DTG 曲线.可以看出, AC 载体在 100 °C 前失重率约为 6%, 对应于表面物理吸附水的脱除. 在 100~500 °C 基本无失重, 此后随着温度进一步升 高而缓慢失重, 这是由于 AC 表面含氧官能团逐渐 分 解 释 放 出 CO₂ 和 CO 所 致 ^[16]. 然 而 Cu₂(NO₃)(OH)₃/AC 前驱体的热失重过程不同于载 体 AC 和 Cu₂(NO₃)(OH)₃. Cu₂(NO₃)(OH)₃/AC 样品 在 200 °C 附近出现 Cu₂(NO₃)(OH)₃ 分解为 CuO 的 失重峰. 此后, 样品出现持续缓慢失重, 直至 500 °C

图 3 AC 和 Cu₂(NO₃)(OH)₃/AC 催化剂前驱体的 TG-DTG 曲线

Fig. 3. TG/DTG curves of AC (1) and Cu₂(NO₃)(OH)₃/AC precursor (2).

附近出现第二个明显的失重过程. AC本身具有还 原性,高温下可将 CuO 还原^[17]. 因此,在 Cu₂(NO₃)(OH)₃/AC 前驱体的热失重过程中, Cu₂(NO₃)(OH)₃首先热分解生成 CuO,继而与 AC 发 生缓慢还原反应生成 Cu₂O,并最终转变为 Cu⁰.

各样品的失重率、相应的失重温度范围及化学 过程列于表 1. 可以看出,峰值温度为 200 °C 的失 重率为 6.0%,略高于 Cu₂(NO₃)(OH)₃ 分解生成 CuO 的理论失重率 (5.8%). 220~470 °C 间的失重率略高 于计算值,而 470~550°C 之间 Cu₂O+C \rightarrow Cu⁰+CO₂ 的失重率低于计算值.这是由于 Cu₂(NO₃)(OH)₃ \rightarrow CuO \rightarrow Cu₂O \rightarrow Cu⁰ 的失重过程发生重合,未能完 全分开.而 CuO 在高温下可自发生成 Cu₂O, AC 消 耗量低于理论计算量.因此 550 °C 前的总失重率 12.8% 低于计算值 13.8%.可见,在 N₂ 气氛下,与 Cu₂(NO₃)(OH)₃ 的热失重类似,Cu₂(NO₃)(OH)₃/AC 也经历了 Cu₂(NO₃)(OH)₃ \rightarrow CuO \rightarrow Cu₂O 的过程,但 由于 AC 的还原作用,CuO 的还原温度显著降低,至 550 °C 时表面 Cu 物种已完全还原为 Cu⁰.

表 1 Cu₂(NO₃)(OH)₃/AC 催化剂前驱体的热重分析 Table 1 TG analysis of Cu₂(NO₃)(OH)₃/AC precursor

Temperature	Chamical measure	Mass loss (%)		
(°C)	Chemical process	Calculated ^a	Experimental	
<220	$Cu_2(NO_3)(OH)_3 \rightarrow CuO$	5.8	6.0	
220-470	$4CuO+C\rightarrow 2Cu_2O+CO_2$	4.0	4.5	
470–550	$2Cu_2O+C\rightarrow 4Cu+CO_2$	4.0	2.3	

^aThe calculated mass loss was equal to the sum of corresponding mass loss of Cu₂(NO₃)(OH)₃ and AC in Cu₂(NO₃)(OH)₃/AC (10%Cu).

图 4 Cu₂(NO₃)(OH)₃/AC 前驱体在 N₂ 中于不同温度加热 4 h 得到的催化剂的 XRD 谱

Fig. 4. XRD patterns of the Cu/AC catalysts prepared by heat treatment of $Cu_2(NO_3)(OH)_3/AC$ precursor at different temperatures in N_2 for 4 h.

Cu2(NO3)(OH)3/AC 前驱体在 N2 气氛下加热处 理 4 h, 所得催化剂的 XRD 谱见图 4. 可以看出, 前 驱体仅显示较弱的 Cu₂(NO₃)(OH)₃ 晶相衍射峰, 当 在 200 或 300 °C 进行热处理时,样品中同时出现 CuO和Cu₂O的特征衍射峰,并且随着温度升高, Cu₂O 特征衍射峰增强. 当热处理温度为 400 °C 时, CuO 特征衍射峰完全消失, 仅检测到 Cu₂O. 可见, 随着加热处理温度的升高, CuO 逐渐转化为 Cu₂O. 当热处理温度继续升高到 450 °C 时, Cu₂O 衍射峰 也完全消失, 仅观察到 Cu⁰的特征衍射峰. 当热处 理温度为 500 °C 时, Cu⁰特征衍射峰增强, 表明 Cu⁰ 晶粒长大. 根据 Scherrer 公式计算可知, 450 和 500 °C 制得的催化剂上 Cu⁰ 晶粒大小分别为 42.6 和 46.9 nm. 由此可见, Cu₂(NO₃)(OH)₃/AC 在加热过程 中,表面 Cu 物种确实经历了 Cu₂(NO₃)(OH)₃→ CuO → Cu_2O → Cu^0 的过程.

在 200~450 °C 处理 Cu₂(NO₃)(OH)₃/AC 前驱体 4 h 后得到的催化剂的 H₂-TPR 谱见图 5. 由图可见, 热处理温度为 200 和 300 °C 时制备的催化剂有两 个耗氢峰, 400 °C 制备的催化剂仅一个耗氢峰, 而 450 °C 制备的催化剂无耗氢峰. 由前文可知, 200 °C 制备的催化剂中, Cu 物种以 CuO 和 Cu₂O 的形 式存在. 研究表明^[9,18], CuO 在 H₂ 作用下可一步还

图 5 Cu₂(NO₃)(OH)₃/AC 前躯体在 N₂ 中于不同温度加热 4 h 得到的催化剂的 H₂-TPR 谱

原为 Cu^0 , 也可经历 $Cu^{2+} \rightarrow Cu^+ \rightarrow Cu^0$ 的过程, 但还 原峰耦合为一宽峰. 李忠等^[7]热处理 Cu(CH₃COO)₂/ AC 制备了 Cu 基催化剂, 并在与本文相同条件下进 行了 H₂-TPR 实验. 结果表明, AC 中分散态的 CuO 被一步还原为 Cu⁰, 还原峰出现在 225 ℃, 并且随着 CuO 从分散态到结晶态的转变,还原温度降至 200 ℃ 左右.因此,本文中 205 °C 的低温还原峰对应于 $CuO \rightarrow Cu^0$ 的还原,而 278 °C 的高温还原峰为 $Cu_2O \rightarrow Cu^0$ 的还原.在 300 °C 制得的催化剂中 CuO 含量降低, 而 Cu₂O 含量升高, CuO 与 Cu₂O 结 晶度均升高, CuO→Cu⁰的还原温度降至 200 °C, 而 $Cu_2O \rightarrow Cu^0$ 的还原温度升至 283 °C. 在 400 °C 制 得的催化剂 $CuO \rightarrow Cu_2O$ 的还原峰消失, 仅观察到 290 °C 归属于 Cu₂O → Cu⁰ 的还原峰. 这是因为该 催化剂中仅存在 Cu₂O 且结晶较好,导致 Cu₂O → Cu⁰的还原温度升高.当加热处理温度为 450 和 500 °C 时,催化剂中 Cu 物种仅以 Cu⁰形式存在,无 需还原,因此未出现耗氢峰.

表 2 是根据图 5 谱图进行处理后的结果.可以 看出,随着催化剂热处理温度的升高,样品中 CuO 含量逐渐降低,而 Cu₂O 含量逐渐升高.在 200 °C 制备的催化剂中, Cu₂O 约占总 Cu 量的 28.7%,当加 热温度升高到 400 °C 时, Cu₂O 含量升高到约 100%. Cu₂(NO₃)(OH)₃/AC 催化剂前驱体在加热过

表 2 不同热处理温度制备的催化剂的 H₂-TPR 结果 Table 2 H₂-TPR analysis of Cu₂(NO₃)(OH)₃/AC heat-treated in N₂ for 4 h at different temperatures

Heat treatment	Peak temperature (°C)		Peak area (%)	
temperature (°C)	Cu ₂ O	CuO	Cu ₂ O	CuO
200	278	205	28.7	71.3
300	283	200	72.3	27.7
400	290	—	100	

程中依次发生了 $Cu_2(NO_3)(OH)_3 \rightarrow CuO \rightarrow Cu_2O \rightarrow Cu^0$. 可见,通过调节热处理温度,可以控制 AC 表面负载的 Cu 物种的价态和形式,从而获得具有较高活性的催化剂.

2.3 Cu/AC 催化甲醇氧化羰基化反应性能

表 3 为 200~500 °C 热处理制备的催化剂用于 甲醇氧化羰基化反应 10 h 内甲醇转化率、DMC 选 择性和时空收率 (STY). 可以看出, 200 ℃ 制备的 催化剂活性较低, 甲醇转化率和 DMC 的 STY 分别 为 6.1% 和 134.0 mg/(g·h). 当催化剂处理温度升至 300 ℃时,甲醇转化率和 DMC 的 STY 迅速升高. 当处理温度为 300~400 °C 时,催化剂活性基本不 变. 由前文可知, 200 °C 制备的催化剂中 Cu 物种主 要以 CuO 形式存在,并有少量 Cu₂O; 随着热处理 温度的升高,样品中 CuO 逐渐转化为 Cu₂O. 300~400 °C 制得的催化剂中 Cu 物种主要为 Cu₂O, 并表现出相近的催化活性,可见 Cu₂O 的催化活性 也较高,这与前期研究结果[7,8]相一致.但当热处理 温度升至450℃时,相应催化剂活性进一步提高, 甲醇转化率和 DMC 的 STY 分别达到 11.5% 和 261.9 mg/(g·h). 由于该催化剂中铜物种以 Cu⁰形式 存在,说明 Cu⁰催化活性比 Cu₂O 高. 当加热温度为 500 ℃时,相应催化剂活性有所降低.这是由于较

表 3 热处理温度对 Cu/AC 催化剂催化甲醇氧化羰基化反应的影响

 Table 3
 Effect of heat treatment temperature on catalytic activity of the Cu/AC catalyst

Heat treatment	Conversion of	STY	Selectivity for
temperature (°C)	MeOH (%)	$(mg/(g \cdot h))$	DMC (%)
200	6.1	134.0	72.9
300	9.2	211.6	76.8
350	9.4	214.1	75.9
400	9.2	213.6	76.0
450	11.5	261.9	76.0
500	11.1	252.3	75.7

Reaction conditions: catalyst 0.45 g, SV = 5600 h^{-1} , n(MeOH):n(CO): $n(\text{O}_2) = 4:10:1, 140 \text{ °C}, 10 \text{ h}$. STY—space time yield. 高温度制备的催化剂中 Cu^0 的晶粒较大所致.因此, 由 $Cu_2(NO_3)(OH)_3/AC$ 制备的 Cu/AC 催化剂,随着 加热温度的升高,经历了 $CuO/AC \rightarrow Cu_2O/AC \rightarrow$ Cu^0/AC 的变化,各 Cu 物种均有催化活性,其活性大 小顺序为 $CuO < Cu_2O < Cu^0$.

Cu 负载量对 450 °C 制得的 Cu⁰/AC 催化剂活性的影响如图 6 所示.由图可见,随着 Cu 负载量增加, DMC 的 STY 与甲醇转化率增加,但 DMC 选择性有所下降.当 Cu 负载量高于 10% 时,催化剂的活性中心趋于饱和,因而活性增加变缓.

图 6 Cu 负载量对 Cu⁰/AC 催化剂催化性能的影响 Fig. 6. Effect of Cu loading on catalytic properties of the Cu⁰/AC catalyst.

图 7 为 450 °C 制得的 Cu⁰/AC 催化剂上甲醇氧 化羰基化反应性能随时间的变化.可以看出,在反 应初始阶段该催化剂活性很高,但反应 5 h 后其活 性开始下降,至 50 h 时,DMC 的 STY 约为初始阶 段的 50%,失活率为 0.93%/h.随着反应的进行,其

活性降低变缓,至 95 h 时,STY 降低至 95 mg/(g·h), 约为初始阶段的 34%.在 95 h 的反应过程中,平均 失活率为 0.64%/h.

3 结论

在 N₂ 气氛下, 通过控制 Cu₂(NO₃)(OH)₃/AC 前 驱 体 的 热 处 理 温 度 可 以 分 别 制 得 CuO/AC, Cu₂O/AC 和 Cu⁰/AC 无氯催化剂. 这 3 种催化剂均 具有催化甲醇氧化羰基化反应活性, 其活性大小顺 序为 CuO/AC < Cu₂O/AC < Cu⁰/AC.

参考文献

- 1 Delledonne D, Rivetti F, Romano U. *Appl Catal A*, 2001, **221**: 241
- 2 Tomishige K, Sakaihori T, Sakai S I, Fujimoto K. Appl Catal A, 1999, **181**: 95
- 3 Jiang R X, Wang S F, Zhao X Q, Wang Y J, Zhang Ch F. Appl Catal A, 2003, 238: 131
- 4 Li Zh, Xie K Ch, Slade R C T. Appl Catal A, 2001, 209: 107
- 5 Drake I J, Fujdala K L, Bell A T, Tilley T D. J Catal, 2005, 230: 14
- 6 King S T . Catal Today, 1997, 33: 173

- 7 李忠, 文春梅, 王瑞玉, 郑华艳, 谢克昌. 高等学校化学
 学报 (Li Zh, Wen Ch M, Wang R Y, Zheng H Y, Xie K Ch. Chem J Chin Univ), 2009, 30: 2024
- 8 李忠, 文春梅, 郑华艳, 谢克昌. 高等学校化学学报 (Li Zh, Wen Ch M, Zheng H Y, Xie K Ch. *Chem J Chin Univ*), 2010, **31**: 145
- 9 Richter M, Fait M J G, Eckelt R, Schreier E, Schneider M, Pohl M M, Fricke R. Appl Catal B, 2007, 73: 269
- 10 Richter M, Fait M J G, Eckelt R, Schneider M, Radnik J, Heidemann D, Fricke R. *J Catal*, 2007, **245**: 11
- 11 Niu H X, Yang Q, Tang K B. *Mater Sci Eng B*, 2006, **135**: 172
- 12 Biswick T, Jones W, Pacula A, Serwicka E. J Solid State Chem, 2006, 179: 49
- 13 Kong L H, Chen X H, Yang G B, Yu L G, Zhang P Y. Appl Surf Sci, 2008, 254: 7255
- 14 冯绪胜, 刘洪国, 郝京城. 胶体化学. 北京: 化学工业出版社 (Feng X Sh, Liu H G, Hao J Ch. Colloid Chemistry. Beijing: Chem Ind Press), 2005. 49
- 15 Cao M H, Hu C W, Wang Y H, Guo Y H, Guo C X, Wang E B. Chem Commun, 2003: 1884
- 16 Shin S, Jang J, Yoon S H, Mochida I. Carbon, 1997, 35: 1739
- 17 Barbooti M M. Solar Energy Mater, 1984, 10: 35
- 18 李忠, 黄海彬, 谢克昌. 高等学校化学学报 (Li Zh, Huang H B, Xie K Ch. *Chem J Chin Univ*), 2008, **29**: 1609