DOI: 10. 3724/SP. J. 1096. 2012. 10695

大豆 Em(LEA1)蛋白保守结构域的结构和聚集特性

薛 蓉'邹永东'郑易之'吴亦洁'李晓晶*' 裴奉奎'

1(中国科学院长春应用化学研究所,长春 130022)

²(深圳大学生命科学学院,深圳市微生物基因工程重点实验室,深圳 518060)

摘 要 采用圆二色谱(CD)和核磁共振波谱(NMR)方法研究了大豆 Em(LEA1)蛋白保守基序 Em-C 和 Em-2M 多肽在不同环境中的结构及聚集行为。研究表明,在水和 DMPG 溶液中,两种多肽主要以无规结构 形式存在。在 50% TFE 溶液中,Em-C 多肽折叠结构增加,含疏水残基的部分区域可能形成 α-螺旋结构,且 分子以二聚体形式存在;而 Em-2M 则以单体形式存在,且有序结构较少。以上结果表明,环境变化可能导致 两种多肽的空间结构和聚集行为改变,这有助于理解 Em 蛋白在不同环境中的结构特点,及其重要区域在全 长蛋白中所起的作用。

关键词 晚期胚胎发生富集(LEA1)蛋白;核磁共振;结构;聚集

1 引 言

晚期胚胎发生富集(Late embryogenesis abundant,LEA)蛋白是一类与植物抗逆反应相关的重要 蛋白质。根据其表达模式和序列特点,可将其分为7组^[1]。其中第一组LEA蛋白(简称为LEA1)全长 序列高度保守,富含甘氨酸和带电氨基酸,且在氨基端、中部和羧基端分别存在不同20氨基酸基 序^[2~4]。LEA1蛋白主要存在于植物界中,在一些细菌和甲壳纲动物,如丰年虾等生物体中也发现了此 类蛋白^[1]。已有研究表明,小麦PM1959、大豆Em和小麦TaEm蛋白(LEA1)的表达可以提高多种生 物(如转基因植物、酵母和大肠杆菌重组子)对干旱、高盐和渗透等胁迫的耐受性^[5~8]。体外实验证明, 小麦Em和大豆Em等(LEA1)可保护乳酸脱氢酶(LDH)或柠檬酸合成酶免于因高温、干燥和冰冻胁 迫所引起的酶活性丧失^[9~11],LEA1蛋白可能具有多重保护功能。因此,揭示LEA1蛋白的保护功能, 理解其作用机理,可为有效利用LEA基因,培育抗逆植物新品种提供重要的基础资料。

在天然状态下,LEA 蛋白为无规结构蛋白^[12]。Tunnacliffe 等^[12]指出,LEA 蛋白结构的可塑性可 能是实现多功能的重要基础。在水溶液中,LEA1 蛋白多以自由卷曲和少量 α -螺旋结构存在。当遇干 燥胁迫或在醇溶液中,LEA1 蛋白的 α -螺旋含量增多,预示着 LEA1 蛋白的 α -螺旋结构将参与对细胞的 保护作用^[13~15]。小麦 Em 蛋白(LEA1)N 端的 α -螺旋结构对经干燥胁迫的酶活性的保护作用是必需 的^[10]。因此,研究 LEA1 蛋白和其重要结构域的结构及其随环境的变化,有助于揭示在各种环境胁迫 下 LEA1 蛋白与其它分子间可能发生的相互作用,及保护生物大分子等过程。

大豆 Em 蛋白属 LEA1 蛋白,可编码 105 个氨基酸,其中的第 44~63 位氨基酸为保守的中部 20-氨 基酸基序(Em-M 区),该基序前面有 43 个氨基酸片段(Em-N 区),基序后面有 42 个氨基酸片段(Em-C 区)。本课题组最近报告,大豆 Em 蛋白全长蛋白、Em-C、Em-2M(含 2 个 M 区)和 Em-N 片段的表达均 可赋予重组大肠杆菌对高盐的耐受性,而且还可以通过稳定 LDH 酶蛋白结构、阻止其聚集而保护冻融 胁迫下的 LDH 酶活性^[11]。

为了认识 Em 蛋白和其保守结构域的结构,及其随环境变化的特点,并为进一步理解其重要区域在 全长蛋白中所起的作用提供有用的结构信息,本研究采用圆二色谱(CD)和核磁共振波谱(NMR)方法研 究了 Em-C 和 Em-2M 多肽在水、50% TFE 溶液和阴性脂质体(DMPG)等不同环境下的结构和聚集行 为。

²⁰¹¹⁻⁰⁶⁻²⁷ 收稿;2011-10-18 接受

本文系中车博士后 基金(No. 20100471273)和国家自然科学基金(Nos. 31070230, 20095097)资助项目

^{*} E-mail: xjli@ciac.jl.cn

2 实验部分

2.1 材料

多肽 Em-C 和 Em-2M(表 1)的表达、纯化及鉴定参见文献 [11]。氘代三氟乙醇(TFE-d₂;98%, Cambridge Isotope Laboratories 公司);二肉豆蔻酰磷脂酰甘油(DMPG, Avanti Polar Lipids Inc 公 司);氯仿和甲醇(东莞市东江化学试剂有限公司)。

表 1 多肽氨基酸序列(50个氨基酸)

 Table 1
 Sequence of peptides (50 amino acid)

 M domain of soybean LEAI protein Em (Em-2M)
 GSHMASGGQTRKEQLGTEGYQEMGRKTSG-GQTRKEQLGTEGYQEMGRKTS

 C domain of soybean LEAI protein Em (Em-C)
 GSHMASGGLSTVDKSGEERAQEE-GIGIDESKFRTGNNKNQNQNEDQDKTS

2.2 分析方法

2.2.1 远紫外圆二色谱(Far-UV CD) (1)样品制备 A. 水溶液中样品:将适量肽直接溶于 20 mmol/L 磷酸盐缓冲溶液(pH 7.4)中,使肽的终浓度为 7 µmol/L; B. DMPG 中样品:将适量磷脂溶于 氯仿-甲醇(2:1,V/V)混合溶剂中,待磷脂完全溶解后,向其中加入预先配制好的多肽溶液,摇匀后用氮 气将管内的有机溶剂吹干,真空干燥过夜。向管中加入适量 20 mmol/L 磷酸盐缓冲溶液(pH 7.4),使 肽的终浓度为7 µmol/L,磷脂与肽的浓度比为 100:1,混合溶液在 35 ℃水浴中超声 1 h。(2) 仪器 Jasco J-815 圆二色谱仪。石英比色皿光程为 0.1 cm,波长范围 190~250 nm;带宽 1.0 nm;所有实验均 在 20 ℃进行。每个样品扫描 2 次,每张谱图取 2 次的平均值。所有肽膜体系的谱图均为经过扣除单独 的磷脂膜(背底)后的结果,以平均残基摩尔椭偏率 θ 表示:

$$\theta = \frac{\theta_{\text{obs}}}{10lcn} \tag{1}$$

 θ_{obs} 是实验所测的椭偏率(mdeg),l是石英比色皿的路径长度(cm),c是肽的浓度(mol/L),n是多肽所 含氨基酸个数。

蛋白质二级结构是通过 CDPro 软件进行分析得到的。软件由 3 个常用的程序 SELCON3, CDSSTR 和 CONTIN 组成。以 48 个参考蛋白对 CD 谱进行分析,并取 3 种程序计算结果的平均值。 2.2.2 核磁共振波谱 样品制备:将适量的 Em-C 和 Em-2M 多肽分别溶于 50% TFE-d₂ 溶液,使多 肽的终浓度为 2.88 mmol/L。

用于结构测定的核磁实验均在布鲁克 AVANCE 600 MHz 核磁共振波谱仪上完成,探头为配备了 X,Y,Z 梯度线圈的 5 mm 三共振反式探头。选用 TSP-d₄作为内标。实验温度为 298 K,所有二维¹H 谱均采用了压水峰技术。TOCSY 和 NOESY 实验采用仪器自带的标准脉冲序列进行采样,混合时间 分别为 100 和 200 ms。采样数据矩阵 2048 ×512,累加 96~168 次。采用标准 Bruker 软件(XWIN-NMR 3.5 版本)进行谱图处理,处理后的谱图用 SPARKY 软件进行分析。

扩散排序(DOSY)核磁共振实验在配备有 Z 轴梯度场的三共振反向检测探头的布鲁克 AVANCE 500MHz 核磁共振波谱仪上完成,实验温度为 298 K。肽扩散系数的测定采用了含有 WATERGATE 压水峰技术的 BPPSTE(Bipolar Pulse Pair Stimulated Echo)脉冲序列。水或 TFE 扩散系数的测定采 用不含压水峰技术的 STE(Stimulated Echo)脉冲序列。重要的实验参数设置如下:扩散时间(Δ)为 50 ms,梯度脉冲持续时间(δ)为 10 ms(Em-2M 样品)或 11.6 ms(Em-C 样品),扫描 8 次;当测定水扩散系 数时,Em-2M 和 Em-C 样品 Δ 均为 50 ms, δ 为 2.6 ms,扫描次数为 8。

2.2.3 聚集计算 利用公式(2)计算肽的表观分子量 $M(假设肽分子或聚集体为扁长椭球形状)^{[16]}$:

$$M = \left(\frac{k_{\rm B}T}{6\pi\eta DF}\right)^3 \frac{4\pi N_{\rm A}}{3(V_2 + \delta_1 V_1)} \tag{2}$$

式中, N_A 是阿佛加德罗常数, k_B 是玻尔兹曼常数, V_2 和 V_1 分别为每克肽及每克溶剂所占体积, δ_1 是结 合到肽上的溶剂的量(即每克肽结合多少克溶剂),F是形状因子。本研究中 Em-C 和 Em-2M 所用 V_2 值分别为 6.94×10⁻⁴ 和 7.04×10⁻⁴ m³/kg^[17], δ_1 为 0.4, V_1 为 8.2×10⁻⁴ m³/kg^[18], η 为 1.64×10⁻³N S $m^{2[19]}$ 。*F* 是分子与拥有相同质量和体积的硬球间的摩擦系数比 (f/f_0) 。对具有长椭球形状的肽分子,长半轴和短半轴比例戏 p=0.55,根据公式 $(3)^{[16]}$,可计算出 F=1.035。

$$F = f/f_0 = \frac{(1-p^2)^{1/2}}{p^{2/3} \ln \frac{1+(1-p^2)^{1/2}}{p}}$$
(3)

3 结果与讨论

3.1 结构分析

CD 光谱是测定蛋白质或多肽二级结构信息的重要手段。具有不同二级结构的蛋白质或多肽所产 生 CD 谱带的位置、吸收的强弱都有其明显特征。分别测得了 Em-2M 和 Em-C 多肽在水和 DMPG(脂 质体)溶液中的 CD 谱图。如图 1 所示,在水溶液中,两种肽均在 197 nm 附近出现负的最低峰,表明 Em-2M 和 Em-C 多肽主要以无规结构形式存在,这与大豆 Em 全长蛋白及其它 LEA1 蛋白在水溶液中 的结构表现相似^[11,12]。阴性脂质体 DMPG 在水溶液中可形成囊泡,其两亲性磷脂双层膜通常可以用 来模拟细胞膜环境。因此,可通过考察 DMPG 与蛋白或多肽的作用方式间接推测细胞膜与蛋白或多肽 的作用。由图 1 可见,Em-2M 和 Em-C 在 DMPG 中的 CD 谱与在水溶液中的类似,主要表现为无规结 构形式,说明脂质体的存在没有引起明显的结构改变。此结果与在大豆 GmDHN1(LEA2)蛋白中的结 果^[20]类似。为了进一步评估其有序结构的含量,利用 CDPro 软件的 3 种程序 SELCON3、CDSSTR 和 CONTIN 计算得到了各二级结构要素所占含量。如表 2 所示,两种肽在水溶液中主要以自由卷曲形式 存在,有序二级结构含量非常低。

Fig. 1 CD spectra of Em-2M and Em-C polypeptides in water and dimyristoylphosphatidylglycerol (DMPG) solution

TFE 被认为是一种可促使蛋白形成螺旋 结构的诱导剂^[1,20]。本研究组曾报告 Em-C 和 Em-2M 多肽在 50% TFE 水溶液中的 α -螺旋含 量分别为 45.3%和 29.9%^[11]。为进一步确定其 三维结构,检测了 Em-C 和 Em-2M 多肽在 50% TFE 溶液中的 TOCSY 和 NOESY 谱图,期望通 过对谱图的全归属来获得更多结构信息,进而进 行结构计算。然而在谱图解析过程中发现,Em-C 的部分 NOESY 谱图重叠严重,Em-2M 的 NOESY 信号

表 2 Em-2M 和 Em-C 多肽在水和 DMPG 中二级结构要素含

Table 2 Secondary structure content of Em-2M and Em-C polypeptides in water and DMPG

		螺旋 Helix (%)	折叠 Sheet (%)	转角 Turn (%)	自由卷曲 Random (%)
Em-2M	H_2O	2.2	8.7	5.4	83.7
	DMPG	7.9	9.3	10.9	73.1
Em-C	H_2O	4.1	14.5	8.8	71.5
	DMPG	5.8	8.7	8.1	78.0

太少,难以对两种多肽的谱图进行全归属。尽管如此,依然可以从部分 NMR 谱图中获得一些有价值的 结构信息。如图 2A 和图 2B 所示,Em-C 的 NOESY 谱峰数量明显多于 Em-2M,即距离约束较多,表明 Em-C 结构更加有序。Em-C 序列中带有较长烷基侧链的疏水残基 L9, V12, I25, I27 因其特殊的谱图 特征(—CH₃ 化学位移在高场位置,约1.0×10⁻⁶附近)较易辨认。由 Em-C 的 NOESY 谱可见,包含这 些残基的区域存在多个 NOE 交叉峰,部分为具有螺旋特征的 NOE 连接,如隔 3,4 个残基间的 NOE 连接:V12HN-L9H_α,G16HN-V12H_α,I25H_α-D28H_β2,I25H_α-D28H_β3;相邻残基间 HN_i-HN_{i+1}产生 的 NOE 连接: L9HN-S10HN,T11HN-I10HN,T11HN-V12HN,D13HN-V12HN,I25HN-G24HN, G26HN-I25HN,I27HN-D28HN,E29HN-D28HN 有 S30HN-E29HN 等。这表明包含疏水残基 L9, V12,I25,I27 的部分区域形成了螺旋结构。Em-C 的部分 H_α 化学位移偏差(CSD= $\delta_{observe} - \delta_{random}$)结 果也证实了以上观点^[21]。如图 2C 所示,在 L9 至 K31 区域内,Em-C 多个残基的 CSD 值接近或小于一 0.1×10⁻⁶,表明这些残基可能参与了螺旋结构的形成。

3.2 聚集研究

DOSY 实验可以测定分子的扩散系数(*D*),将分子的扩散系数结合 Stokes-Einstein 公式可以近似 求出分子的表观分子量。这种核磁共振技术已广泛用于检测分子的聚集、配体-受体相互作用等研 究^[22,23]。

图 3 是 Em-C 和 Em-2M 多肽在 50% TFE 溶液中的 DOSY 谱图。Em-C 和 Em-2M 的扩散系数 分别为 9.6×10⁻¹¹ m²/s 和 7.89×10⁻¹¹ m²/s,存在明显的差异。溶液中溶剂 TFE 和 H₂O 大量存在,相 对于两种多肽而言 TFE 和 H₂O 的数目和质量占主体,因此可以认为溶剂的分子尺寸在 Em-C 和 Em-2M 样品溶液中基本相同。从图 3 可见,TFE 和 H₂O 的扩散系数在两种样品中完全相同,根据 Stokes-Einstein 公式判断,两种溶液具有相同的粘度。Em-C 和 Em-2M 均由 50 个残基构成,两者的分子量接 近,约为 5.4 kDa,在粘度一致的情况下,两种多肽在相同溶液中扩散系数的差异说明两种多肽存在着 不同的聚集状态。为了确定两种多肽的聚集数目,我们假设肽分子或聚集体为扁长椭球形状。利用公 式(2)对 Em-C 和 Em-2M 的表观分子量进行估算,结果显示,Em-C 和 Em-2M 的表观分子量分别为 10.7 和 5.9 kDa,说明在 50% TFE 溶液中,Em-C 以二聚体形式存在,而 Em-2M 以单体形式存在。 **3.3** 讨论

LEA1 蛋白是一类天然的无规蛋白。这种无规亲水蛋白的结构常具有可塑性,其行使功能的过程 中也往往伴随着环境而变化的结构。本研究结果表明: Em-C 和 Em-2M 多肽在水溶液中主要以无序 结构形式存在。DMPG 的存在也未使 Em-C 和 Em-2M 多肽的结构发生明显改变,即这两种肽仍主要 表现为无规则状态,表明 DMPG 与两种肽间可能不存在相互作用,或者是即使存在相互作用也未能引 起这两个多肽的结构变化。此外,从 NMR 数据的分析中发现, TFE 的加入可诱导这两种多肽结构发 生改变,表现在 Em-C 多肽中含疏水残基 L9, V12, I25, I27 的部分区域形成了螺旋结构;而 Em-2M

图 3 Em-2M 和 Em-C 在 50% TFE 水溶液中的 DOSY 谱图。a, b, c, d 四条线分别代表 TFE-H₂O, TFE, Em-2M, Em-C 的扩散系数, 其中 TFE-H₂O 为 TFE 的 — OH 和 H₂O 交换产生的 信号

Fig. 3 DOSY spectra of Em-2M and Em-C in 50% TFE aqueous solution. Lines a, b, c, d represent the diffusion coefficients of TFE-H₂O, TFE, Em-2M and Em-C, respectively. TFE-H₂O refers to the exchange signal of -OH from TFE and H_2O

多肽的 NOESY 谱图中数目较少的交叉峰表明其中有少数原子空间相对位置固定,即存在少量有序结 构。这一结果与文献[11]的结果一致,即在 50% TFE 溶液中 Em-C 和 Em-2M 多肽的螺旋含量增加, 其中前者在 50% TFE 水溶液中螺旋结构含量多于后者^[11]。由此可推测: Em-C 多肽自身形成螺旋的 能力可能强于 Em-2M。在环境发生某些变化时, Em-C 基序可能更容易由无规则状态形成螺旋结构。 脂质体 DMPG 囊泡的内表面和外表面都是阴性亲水面,两表面之间是由长烷基链形成的疏水区域。这 两种多肽在 DMPG 水溶液中首先接触的 DMPG 部位是带负电的亲水面,通过一定的作用后才能接触 到 DMPG 疏水区域。在 50% TFE 水溶液中, TFE 独特的疏水特性可能有利于肽的疏水部分与之发生 相互作用,促使肽形成更为有序的构象。Em-C和 Em-2M 在水、DMPG 及 50% TFE 溶液中的结构性 质表明两种肽的结构可能随着环境的变化而改变,即体现了其结构的可塑性。关于 Em-C 和 Em-2M 多肽结构的转变对 Em 全长蛋白的影响正在研究之中。

Tunnacliffe 等的研究表明, 小麦 Em 蛋白(LEA1)在脱水情况下可保护其它蛋白^[12]。本课题组最 近的研究表明,大豆 Em 蛋白及其保守基序在体外可稳定 LDH 酶蛋白结构,阻止 LDH 酶发生聚集, 且 Em-C 表现出比 Em-2M 多肽更强的保护作用^[11]。本研究结果表明,50% TFE 中 Em-C 基序可聚集 形成二聚体,而 Em-2M 基序则仍以单体形式存在。这一结果表明,在 50% TFE 溶液或类似环境中, Em-C基序自身有序结构的增加使得该蛋白分子之间具有较高的聚集能力,并可能进一步通过形成的 聚集体与其它蛋白质分子发生相互作用,对蛋白质分子起保护作用。

综上所述,本研究通过核磁共振技术及 CD 方法测定了大豆 LEA1 蛋白 Em 重要区域 Em-C 和 Em-2M 在不同环境中的结构及聚集行为。虽然两种多肽在水溶液及脂质体 DMPG 中都以自由卷曲为 主,但在 50% TFE 水溶液中 Em-C 和 Em-2M 折叠都有所增加,且 Em-C 形成螺旋的趋势强于 Em-2M。 此外,在50%TFE水溶液中,Em-C表现出较强的聚集能力,其分子间相互作用可能与其包含疏水残基的 区域形成螺旋结构有关。Em-C的这些结构特征及聚集行为可能在全长蛋白的功能中起到重要作用。

References

- 1 Battaglia M, Olvera-Carrillo Y, Garciarrubio A, Campos F, Covarrubias A A. Plant Physiol., 2008, 148(1): 6~24
- 2 Ingram J, Bartels D. Anuu. Rev. Plant Physiol. Plant Mol. Biol., 1996, 47: 377~403
- 3 Esperlund M, Saeboe-Larssen S, Hughes D W, Galau G A, Larsen F, Jakobsen K S. Plant J., 1992, 2(2): $241 \sim 252$
- 4 Burns W C, Maitra N, Cushman J C. Plant Physiol., 1997, 113(2): 663
- 5 Cheng Z, Targolli J, Huang X, Wu R. Mol. Breed, 2002, 10(1-2): 71~82

567

- 6 Manfre A J, Lanni L M, Marcotte W R Jr. Plant Physiol., 2006, 140(1): 140~149
- 7 Swire-Clark G A, Marcotte W R Jr. Plant Mol. Biol., 1999, 39(1): 117~128
- 8 Lan Y, Cai D, Zheng Y Z. J. Integr Plant Biol., 2005, 42(5): 613~621
- 9 Goyal K, Walton L J, Tunnacliffe A. Biochem. J., 2005, 388(4): 151~157
- 10 Gilles G J, Hines K M, Manfre A J, Marcotte W R Jr. Plant Physiol. Biochem., 2007, 45(6-7): 389~399
- 11 Zou Y D, Hong R S, He S W, Liu G B, Huang Z B, Zheng Y Z. Biotechnol. Lett., 2011, 33(8): 1667~1673
- 12 Tunnacliffe A, Wise M J. Naturwissenschaften, 2007, 94(10): 791~812
- 13 ZOU Yong-Dong, SHI Li-Sha, LIU Guo-Bao, HONG Rui-Sha, ZHENG Yi-Zhi. Chinese Bulletin of Life Sciences,
 2008, 20(3): 489~494
 - 邹永东,施丽沙,刘国宝,洪锐沙,郑易之.生命科学,2008,20(3):489~494
- 14 Soulages J L, Kim K, Walters C, Cushman J C. Plant Physiol., 2002, 128(3): 822~832
- 15 Boudet J, Buitink J, Hoekstra F A, Rogniaux H, Larré C, Satour P, Leprince O. Plant Physiol., 2006, 140(4): 1418~1436
- 16 Yao S, Howlett G J, Norton R S. J. Biomol. NMR, 2000, 16(2): 109~119
- 17 Perkins S J. Eur. J. Biochem., 1986, 157(1): 169~180
- 18 Schuck P, MacPhee C E, Howlett G J. Biophys J., 1998, 74(1): 466~474
- 19 Fioroni M, Diaz M D, Burger K, Berger S. J. Am. Chem. Soc., 2002, 124(26): 7737~7744
- 20 Soulages J L, Kim K, Arrese E L, Walters C, Cushman J C. Plant Physiol., 2003, 131(3): 963~975
- 21 Andersen N H, Neidigh J W, Harris S M, Lee G M, Liu Z H, Tong H. J. Am. Chem. Soc., 1997, 119(36): 8547~8561
- LI Jian-Xin, HUA Jia, HE Cui-Cui, ZHAO Jian-Wei. Chinese J. Anal. Chem., 2007, 35(7): 988~992
 李建新,华嘉,何翠翠,赵健伟. 分析化学, 2007, 35(7): 988~992
- 23 Xue R, Wang S, Qi H Y, Song Y D, Wang C Y, Li F. Biochim. Biophys. Acta, 2008, 1778(6): 1444~1452

Structures and Assembly of Conserved Domains from Soybean Late Embryogenesis Abundant Protein Em

XUE Rong¹, ZOU Yong-Dong², ZHENG Yi-Zhi², WU Yi-Jie¹, LI Xiao-Jing^{*1}, PEI Feng-Kui¹

¹(Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China) ²(Shenzhen Key Laboratory of Microbiology and Gene Engineering, College of Life Science,

Shenzhen University, Shenzhen 518060, China)

Abstract In this study, we investigated the structures and assembly of C domain of soybean late embryogenesis abundant (LEAI) protein EM(Em-C) and M domain of soybean LEAI protein EM (Em-2M) from the soybean LEA1 protein Em in different environments using CD and NMR spectroscopy. In water and dimyristoylphosphatidyglycerol(DMPG) solution, both peptides were predominantly disordered. In 50% 2,2,2-trifluoroethanol(TFE) aqueous solution, Em-C had increasing folding and self-assembled as dimer, and the region including hydrophobic residues might form helical structure. Em-2M formed less ordered structure than Em-C and existed as monomer in 50% TFE aqueous solution. These results suggested that the change of environment might lead to variation of spatial structure and assembly behavior for the two peptides Em-C and Em-2M. The present study may provide an insight into the structural properties of Em protein in different environments and the roles of some important segments in Em protein.

Keywords Late embryogenesis abundant protein; Nuclear magnetic resonance spectroscopy; Structure; Assembly

(Received 27 June 2011; accepted 18 October 2011)