催化学报

Chinese Journal of Catalysis

Vol. 31 No. 12

文章编号: 0253-9837(2010)12-1457-08

DOI: 10.3724/SP.J.1088.2010.00551

研究论文: 1457~1464

镁基复合氧化物催化烯烃环氧化反应

卢新宁,林海强,袁友珠

厦门大学化学化工学院,固体表面物理化学国家重点实验室和醇醚酯化工清洁生产国家工程实验室,福建厦门 361005

摘要:制备了一系列镁基复合氧化物 MgM-n 样品 (M=Sn, Al, Ti, La, Ce, Zr; n 为 Mg/M 原子比),用 X 射线衍射、N2吸附-脱附、 CO2程序升温脱附、紫外可见漫反射光谱和电子自旋共振等手段表征了它们的结构和表面性质,并考察了其以过氧化氢为氧化 剂催化烯烃环氧化反应性能.结果表明, MgM-n 样品表面碱量和催化性能与其中 M 的种类及含量密切相关. MgSn-4 样品的表 面碱量比 MgAl-4 低, 虽两者在催化苯乙烯环氧化反应中,苯乙烯转化率和环氧化物选择性均为 95% 左右, 过氧化氢利用率大于 80%,但在循环使用过程中 MgSn-4 的催化性能更为稳定,并在不同结构烯烃的环氧化反应中表现出优良的催化性能. 这除与 MgSn-4 表面碱强度适当有关外,还与其中存在高分散的 Sn⁴⁺物种及其结构特性有关.

关键词: 镁;锡;复合氧化物;过氧化氢;烯烃;环氧化

中图分类号: O643 文献标识码: A

Epoxidation of Olefins Catalyzed by Magnesium-Based Mixed Oxides with Hydrogen Peroxide

LU Xinning, LIN Haiqiang, YUAN Youzhu*

State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China

Abstract: A series of Mg-based mixed oxides MgM-*n* (M = Sn, Al, Ti, La, Ce, Zr; n = Mg/M atomic ratio) were prepared. The physicochemical properties of these mixed oxides were characterized by X-ray diffraction, N₂-adsorption/desorption, CO₂ temperature-programmed desorption, ultraviolet and visible diffuse reflectance spectroscopy, and electron spin resonance. The catalytic activity of MgM-*n* for the epoxidation of olefins was investigated with H₂O₂ as an oxidant. The results indicated that the catalytic performance and basicity of MgM-*n* mixed oxides were correlated to the type and doping amount of M species. The MgAl-4 and MgSn-4 samples showed a conversion and epoxide selectivity as high as 95% along with over 80% H₂O₂ efficiency for the epoxidation of styrene. However, MgSn-4 possessed lower surface basicity and more stable performance during consecutive reuse in comparison with MgAl-4. Moreover, MgSn-4 could catalyze the epoxidation of olefins of different structure with excellent performance. With the characteristic studies, it was presumed that such a superior performance of MgSn-4 could essentially be ascribed to the highly dispersed Sn⁴⁺ species and its unique structure as well as the proper basicity.

Key words: magnesium; tin; mixed oxide; hydrogen peroxide; olefin; epoxidation

烯烃的环氧化物通过选择性开环和官能团转化 可合成许多医药和精细化学品的中间体,广泛应用 于有机合成、医药化工和香精香料等领域^[1~4].早在 1961年,Payne等^[5]发现,NaOH和KOH等可溶性碱 在以腈类化合物为溶剂的条件下是优良的烯烃环氧 化反应催化剂,但存在设备腐蚀和分离困难等不足. 随着环保意识的加强及绿色化学理念的推广,固体 碱替代液体碱已成为多相催化研究的热点之一. Ueno等^[6]率先以水滑石为固体碱催化剂,以H₂O₂为 氧化剂,在以苯甲腈为溶剂条件下进行烯烃环氧化 反应,催化效果良好. Kirm等^[7]以723K下焙烧水滑 石而制得 MgAl 复合氧化物固体催化剂,在H₂O,

收稿日期:2010-05-31.

联系人: 袁友珠. Tel: (0592)2181659; Fax: (0592)2181047; E-mail: yzyuan@xmu.edu.cn 基金来源: 国家重点基础研究发展计划(973计划,2009CB939804); 国家自然科学基金(20873108,20923004).

H₂O₂和 CH₃CN 共存的条件下,苯乙烯转化率和环氧 化物选择性均较高. 尽管 MgAl 复合氧化物是烯烃 环氧化常用的固体碱催化剂^[8,9],但其结构稳定性较 差,在反应过程中易发生结构变化,溶解流失以及表 面有机物的残留率较高,十分不利于催化剂的循环 使用. Romero等^[10]试图通过高温焙烧以提高催化剂 稳定性及其再生性能,但过高的处理温度导致催化 剂的比表面积、表面碱性位结构和数量显著变化,催 化活性随之明显下降.研究发现,含 Sn氧化物也可 作为优良的 H₂O₂氧化固体催化剂,文献[11]发现四 配位 Sn 物种在浓度很低的 H₂O₂氧化剂下具有良好 的催化氧化能力; 文献[12]制备的介孔硅磷酸锡,在 催化苯乙烯环氧化反应中,苯乙烯转化率为 88.5%, 环氧苯乙烷选择性为 85.8%.

可以推测,由于 Sn⁴⁺的离子半径 (0.69 nm) 与 Mg²⁺(0.66 nm) 基本相同,较易进入 MgO 晶格中部分 取代 Mg²⁺,形成特殊结构的 MgSnO 复合氧化物;有 关此类物质用于烯烃环氧化反应还鲜见报道.因此, 本文制备并考察了几类 MgM-*n*(M=Sn,Al,Ti,La,Ce 和 Zr; *n* 为 Mg/M 原子比) 复合氧化物在烯烃环氧化 反应中的催化性能,并结合表征结果探讨催化剂性 能与结构之间的关联.

1 实验部分

1.1 催化剂的制备

以 Mg-Sn 复合氧化物制备为例, 按照一定摩尔 比称取 MgCl₂·6H₂O和 SnCl₄·5H₂O 配制成混合金属 盐溶液 (1.0 mol/L), 在恒温水浴 333 K 和磁力搅拌的 条件下,向溶液中缓慢滴加 Na₂CO₃ (0.5 mol/L)-NaOH (3 mol/L) 混合溶液, 控制 pH 值约为 10, 保持搅 拌和恒温状态持续晶化 24 h. 再将沉淀物用去离子 水抽滤洗涤至中性,在 373 K 干燥后送入马弗炉, 在 873 K 焙烧 5 h, 即制得 Mg-Sn 复合氧化物, 记为 MgSn-n. 同法制备其它 MgM-n (M=Al, Ti, La, Ce 和 Zr) 复合氧化物, 以及未掺杂的 MgO和 SnO₂ 固体.

1.2 催化剂的表征

催化剂的物相表征在 Phillips X'Pert Pro 型的 X 射线粉末衍射 (XRD) 仪上进行. Cu K_{α} ($\lambda = 0.154$ 06 nm) 辐射源,管电压 40 kV,管电流 30 mA. 样品的比 表面积和孔径分布测定采用 N₂吸附法在 Micromeritics Tristar 3000 型物理吸附仪上进行. 比表面积和 孔径分布理论计算方法分别为 BET 和 BJH法.紫外 可见漫反射 (UV-Vis-DRS) 实验在 Varian Cary 5000 型可见漫反射光谱仪上进行,以 BaSO₄为参比,扫描 范围 200~800 nm,扫描速率 200 nm/min,用螳螂式检 测器采集信号.CO₂程序升温脱附 (CO₂-TPD) 实验 在 Micromeritics AutoChem II 2920 型全自动化学吸 附仪上进行.气体组成用 Hiden Qic-20 型质谱仪检 测,选用 *M*r/*Z*=44 的信号来跟踪脱附 CO₂.电子自旋 共振 (ESR)测试在 Bruker EMX-10/12 型电子自旋共 振波谱仪上完成,于77K进行.

1.3 烯烃环氧化反应

取 5 mmol 烯烃底物于三颈瓶中,加入 5 ml 乙腈, 0.5 mmol 内标十二烷, 2 ml 水和 100 mg 催化剂,最后 滴加 20 mmol 的 30% H₂O₂,在磁力搅拌状态下升温 至 323 K,保持 6 h. 将反应液过滤后用 CH₂Cl₂萃取, 在有机相中加入足量无水 Na₂SO₄以干燥脱水.反应 液的分析在 Agilent 7890A 型气相色谱仪上进行, HP-5 色谱柱 (30 m×0.25 mm×0.25 μm),FID 检测器. 各组分的定性采用与标准样品对比而确定,以内标 法确定各组分含量. H₂O₂浓度用高锰酸钾标准溶液 滴定测量.

 H_2O_2 的利用率 $E(H_2O_2) = n_i/(n_0-n_f)$,式中 n_i 为用 于环氧化反应的 H_2O_2 摩尔量; n_0 为反应初始加入的 H_2O_2 摩尔量; n_f 为反应结束后剩余的 H_2O_2 摩尔量.

2 结果与讨论

2.1 催化剂的结构和表面性质

2.1.1 XRD 结果

图 1 为 MgM-4 复合氧化物的 XRD 谱.可以看 出, MgAl-4 复合氧化物在 2*θ*=43.1°, 62.4°和 78.8°处 出现明显的立方晶型 MgO 特征衍射峰, 而未出现明 显的 Al₂O₃特征衍射峰.这可能是由于 Al 嵌入 MgO 晶格取代 Mg 的位置, 在 MgAl 尖晶石相中处于高度 分散状态.在 MgLa-4, MgSn-4和 MgCe-4 样品上仅 出现较微弱的 MgO 特征衍射峰, La₂O₃, SnO₂和 CeO₂ 等的衍射峰也不明显, 主要分别是 MgLa₂O_x (JCPDF 42-0339), MgSnO₃ (JCPDF 30-0798) [及少量 Mg₂SnO₄ (JCPDF 24-0723), 未标识]和 MgCeO₃ (JCPDF 04-0641) 等晶态复合氧化物.在 MgTi-4 复合氧化物 上除了出现较强的 MgO 衍射峰外,还有 MgTiO₃ (JCPDF 06-0494) 的衍射峰^[13].对于 MgZr-4 样品,

图 1 MgM-4复合氧化物的 XRD 谱

Fig. 1. XRD patterns of the MgM-4 samples. (1) MgAl-4; (2) MgLa-4; (3) MgSn-4; (4) MgCe-4; (5) MgTi-4; (6) MgZr-4. The number after the sample means Mg/M atomic ratio.

MgO特征衍射峰明显,ZrO2的衍射峰则显著宽化.

图 2 是不同 Sn 掺杂量的 MgSn-*n* 复合氧化物的 XRD 谱. 由图可见,样品上主要出现有 MgSnO₃ 晶态 复合氧化物 (同时也有少量的 Mg₂SnO₄ 晶体生成), 而 SnO₂衍射峰不明显. 当 Mg/Sn 比大于 4 时,尚可观 察到微弱的 MgO 衍射峰; 而 Mg/Sn-1 样品上 MgO 衍 射峰消失.

Fig. 2. XRD patterns of the MgSn-*n* samples. (1) MgO; (2) MgSn-8; (3) MgSn-4; (4) MgSn-1; (5) SnO₂.

2.1.2 复合氧化物的化学组成和结构参数

表1为系列 MgM-n 样品的化学组成和结构性质.可以看出, MgAl-4 的比表面积最大,其次为 MgSn-4.对于 MgSn-n 复合氧化物,其比表面积及孔体积均比相同条件制备的 MgO 及 SnO₂的大,说明在 复合氧化物形成过程更易形成丰富的孔道体系.

表1 MgM 复合氧化物的化学组成和结构参数 Table 1 Chemical compositions and structure properties of different MgM-*n* samples

Sample	Mg/M atomic ratio ^a	$A_{\rm BET}$ (m ² /g)	Pore diameter (nm)	Pore volume (cm ³ /g)
MgTi-4	4.2	33.2	24.0	0.27
MgZr-4	3.9	38.5	23.6	0.22
MgCe-4	4.1	42.5	20.2	0.28
MgLa-4	3.9	37.6	19.6	0.37
MgAl-4	4.1	145.5	13.7	0.41
MgSn-1	1.1	33.6	24.5	0.35
MgSn-4	4.0	95.8	14.6	0.31
MgSn-8	7.9	57.3	16.7	0.38
MgO	_	22.3	22.5	0.11
SnO_2	—	21.5	18.8	0.13

^aDetermined by ICP-OES.

图 3 为 MgSn-4 样品的 N₂吸附-脱附等温线及孔 径分布.图 3(a)表现为 IV 型;由图 3(b)可见,样品主 要含有 10~25 nm 范围的中孔,孔分布范围相对较窄.

图 3 MgSn-4 样品的 N_2 吸附-脱附等温线及孔径分布 Fig. 3. N_2 adsorption-desorption isotherm (a) and pore size distribution (b) of the MgSn-4 sample.

这种具有较大孔径的多孔材料较有利于暴露和增加 表面碱性位,并可望提高反应物和产物分子的扩散 速率,加速化学反应的进行.

2.1.3 CO₂-TPD 结果

所制备的系列复合氧化物作为固体碱催化剂用 于烯烃环氧化反应中,催化剂性能与其表面碱中心 的类型、强度及数量紧密关联.因此,本文采用 CO₂-TPD 技术表征了这些样品的表面碱性,结果示 于图 4. 根据 CO₂ 的脱附温度,将表面碱中心分为三 类: (1)弱碱中心, CO2 脱附温度低于 423 K, 通常对应 于碱性氧化物部分水解后形成的表面羟基; (2) 中强 度碱中心, CO2 脱附温度在473~723 K, 一般为氧阴离 子; (3) 高强度碱性中心, CO2 脱附温度高于 873 K, 对 应于强 Lewis 碱中心. 由图 4 可见, MgAl-4 和 MgLa-4 上主要存在中强度碱性位. MgSn-4 和 MgCe-4表面既存在中强度碱中心,也存在弱碱性中 心. MgTi-4和 MgZr-4表面主要存在弱碱性中心;在 513 和 690 K 附近亦出现强度较弱的 CO₂ 脱附峰,表 明中强度碱中心数量很少;在890K附近还存在少 量高强度碱性中心的CO2脱附峰.

图 4 MgM-4 复合氧化物的 CO₂-TPD 谱 Fig. 4. CO₂-TPD profiles of the MgM-4 samples. (1) MgAl-4; (2) MgLa-4; (3) MgSn-4; (4) MgCe-4; (5) MgTi-4; (6) MgZr-4.

本文还考察了 MgSn-*n* 复合氧化物中 Mg/Sn 原 子比对表面碱性位的影响,相应 CO₂-TPD 谱示于图 5. 可以看出,酸性氧化物 SnO₂表面几乎不存在碱性 位,碱性氧化物 MgO 表面存在弱碱性位和中等强度 碱性位.其中中等强度碱性位的 CO₂脱附峰位出现

图 5 MgSn-n 样品的 CO₂-TPD 谱

Fig. 5. CO₂-TPD profiles of the MgSn-*n* samples. (1) MgO; (2) MgSn-8; (3) MgSn-4; (4) MgSn-1; (5) SnO₂.

在 560 和 620 K 处,说明有两种类型的中强度碱性位. 对于 MgSn 复合氧化物,随着 Sn 含量的增加,弱碱性 中心数量逐渐增加,中强度碱性位数量逐渐减少. Mg/Sn-1 已几乎不存在中强度碱性中心.

2.1.4 UV-Vis 结果

图 6 为不同 MgSn-n 样品的 UV-Vis 谱. 可以看出, MgO 在紫外区没有特征吸收峰; SnO₂在 290 nm 左右有一个宽的特征吸收峰, 可归属为多聚态六配 位 Sn-O-Sn 物种^[14]; MgSn-n 复合氧化物在 215 nm 附近出现明显的吸收峰, 这可能归属于复合氧化物

Fig. 6. UV-Vis diffuse reflectance spectra of the MgSn-n samples. (1) MgO; (2) MgSn-8; (3) MgSn-4; (4) MgSn-1; (5) SnO₂.

中以四配位形式存在的 Sn 物种^[15].

对于用于烯烃环氧化反应的固体碱催化剂,反应溶剂或水等与催化剂表面作用生成表面羟基或其它表面物种,对反应活性和稳定性的影响很大.本文将MgSn-4分别与反应溶剂乙腈、水及H2O2接触后再采集其UV-Vis谱,结果示于图7.可以看出,经水浸渍处理后MgSn-4样品在200~350 nm处吸收峰强度明显减弱,并向长波方向宽化.推测MgSn-4复合氧化物与水接触后发生表面水解,使表面Sn物种的配位环境发生变化.当用含30%H2O2的乙腈浸渍后,样品在215 nm处的吸收峰强度略有减弱.这是由于乙腈与表面Sn物种之间形成配合物^[16],从而抑制了-Mg-O-Sn-的部分水解所致.

Fig. 7. UV-Vis diffuse reflectance spectra of the MgSn-4 sample treated in different solvents. (1) As-prepared MgSn-4; (2) MeCN; (3) MeCN/H₂O₂; (4) MeCN/H₂O₂/H₂O; (5) H₂O.

2.1.5 ESR结果

图 8 为 MgSn-4 和 MgAl-4 样品经 H₂O₂ 处理前 后的 ESR 谱.可以看出,无论是否经H₂O₂处理, MgAl-4 上均无共振信号出现,MgSn-4 则出现 g = 1.89 和 1.97 的电子自旋共振信号,其中前者为镁锡 复合氧化物中 Sn²⁺离子化产生 Sn³⁺ 物种所致^[17];后 者通常被认为是复合氧化物中晶体位错的氧阴离子 所致^[18].经H₂O₂处理后,MgSn-4除保持原有信号外, 又出现了g = 2.00 和 2.02 较强的电子自旋共振信号, 推测是镁锡复合氧化物中 Sn⁴⁺ 与 H₂O₂ 形成了 Sn⁴⁺-O₂⁻过氧物种结构所致^[18].

图 8 MgSn-4 和 MgAl-4 样品的 ESR 谱

Fig. 8. ESR spectra of MgSn-4 and MgAl-4 samples. (1) MgSn-4 treated in H_2O_2 ; (2) MgSn-4; (3) MgAl-4 treated in H_2O_2 ; (4) MgAl-4.

2.2 MgM-n上烯烃环氧化反应性能

2.2.1 MgM-n 表面碱量对苯乙烯环氧化反应性能的影响

不同 MgM-n 样品催化苯乙烯环氧化反应结果 列于表 2, 其中表面碱量由 CO₂-TPD 谱计算得到. 由 表可见, SnO₂没有催化活性, 而 MgO则具有较高的 催化活性.通常情况下, MgM-n 的催化活性随碱量 的增加而升高^[19];但对于 MgO 和 MgSn-4 稍有例外. MgSn-4样品中含有孤立态四配位Sn物种,它作为一 种强的 Lewis 酸而常作为氧化反应的催化中心,即 MgSn-4样品对苯乙烯环氧化反应的催化活性主要 由Lewis 酸和表面碱的协同催化作用,故活性要高于 MgLa-4. 而MgO样品除了表面碱量高以外,它还在 反应中部分溶解,使得其活性略高于 MgLa-4. MgSn-4活性略高于 MgSn-8,可能是由于 MgSn-4的 比表面积更高或者孤立态四配位 Sn 物种更多, 使得 活性中心更分散或浓度更高所致. MgSn-4 和 MgAl-4 在催化反应中 E(H₂O₂) 大于 80%, 但有些复 合氧化物催化的反应中 E(H₂O₂) 偏低. 当烯烃/H₂O₂ 摩尔比为1/4时,可避免因H2O2浓度过低而影响反 应速率,有利于各复合氧化物活性数据之间的对比. 这也与文献[20]中的实验条件类似.

2.2.2 催化剂的循环使用性能

固体碱催化剂的循环使用性能是其能否工业化 应用的关键性指标之一.因此,考察了 MgM 系列复

Table 2 Characteristics of MgM-n mixed oxides and their performance for the epoxidation of styrene					
Sample	Mg/M atomic ratio	Surface basicity (µmol/g)	PhCH:CH ₂ conversion (%)	SO selectivity (%)	<i>E</i> (H ₂ O ₂)/%
MgTi-4	4.2	36	49.5	85.6	42.5
MgZr-4	3.9	47	53.7	83.5	43.4
MgAl-4	4.1	256	95.5	97.3	83.6
MgCe-4	4.1	69	56.2	89.3	50.7
MgLa-4	3.9	198	82.5	94.6	72.8
MgSn-1	1.1	89	56.2	90.3	51.6
MgSn-4	4.0	145	94.8	96.8	81.5
MgSn-4 ^a	4.0	145	15.3	95.5	91.0
MgSn-8	7.9	244	92.5	93.6	77.6
MgO	—	152	91.0	96.2	81.6
SnO_2	_	0	0	0	0

表 2 MgM 复合氧化物的特征及催化苯乙烯环氧化性能

 $Reaction \ conditions: \ catalyst \ 100 \ mg, \ styrene \ 5 \ mmol, \ MeCN \ 5 \ ml, \ 30\%H_2O_2 \ 20 \ mmol, \ H_2O \ 2 \ ml, \ 323 \ K, \ 6 \ h.$

^aMeCN was replaced with MeCOMe. SO-styrene oxide.

合氧化物催化剂的循环使用性能.反应结束后、经过 滤将催化剂分离出来,用H2O和丙酮分别多次洗涤, 于373K干燥后于873K下焙烧6h,所得样品用于下 一次反应. 代表性的催化剂循环使用结果列于表 3. 由表可见, MgO的稳定性最差, 循环使用至第3次时 活性下降了 50% 以上. MgAl-4 和 MgSn-4 复合氧化 物循环使用第1次后, Mg有少量损失; 循环使用至 第2次后, Mg流失量低于20µg/ml,但Sn的流失量在 ICP 检测极限以下. 这可能是在这些复合氧化物的 制备过程中,有部分MgO并没有与Al或Sn反应,而 是附着在复合氧化物表面,导致反应过程中流失.还 可以看出,催化剂中Mg的流失甚微,其活性下降与 Mg流失无明显关联. 经第1次循环后, MgSn-4和 MgAl-4的比表面积分别从 95.8 和 145.5 m²/g 减至 85.0 和 93.5 m²/g, 表面碱量则分别从 145 和 256 µmol/g减至135和196µmol/g(表中未列出);而XRD 结果表明反应前后催化剂晶相结构没有变化.因此, 循环使用后催化剂的比表面积及表面碱度等均减

表 3 不同 MgM 复合氧化物在苯乙烯环氧化反应中的循 环使用性能

 Table 3
 The reusability of different MgM mixed oxides for the epoxidation of styrene

Reused	PhCH	:CH ₂ conversion (%)		Mg content ^a (%)	
number	MgO	MgAl-4	MgSn-4	MgAl-4	MgSn-4
1	91.0	95.5	94.8	43.8	23.5
2	58.6	76.6	89.5	42.1	22.9
3	36.3	48.5	85.6	41.8	22.9
4	_	35.6	68.2	41.5	22.9
5	_	20.3	56.5	41.2	22.8
		1 100			

Reaction conditions: catalyst 100 mg, styrene 5 mmol, 30% H₂O₂ 20 mmol, H₂O 2 ml, 323 K, 6 h. ^aMass fraction determined by ICP-OES.

少,导致其活性下降. 总体而言, MgSn-4的稳定性比 MgAl-4高,第2次使用后, MgSn-4上苯乙烯转化率 从94.8%降为89.5%, 而 MgAl-4复合氧化物上的从 95.5%降为76.6%.

2.2.3 MgSn-4 对其它烯烃环氧化反应的催化性能

表4为 MgSn-4催化不同烯烃环氧化反应结果. 由表可见,直链或环状烯烃的环氧化反应转化率和 选择性较高;而对于缺电子烯烃(如2-环已烯酮),其 活性较低(主要产物仍为相应的环氧化物).这说明 MgSn-4样品催化烯烃环氧化反应,具有一定的烯烃 底物普适性.

2.2.4 反应机理探讨

采用色谱-质谱联用仪分析反应的生成物,可观 察到乙酰胺的分子离子峰 (Mr/Z = 59), 以及断裂 -NH2和断裂-CONH2后碎片离子峰(Mr/Z=43,15). 乙酰胺的生成暗示该反应中可能存在类似如 Payne 等^[5]描述的机理,即已被广泛接受的乙腈溶剂中 H2O2催化烯烃环氧化的反应机理^[20,21]:(1)催化剂表 面物种和H2O2相互作用生成HOO⁻离子; (2) 溶剂乙 腈与HOO⁻离子作用生成甲基过氧化亚胺酸; (3)甲 基过氧化亚胺酸中的氧转移到烯烃中.因此,推测溶 剂乙腈与MgSn-4催化剂中Sn⁴⁺进行配位的同时,还 与HOO⁻离子反应形成过氧化亚胺酸,然后进一步 氧转移至烯烃,得到环氧化产物,并伴随有乙酰胺生 成. 由于乙腈的这种配位作用可阻止 H₂O 分子与 MgSn-4表面直接接触,减缓其水解反应,从而提高 催化剂的稳定性.另一方面,由表2可见,当用丙酮作 为溶剂时, MgSn-4 上也能发生环氧化反应, 而

Table 4	Epoxidation of several olefins catalyzed by MgSn-4 with H ₂ O ₂ as an oxidant			
Substrate	PhCH:CH ₂ conversion (%)	Major product	Selectivity (%)	
	97.0	$\wedge \wedge \wedge_0$	98.5	
$\wedge \wedge $	98.5	$\wedge \wedge $	98.0	
\bigcirc	99.5	$\bigcirc 0$	99.5	
\bigcirc	99.5	0	99.5	
0	85.5		97.8	

Reaction conditions: catalyst 100 mg, olefin 5 mmol, 30% H₂O₂ 20 mmol, H₂O 2 ml, 323 K, 6 h.

MgAl-4则不能.结合图 8 和文献[16]推测, Sn⁴⁺物种 也可能成为环氧化反应的一个活性中心,即四配位 的 Sn⁴⁺物种与 H₂O₂结合生成超氧物种,进而催化烯 烃环氧化反应.因此,以苯乙烯环氧化反应为例, MgSn-4复合氧化物上烯烃环氧化可能的反应历程 如图式1所示.

图式1 MgSn-4 催化苯乙烯环氧化可能的反应机理

Scheme 1. A possible reaction mechanism for the epoxidation of styrene catalyzed by MgSn-4 mixed oxide with H₂O₂ as an oxidant.

3 结论

Sn⁴⁺易进入 MgO 晶格中部分取代 Mg²⁺,高温焙 烧后形成以 MgSnO₃ 为主、以 Mg₂SnO₄ 为辅的晶态 复合氧化物. MgSn-4 样品的碱性虽比相同原子比的 MgAl-4 弱,但其催化性能与之相当,且前者稳定性 明显较高,重复使用后回收的催化剂中 Sn 基本上没 有流失.在 323 K下 MgSn-4 催化苯乙烯环氧化反应 时,苯乙烯转化率高达 94.8%,SO 选择性为 96.8% 左 右,H₂O₂利用率大于 80%.同时,MgSn-4 对环烯烃和 缺电子烯烃的环氧化反应也是高效催化剂.这除与 适当表面碱性有关外,还与高分散的 Sn⁴⁺物种有关; 并推测 Sn⁴⁺物种易与溶剂乙腈配位, 使-(Mg-O-Sn)-结构单元的水解速度得到缓解, 进而提高催化剂稳 定性. 高分散的四配位 Sn⁴⁺物种也可能是反应中的 活性中心.

参考文献

- Espinal L, Suib S L, Rusling J F. J Am Chem Soc, 2004, 126: 7676
- 2 Patil N S, Uphade B S, Jana P, Bharagava S K, Choudhary V R. *J Catal*, 2004, **223**: 236
- 3 李宁宁, 刘月明, 吴海虹, 李晓红, 谢伟, 赵忠林, 吴鹏, 何鸣元. 催化学报 (Li N N, Liu Y M, Wu H H, Li X H, Xie W, Zhao Zh L, Wu P, He M Y. *Chin J Catal*), 2008, **29**:

102

- 4 胡健平,储伟,许中强,陈庆龄,颜达予. 合成化学 (Hu J P, Chu W, Xu Zh Q, Chen Q L, Yan D Y. Chin J Syn Chem), 2000, 8: 326
- 5 Payne G B, Williams P H. J Org Chem, 1961, 26: 651
- 6 Ueno S, Yamaguchi K, Yoshida K, Kaneda K. Chem Commun, 1998: 295
- 7 Kirm I, Medina F, Rodriguez X, Cesteros Y, Salagre P, Sueiras J. *Appl Catal A*, 2004, **272**: 175
- 8 Yamaguchi K, Ebitani K, Kaneda K. J Org Chem, 1999, 64:
 2966
- 9 叶达洲, 卓广澜. 催化学报 (Ye D Zh, Zhuo G L. Chin J Catal), 2008, 29: 1259
- 10 Romero M D, Calles J A, Ocana M A, Gomez J M. Microporous Mesoporous Mater, 2008, 111: 243
- 11 Mal N K, Bhaumik A, Kumar R, Ramaswamy A V. Catal Lett, 1995, 33: 387
- 12 Chandra D, Mal N K, Bhaumik A. J Mol Catal A, 2006,

247: 216

- Loperz T, Hernandez J, Gomez R, Bokhimi X, Boldu J L, Munoz E, Novaro O, Garcia-Ruiz A. *Langmuir*, 1999, 15: 5689
- 14 Chaudhari K, Das T K, Rajmohanan P R, Lazar K, Sivasanker S, Chandwadkar A J. *J Catal*, 1999, **183**: 281
- 15 Samanta S, Mal N K, Manna A, Bhaumik A. *Appl Catal A*, 2004, **273**: 157
- 16 Mal N K, Ramaswamy A V. J Mol Catal A, 1996, 105: 149
- 17 Popescu D A, Herrmann J-M, Ensuque A, Bozon-VerdurazF. *Phys Chem Chem Phys*, 2001, 3: 2522
- 18 Canevali C, Chiodini N, Morazzoni F, Scotti R. J Mater Chem, 2000, 10: 773
- Ionescu R, Pavel O D, Bîrjega R, Zăvoianu R, Angelescu E. Catal Lett, 2010, 134: 309
- 20 Aramendía M A, Borau V, Jiménez C, Luque J M, Marinas J M, Ruiz J R, Urbano F J. Appl Catal A, 2001, 216: 257
- 21 Palomeque J, Perez J, Figueras F. J Catal, 2002, 211: 150