基干紫外吸收的烟气中 NO 和 NO 成分浓度的同时测量

周 洁,张时良

浙江大学热工与动力系统研究所, 浙江 杭州 310027

摘 要 利用高分辨率光栅单色仪测量到的不同浓度的 NO 和 NO₂ 混合气体综合紫外吸收光学厚度,将光学厚度中的快变离散吸收与 NO 浓度相关,将慢变连续吸收与 NO₂ 浓度相关,同时反演 NO 和 NO₂ 的摩尔浓度。研究结果表明: (1) 当气体总压接近一个大气压时,NO₂ 反映出很强的转换为 N₂O₄ 的倾向,转化率 R 最大值约为 22. 5%,远大于低气压下的 R 值,导致 NO₂ 吸收截面主要取决于 N₂O₄ 的吸收特性,表现为慢变的连续吸收特征; (2) 离散吸收截面随 NO 分压增大产生谱线增宽现象,吸收截面在增宽区域的积分值和 NO 浓度的线性相关性优于吸收截面峰值。测量和反演结果表明: 当 NO₂ 分压在 $17\sim100$ Pa 范围变化时,NO₂ 摩尔浓度反演的平均相对误差为 11.7%。当 NO 分压在 $63.8\sim181.62$ Pa 范围变化时,基于积分法的 NO 浓度反演的最大相对误差为 16.9%,平均相对误差为 9.6%,而基于峰值法的 NO 浓度反演的最大相对误差为 9.6%,而基于峰值法的 NO 浓度反演的最大相对误差为 9.6%,而基于峰值法的 NO 浓度反演的最大相对误差为 9.6%,不均相对误差为 9.6%,不均相对误差为 9.6%,而基于峰值法的 NO 浓度反演的最大相对误差为 9.6%,和基于峰值法的 NO 浓度反演的最大相对误差为 9.6%,和基于峰值法的 NO 浓度反演的最大相对误差为 9.6%,和基于峰值法的 NO 浓度反演的最大相对误差为 9.6%,不均相对误差为 9.6%,和基于峰值法的 NO 浓度反演的最大相对误差为 9.6%,不均相对误差为 9.6%,和基于峰值法的 NO 浓度反演的最大相对误差为 9.6%,不均相对误差为 9.6%,不均相对误差,

关键词 光学厚度; 一氧化氮; 二氧化氮; 浓度 中图分类号: T 0591 文献标识码: A 文章编号: 1000 0593(2008)04 0870 05

引言

有关大气中氮氧化物(NO_x)含量的检测方法主要采用光谱学和化学方法。和化学法相比,光谱学法具有以下优点^[1]:(1)可以测量一定空间内的气体平均浓度,即线浓度测量,这对于连续监测十分有利;(2)可以对燃烧排放污染气体中多种有害成分实现同时测量;(3)探测灵敏度高。目前,光谱法主要有红外、紫外吸收法、差分吸收光谱法(DOAS)、红外傅里叶变换光谱法(FTIR)和可调谐半导体激光吸收光谱法(TDLAS)等,其中 DOAS 法 [2] 适宜监测痕量气体(ppb 级),对燃烧排放高浓度($10^2 \sim 10^3$ ppm 级)有害气体成分分析并不适合,FTIR 法 3,41和 TDLAS 法虽然测量精度较高,但测量系统复杂,设备价值昂贵,一般不适宜连续测量。相比之下,吸收光谱法测量气体浓度具有仪器结构简单,系统维护方便的特点,特别是紫外光谱分析设备更具有价值低廉的优点。

气体在紫外波段的选择性吸收谱线源于原子、电子旋转、振动能级间的跃迁。如 NO 在 $200\sim230$ nm 处存在三条等波长间隔(约为 10~1 nm)分布吸收谱线[13 ,可以此作为 NO 浓度反演的特征谱线;而 NO₂ 在此波段存在 7 条等间隔

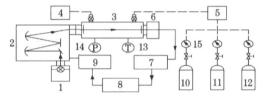
(5) (5)

$$NO_2 + hV \longrightarrow NO_2^* \longrightarrow NO + O(^3P)$$
 (1)

因此,测量时应选择开放式气样室,保证被测气体始终处于开放流动状态。这在一定程度上限制了一次性抽取式测量方式的应用。其次, NO_2 还易合成为 $N_2O_4^{16.9}$

$$N_2O_4 \rightleftharpoons 2NO_2$$
 (2)

此可逆反应的平衡常数 k_p 和烟气温度和总压有很大关系。 $Jing^{[10]}$ 等给出了低压(气体总压为 $1\,000\,Pa$ 以下)、常温下的 k_p 值,约为 $0\,302\,atm^{-1}$,此时 N_2O_4 转化率 R 很小,约在 $0\,015$ 以下,对 NO_2 吸收能力的影响不大。根据我们对常压 (气体总压约为一个大气压)、常温下不同摩尔浓度的 NO_2 测量结果发现, N_2O_4 转化率 R 远大于 Jing 等所公布的数值,约为 $0\,042~0.278$, k_p 变化范围为 $0\,708\times10^{-3}~32\times10^{-3}\,atm^{-1}$ 。转化率 R 的增大导致 N_2O_4 对 NO_2 的吸收影响逐渐增大,同时由于 N_2O_4 的吸收截面约为 NO_2 的吸收截面 $100\,GE = 16^{[6]}$, $NO_2+N_2O_4$ 综合吸收能力必将产生很大变化,因此,在 NO_2 浓度反演时必须考虑此因素影响,否则, NO_2 浓度反演值将远大于真实值。值得一提的是, N_2O_4 的吸收截面集中分布在波长大于 $400\,nm$ 以下区域 $^{[68]}$,因此,采用红外吸收光谱测量 NO_2 浓度时无法估计 N_2O_4 生成对


收稿日期: 2006 11-12, 修订日期: 2007 02 16 基金项目: 国家自然科学基金项目(50376058)资助

 NO_2 吸收能力的影响,测量精度必然受到影响,这也是紫外吸收测量的优势之一。

本研究采用高分辨率光栅单色仪,研究利用同一紫外波段的吸收光谱,同时获取混合气体中 NO 和 NO_2 浓度的测量方法。该测量方法分别将混合气体在 200~230 nm 波段的离散吸收光谱和连续吸收光谱作为 NO 和 NO_2 浓度反演的基础,同时采用将离散吸收积分值和 NO 浓度相关的方法,减小高浓度 NO 气体非线性偏离 Beer Lambert 吸收定律的趋势,从而达到提高气体浓度测量精度的目的。

1 实验装置及步骤

图 1 中所示为 NO 和 NO₂ 浓度联合测量实验装置。主要光学系统由低气压电致发光氘灯、高分辨率光栅单色仪和光电倍增管组成。单色仪采用 2 400 lines \bullet mm⁻¹光栅,当入、出口狭缝宽度为 $10\,\mu$ m 时,闪耀波长 250 nm 处的波长分辨率达到 0 05 nm。当狭缝宽度为 $10\,\mu$ m 时,入射光强太弱,因此狭缝宽度定为 $100\,\mu$ m,经标准汞灯标定,此时 256 3 nm 处的分辨率达到 0 25 nm。单色仪扫描间隔定为 0 02 nm。

l-Deuterium lamp; 2 Grating monochromator; 3 Sample cell with quartz window; 4 Vaccum pump; 5 Buffer gas cell; 6 Photomultiplier tube; 7 A/D card; 8 PC; 9 Scanner driver; 10 Pure N₂; 11-NO sample gas; 12 NO₂ sample gas; 13 Thermocouple; 14 Pressure transducer; 15 Flowmeter

Fig 1 Experimental apparatus for NO_x concentration measurement

The light coming from a deuterium lamp was directed through a collimating quartz lens into the sample cell and focused on the entrance slit of the monochromator. The SBP300 monochromator was equipped with a grating with 2 400 grooves per millimeter, blazed for 250 nm in first order. The analyzed gas mixture was fed in a flowing manner to prevent occurrence of NO₂ photolysis. Flows of NO, NO₂ and N₂ were adjusted until the desired pressure in total was attained.

由于 NO_2 受光照后易分解为 NO,稳定性较差,因此测量在开式情况下进行,即保证被测气体 $(NO+NO_2)$ 和填充气体 (N_2) 始终处于开放流动状态。经实验验证,此时几乎没有发现 NO_2 分解为 NO 现象。被测 NO_2 摩尔浓度为 0.1994%,NO 的摩尔浓度为 0.209%,填充气体为 N_2 。配气步骤为: 首先用真空泵抽吸气样室至接近真空,充入纯 N_2 后清洗气样室,然后用真空泵再行抽吸。这样反复 2~3 遍,以保证气样室中无空气残留。记录最后一次抽真空后的气样室的绝对压力,视为纯 N_2 残留。分别充入 NO 和 NO_2 标气

至气样室压强接近 1 个标准大气压,模拟烟气排放压力工况。由于配气过程在开式情况下进行,不同气源的充入相互存在干扰。因此,在配气过程结束、稳定后,记录 NO, NO_2 和 N_2 气的各自流量,作为气体浓度反演结果的参照。

2 测量原理

根据 Beer Lambert 定律, NO 和 NO₂ 混合气体的光学厚度 OD 可以表示 NO 气体的 OD_1 和 NO₂ 气体的 OD_2 之和

$$OD = \ln \frac{I_0(\lambda)}{I_2(\lambda)} = OD_1 + OD_2$$
 (3)

$$OD_1 = \ln \frac{I_0(\lambda)}{I_1(\lambda)} = \sigma_1(\lambda) n_1 l$$
 (4)

$$OD_2 = \ln \frac{I_1(\lambda)}{I_2(\lambda)} = \sigma_2(\lambda) n_2 l$$
 (5)

(3) 式中 I_0 , I_1 和 I_2 分别表示入射光强、经 NO 的透射光强、经 NO 和 NO₂ 的透射光强、 λ 为波长,nm; σ_1 和 σ_2 分别表示离散和连续吸收截面, cm^2 /分子; n 为气体分子数密度,分子/ cm^3 ; l 为气样室光程,cm。

如图 2 所示,NO 在 200 nm 附近波段呈现等波长间隔分布的离散吸收特征[11-14], 3 条吸收特征峰波长分别为 204 4, 214 6 和 226 nm。我们先前的研究结果[3] 表明,气体总压的变化并没有导致 NO 吸收谱线的增宽,吸收峰也未出现明显的蓝移或红移。但随着 NO 自身分压的增大,吸收谱线出现明显的增宽现象[15-19],吸收峰处的吸收特性逐渐非线性偏离Beer Lambert 定律。谱线增宽还和仪器函数卷积处理有关,如单色仪狭缝宽度越大,增宽现象越明显。本研究中单色仪狭缝宽度为 $100~\mu$ m,上述 3 条谱线分别增宽至 203~6~205~4, 213~6~214~6~10~225~0~227~0~10~0~205~4, 213~6~214~6~10~225~0~227~0~10~0~205~4, 213~6~214~6~10~225~0~227~0~10~0~205~4, 213~6~214~6~10~225~0~227~0~10~0~205~4, 213~6~214~6~10~225~0~227~0~10~0~205~4, 213~6~214~6~10~225~0~227~0~10~0~205~4, 213~6~214~6~10~225~0~227~0~10~0~205~0~2

$$c_{\rm m1} = \frac{P_{\rm NO}}{P_{\rm N_2}} = \frac{1}{\Delta\lambda} \int_{\lambda_1}^{\lambda_2} \frac{\beta T \cdot OD_{1\lambda}}{P_{\rm N_2} \sigma_{1\lambda} l} \mathrm{d}\lambda, \ \Delta\lambda = \lambda_2 - \lambda_1 \qquad (6)$$

式中 P_{NO} , P_N , 表示 NO 分压和气体总压, Pa; T 为气体温

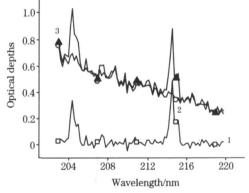


Fig 2 Summation of optical depths of NO and NO₂

1: NO; 2: NO₂; 3: NO+ NO₂

Discrete peaks of the synthesized optical depths of NO_x were contributed to NO absorption and continuous based was contributed to NO_2

度, K; 比例系数 $\beta = P_0/(n_0T_0)$, 其中 $P_0 = 1\,013 \times 10^6\, P_0$, $T_0 = 273\,16\, K$, n_0 为洛希密特数,即标准状态下分子数密度,等于 $2\,687 \times 10^{19}\,$ 分子 $/\,$ cm 3 ; λ_1 , λ_2 分别离散吸收的起始和终了波长,nm。

由于 NO_2 存在和 N_2O_4 之间的可逆反应,它们的综合吸收截面 σ_2 表示为

$$\sigma_2 = \sigma_{NO_2} + R\sigma_{N_2O_4} \tag{7}$$

我们已得到的研究结果表明,转化率 R 与气体总压和 NO_2 分压的比值成正比,即

$$R = c_1 + c_2 P_{N_2} / P_{NO_2}$$
 (8)

式中常数 $c_1 = -0.014$ 7, $c_2 = 0.131 \times 10^{-3}$ 。本研究中 P_{N_2} 接近一个大气压,计算所得转化率 R 最大值为 0.225,即最多有 22.5% 的 N O_2 转化为 N $_2$ O_4 。由于 $O_{N_2O_4}$ 远大于 $O_{N_2O_4}$ 。因此 O_2 主要取决于 $O_{N_2O_4}$ 的大小。在 200 ~ 230 nm 区域 $O_{N_2O_4}$ 表现出连续变化的特征,可采用多项式拟合其整体变化规律 O_2 O_3 O_4 O_4

 $\sigma_2 \approx R \sigma_{N_2 O_4} = (c_1 + c_2 P_{N_2} / P_{NO_2}) (a_1 + a_2 \lambda + a_3 \lambda^2)$ (9) 式中常数 $a_1 = 2$ 67 × 10⁻¹⁵, $a_2 = -2$ 37 × 10⁻¹⁷, $a_3 = 5$. 24 × 10⁻²⁰。根据(9) 式可得 NO₂ 当量浓度 c_{m2} 为

$$c_{m2} = \frac{P_{NO_2}}{P_{N_2}} = \frac{\beta T}{l} \cdot OD_2 - c_2 P_{N_2} \sigma_{N_2 O_4}}{c_1 P_{N_2} \sigma_{N_2 O_4}}$$
(10)

3 结果分析

图 3 中给出了不同 NO_2 浓度的混合气体(NO_+ NO_2) 的 光学厚度 OD 曲线。图中所示工况 NO 浓度保持一定,分压约为 $15\sim18$ Pa, NO_2 分压变化范围为 $0\sim72$ 8 Pa, 温度 301 K。从图中可以发现,由于 NO 含量保持相对恒定,OD 曲线中的离散吸收部分几乎没有明显的变化。随着 NO_2 浓度的逐渐增大,代表 NO_2 连续吸收的基底曲线则逐渐升高,证明了离散吸收和 NO 相关而连续吸收和 NO_2 相关的事实。

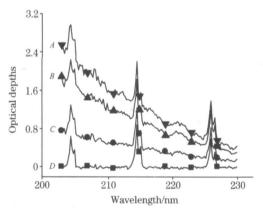


Fig 3 Optical depths of NO_x gas mixture at various concentration and NO_2

A:
$$P_{\text{NO}_2} = 72 \, 8 \, \text{Pa}$$
; B: $P_{\text{NO}_2} = 59 \, 7 \, \text{Pa}$;
C: $P_{\text{NO}_2} = 29 \, 2 \, \text{Pa}$; D: $P_{\text{NO}_2} = 0 \, \text{Pa}$

The concentration of NO_2 was varied by adjusting its flow. Its partial pressure was varied from θ 72 8 Pa, while the total pressure in sample cell was kept roughly constant and near to one atmospheric pressure.

由(5),(9)和(10)式可得,对于一定的波长,NO₂及N₂O₄综合光学厚度 OD_2 值正比于 $c_1P_{NO_2}+c_2P_{N_2}$ 。比较图3中A,B,C三条曲线的基底部分 OD_2 ,将A曲线的 OD_{2A} 除以相同波长处C曲线的 OD_{2C} 值,得到平均比值为296,结合A和C两工况所对应的NO₂分压值,可以解得常数 C_1 =0195×10 6 C₂。同时将B曲线的 OD_{2B} 除以相同波长处C曲线的 OD_{2C} 值,得到平均比值为225。结合B和C两工况所对应的NO₂分压值,可以解得常数 C_1 =010的NO₂分压值,可以解得常数 C_1 =021×10 6 C₂。常数比值的相近间接证明了上述有关NO₂及N₂O₄综合吸收截面((9)式)推断的正确性,同时又进一步证实了基底吸收和NO₂相关的事实。

图 4 中给出了根据光学厚度 OD_2 反演的 NO_2 摩尔浓度 c_{m2} 与其真实值 c_2 的对照。反演浓度最大相对误差为 24 2%,平均相对误差为 11 7%。12 个测量工况中 NO_2 分压变化范围为 17~ 100 Pa 之间, NO_x 气体总压维持在 0. 98× 10° ~ 1 12× 10° Pa 之间,气体温度保持在 301~ 303 K 之间。测量结果基于 206~ 225 nm 间的基底吸收谱线(扣除离散吸收谱线)。

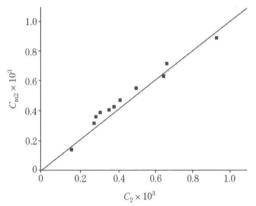


Fig 4 Comparison of derived concentration of NO₂ and its true value

The derived concentration was obtained by equation (10). The true concentration was calibrated by the manufacturer using chemilum inescence technique.

图 5 中给出了 NO 浓度变化时,由光学厚度 OD_1 计算所得的 213. 6~215 6 nm 波段间 NO 吸收截面的增宽现象。随着 NO 分压由 63 8 Pa 增大至 181. 62 Pa,214 6 nm 处峰值吸收截面下降近 55%,此时 NO 吸收已偏离 Beer Lambert定律。相应地,对 213. 6~215 6 nm 波段间 NO 吸收截面进行积分,厦降幅度可降至 28 8%,非线性偏离有所缓和。对于低浓度情况,这种缓和趋势愈发明显。如 NO 分压由 63. 8 Pa 增大至 89 98 Pa,213. 6~215 6 nm 波段间 NO 吸收截面积分值的降幅可减至 6 65%,此时 214 6 nm 处峰值吸收截面降幅近 15 3%。因此,基于吸收截面积分法反演 NO 浓度可大大减小由于非线性偏离 Beer Lambert 定律带来的计算误差。图 6 中给出了相应的计算结果,图中实心点表示采用吸收截面积分法 (213. 6~215 6 nm) 所得的 NO 浓度值,空心点表示采用吸收截面峰值法 (214 6 nm) 所得的 NO 浓度

16 9%, 平均相对误差为 9 6%, 而基于峰值法的 NO 浓度 反演值最大相对误差为 38 2%, 平均相对误差为 14 4%。很明显, 采用积分法后, NO 浓度反演的线性度有了明显的改善。

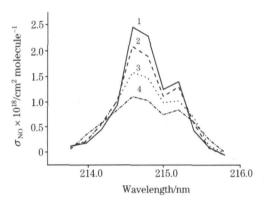


Fig 5 Optical depths of NO_x gas at various concentration of NO

1: $P_{\text{NO}} = 63 \, 8 \, \text{Pa}$; 2: $P_{\text{NO}} = 89 \, 98 \, \text{Pa}$;

3: $P_{\text{NO}} = 121 \ 41 \ \text{Pa}$; 4: $P_{\text{NO}} = 181 \ 62 \ \text{Pa}$

The concentration of NO was varied by adjusting its flow. Its partial pressure was varied from 63 & 181 62 Pa, while the total pressure in sample cell was kept roughly constant and near to one atmospheric pressure

4 结 论

利用高分辨率光栅单色仪测量 NO_x 混合气体($NO+NO_2$)在 $200\sim230$ nm 波段的整体光学厚度,同时将快变离散吸收与 NO 浓度相关,将慢变连续吸收与 NO_2 浓度相关,反演 NO 和 NO_2 的摩尔浓度。本研究中选取的气体浓度和燃烧排放烟气中 NO_x 的含量相当,和基于 DOAS 法的低温

大气层中痕量气体浓度检测具有本质的区别。研究结果表明。

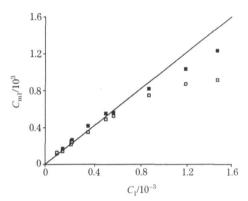


Fig 6 Comparison of derived concentration of NO and its true value

The derived concentration was obtained by equation (6). The true concentration was calibrated by the manufacturer using chemilum inescence techn $\dot{q}u$ e.

- (1) 烟气排放压力下由 NO_2 合成为 N_2O_4 的转化率 R 远大于低压、真空环境下的转化率 R,同时由于 N_2O_4 吸收截面远大于 NO_2 吸收截面,导致混合气体 $(NO_2+N_2O_4)$ 综合吸收截面 σ_2 主要取决于 $\sigma_{N_2O_4}$ 的大小,表现为慢变的连续吸收特征。
- (2) 离散吸收截面随 NO 分压增大产生谱线增宽现象, 吸收截面在增宽区域的积分值和 NO 浓度的线性相关性优于吸收截面峰值,根据积分法反演出的 NO 浓度的相对误差比峰值反演小 50% 左右。
- (3) 利用紫外吸收谱线的快变和慢变部分,分别反演 NO 和 NO $_2$ 浓度,测试硬件设备相对简单,使烟气中多种 NO $_x$ 成分的在线、联合检测成为可能。

参 考 文 献

- [1] LIU Werrqing, CUI Zhrcheng, LIU Jian guo, et al(刘文清,崔志成,刘建国,等). Chinese Journal of Quantum Eletronics(量子电子学报), 2004, 21(2): 202.
- [2] Johan Mellqvist, Arne Rosen. Journal of Quantitative Spectroscopy and Radiative Transfer, 1996, 56(2): 209.
- [3] HUANG Zhong hua, WANG Jurr de(黄中华,王俊德). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2002, 22(2): 235.
- [4] SUN Xiuryun, LI Yan, WANG Jurr de(孙秀云, 李 燕, 王俊德). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2003, 23 (4): 739.
- [5] ZHOU Jie, CHEN Xiao-hu(周 洁, 陈晓虎). Acta Scientiae Circumstantiae(环境科学学报), 2006, 26(6): 1006.
- [6] Wolfgang S, Geert K M, et al. Journal of Photochemistry and Photobiology. A. Chemistry, 1987, 40: 195.
- [7] DENG Narr sheng, WU Feng(邓南圣, 吴 峰, 编著). Environment Photochemistry(环境光化学). Beijing: Chemical Industry Press(化学工业出版社), 2003. 36.
- [8] Merienne M. F., Jenouvirer A., et al. Journal of Atmospheric Chemistry, 1995, 20: 281.
- [9] Burrows J P, Dehn A, et al. Journal of Quantitative Spectroscopy and Radiative Transfer, 1998, 60(6): 1025.
- [10] Jing C, Randolph C W, et al. Thermochimca Acta, 1974, 10: 359.
- [11] ZHOU Jie, ZHANG Shi liang, CHEN Xiaσhu(周 洁, 张时良, 陈晓虎). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2007, 27(2): 1259.
- [12] Johannes Orphal, Kelly Chance. Journal of Quantitative Spectroscopy and Radiative Transfer, 2003, 82: 495.
- [13] Prahlad V, Ahmed S M, Vijay Kumar. Journal of Quantitative Spectroscopy and Radiative Transfer, 1996, 56(1): 57.
- [14] MA Wei guang, YIN Wang bao, HUANG Tao, et al (马维光, 尹王保, 黄, 涛, 等)... Spectroscopy and Spectral Analysis (光谱学与光谱

- 分析), 2004, 24(2): 135.
- [15] DENG Bo(邓 勃编著). Principle, Technique and Application of Atomic Absorption Spectrum Analysis(原子吸收光谱分析的原理、技术和应用). Beijing: Tshing hua University Press(北京:清华大学出版社), 2004. 35.
- [16] Goldman A, Brown L R, Schoenfeld W G, et al. Journal of Quantitative Spectroscopy and Radiative Transfer, 1998, 60: 825.
- [17] Vyrodov A O, Heinze J, Meier U E. Journal of Quantitative Spectroscopy and Radiative Transfer, 1995, 53: 277.
- [18] Trad H, Higelin P, Djebälir Chaumeix N, et al. Journal of Quantitative Spectroscopy and Radiative Transfer, 2005, 90: 275.
- [19] WEI He li, GONG Zhiben, MA Zhijun, et al(魏合理, 龚知本, 马志军, 等). Chinese Journal of Quantum Electronics(量子电子学报), 2001, 18(1): 16.

Synchronous Measurement of Concentrations of Nitric Oxide and Nitric Dioxide in Flue Gas by Ultraviolet Absorption Analysis

ZHOU Jie, ZHANG Shi liang

Institute of Thermal Engineering and Power System, Zhejiang University, Hangzhou 310027, China

Abstract Ultraviolet absorption optical depths of NO and NO₂ gas mixture with different concentrations were measured, using a high resolution grating monochromator. By correlating fast varying discrete absorption and slow varying continuous absorption with NO and NO₂ contributions respectively, the mole concentrations of NO and NO₂ were derived synchronously. The study results indicated that, when the total pressure of gas mixture approached to one atmospheric pressure, a strong tendency that two moles of NO₂ were combined into one mole of N₂O₄ was found. The maximum conversion rate from NO₂ to N₂O₄ was roughly 22 5%, resulting in the fact that the effective absorption cross section of NO₂ N₂O₄ mixture mainly depended on that of N₂O₄, which exhibited continuous characteristics in its absorption spectrum. The discrete absorption cross section spectrum was broadened with the increase in the partial pressure of NO. It was shown that the integral of absorption cross sections within a discrete absorption band had better linear correlation with NO concentration than the discrete absorption cross section peak. The measurement and derivation results indicated that, when the partial pressure of NO₂ varied within 17 100 Pa, the average relative error for the derived NO₂ concentration was 11 7%. When the partial pressure of NO varied within 63 8 181 62 Pa, the maximum and average relative error for the derivation of NO concentration was 16 9% and 9 6% respectively by using the spectrum integral method, while the corresponding data rose to 38 2% and 14 4% by using the spectral peak method. The technique can be applied to synchronous monitoring of NO and NO₂ concentration with relatively simple measurement hardware.

Keywords Optical density; Nitric oxide; Nitric dioxide; Concentration

(Received Nov. 12, 2006; accepted Feb. 16, 2007)