催化学报

Chinese Journal of Catalysis

Vol. 31 No. 6

文章编号:0253-9837(2010)06-0683-06

DOI: 10.3724/SP.J.1088.2010.91147

研究论文: 683~688

CuCl/SiO₂-TiO₂催化剂的结构及其催化甲醇 氧化羰基化反应性能

李 忠,刘树森,任 军,牛燕燕,郑华艳,赵 强,崔丽萍 太原理工大学煤科学与技术教育部和山西省重点实验室,山西太原 030024

摘要: 在微波辐射条件下,将CuCl快速分散到载体表面制得CuCl/SiO₂-TiO₂催化剂,利用X射线衍射、透射电镜、N₂吸附-脱附、 热重、H₂程序升温还原和CO程序升温脱附对催化剂进行了表征.结果表明,微波辐射制备的催化剂中CuCl和载体发生了强相 互作用,比传统加热制备的催化剂中形成更多的易还原铜物种,吸附CO的能力更强.在甲醇液相氧化羰基化反应中,微波辐射 制备的催化剂上甲醇转化率为11.7%,碳酸二甲酯选择性达96.5%,高于相同条件下传统加热制备催化剂的活性. 关键词:微波辐射;氯化亚铜;二氧化硅;二氧化钛;负载型催化剂;甲醇;氧化羰基化;碳酸二甲酯 中图分类号: O643 文献标识码: A

Structure of CuCl/SiO₂-TiO₂ Catalyst and Its Catalytic Properties for Oxidative Carbonylation of Methanol

LI Zhong, LIU Shusen, REN Jun^{*}, NIU Yanyan, ZHENG Huayan, ZHAO Qiang, CUI Liping

Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China

Abstract: Microwave heating for a mixture of CuCl and SiO₂-TiO₂ support was used to prepare a CuCl/SiO₂-TiO₂ catalyst with high dispersion of CuCl on the support surface in a short time. X-ray diffraction, transmission electron microscopy, N₂ adsorption-desorption, thermal gravimetric analysis, H₂ temperature-programmed reduction, and CO temperature-programmed desorption were carried out to examine the bulk and surface properties of the CuCl/SiO₂-TiO₂ catalyst. The characterization results showed that in the CuCl/SiO₂-TiO₂ catalyst prepared by microwave heating, a great amount of CuCl particles strongly attached to the SiO₂-TiO₂ support as compared with that prepared by conventional heating, resulting in a lower reduction temperature of copper species and a stronger adsorption to CO. Microwave heating also caused that the mass loss temperature of part CuCl was higher than 1 200 °C, which could be attributed to the formation of a strong Cu–O coordinate bond between CuCl and the SiO₂-TiO₂ support. Catalytic test results showed that the CuCl/SiO₂-TiO₂ catalyst prepared by microwave heating exhibited methanol conversion of 11.7% and dimethyl carbonate selectivity of 96.5%, higher than that prepared by conventional heating in liquid-phase oxidative carbonylation of methanol.

Key words: microwave irradiation; cuprous chloride; silicon dioxide; titanium dioxide; supported catalyst; methanol; oxidative carbonylation; dimethyl carbonate

碳酸二甲酯 (DMC) 用途广泛, 被誉为绿色有机 合成的"新基石", 在替代剧毒或致癌化学品进行羰 基化、甲基化、甲酯化及酯交换等有机合成反应以 及用作高品质溶剂和燃油添加剂等领域具有广阔的 应用前景^[1,2]. 甲醇氧化羰基化是一种重要的工业合 成 DMC 方法,但所采用的 CuCl 催化剂由于 Cl 的流 失,容易失活,而且腐蚀设备^[3]. Xie 等^[4]研究发现,通 过高温加热,CuCl 能单层分散到载体表面上,并有较 强的 CO 吸附能力. King 等^[5]研究表明,CuCl 和 HY 分子筛混合加热过程中发生固体离子交换,制备的

收稿日期: 2009-12-03.

联系人:任 军. Tel/Fax: (0351)6018598; E-mail: renjun@tyut.edu.cn

基金来源:国家自然科学基金 (20606022 和 20976113);国家自然科学基金重点项目 (20936003);国家重点基础研究发展计划 (973 计划, 2005CB221204);山西省研究生优秀创新项目 (20093044).

CuY催化剂具有较高的催化甲醇气相氧化羰基化活性.Li等^[6], Steven等^[7]和Bell课题组^[8~10]研究了高温加热制备的CuCl/MCM-41, CuX, Cu/SiO₂, CuY和Cu/ZSM-5等催化剂,结果表明,高分散的Cu物种是甲醇氧化羰基化反应的活性物种.

微波辐射加热具有升温速度快和加热均匀等优 点^[11],因而广泛应用于高分散的负载型催化剂的制 备^[12-17]. CuCl是一种强微波吸收体,在微波场中快 速升温,易于分散到载体表面上^[18]. Deng等^[19]研究 发现,采用微波加热制备的 CuO/NaY 和 CuCl/NaY 吸附剂比电炉加热制备的具有更好的吸附 SO₂和 C₂H₄性能. 陈兴权等^[20]研究表明,微波加热提高了 铜基催化剂催化甲醇氧化羰基化活性.本文采用微 波加热 CuCl 和 SiO₂-TiO₂ 复合氧化物制备高分散 CuCl/SiO₂-TiO₂催化剂,通过 X 射线衍射 (XRD),透 射电镜 (TEM),N₂吸附-脱附,热重 (TG),H₂程序升温 还原 (H₂-TPR)和 CO 程序升温脱附 (CO-TPD)等手 段对催化剂进行表征,考察了催化剂结构与其催化 甲醇氧化羰基化反应性能的关系.

1 实验部分

1.1 催化剂的制备

将正硅酸乙酯 (TEOS, AR, 天津市化学试剂一 厂) 与异丙醇钛 (TTIP, 美国 Acros Organics 公司) 在 酸性体系中进行水解 (Si/Ti=10), 缩聚形成复合醇凝 胶.凝胶经老化, 干燥, 再在 N₂气流中 550°C 焙烧4h, 即得 SiO₂-TiO₂复合氧化物粉体.

按照文献[21]中的方法,取 CuCl 分子半径为 0.256 nm,得到 CuCl 密置单层量为 7.98×10⁻⁴ g/m². N₂吸附测得 SiO₂-TiO₂载体的比表面积为 313 m²/g (表1),由此算得每克载体上 CuCl 的最大分散容量为 0.25 g.将 SiO₂-TiO₂载体与 CuCl (AR,天津市化学试 剂三厂)在南京驰顺科技有限公司 PM0.4L 型行星球 磨机中以质量比 4:1 混合研磨,得到 CuCl/SiO₂-TiO₂ 混合样品,然后将混合样品分为两部分.一部分混合 样品转移至坩埚内,置于 HR-3A 型管式炉 (河南鹤壁 市鑫科新技术设备有限公司)中,在 50 ml/min N₂ 的 (99.995%,太原钢城企业公司)保护下,以1°C/min 的 速率升到 450°C,恒温 4~8 h 后,自然冷却至室温,停 止通入 N₂,将样品置于干燥器中备用.

另一部分混合样品转移至刚玉坩埚内,在

NJZ4-3型微波高温烧结炉(南京杰全微波设备有限 公司)中进行处理.首先,关闭谐振腔门后开始抽真 空,真空度达到-0.08 MPa时关闭真空泵、开启微波 对样品进行加热.加热过程中,红外线测温仪实时测 定样品温度,当达到200°C时,恒温保持0~30 min 后 关闭微波,待样品温度降至室温后将谐振腔排空,将 样品置于干燥器中备用.

1.2 催化剂的表征

采用日本理学公司 D/max 2500 型粉末 XRD 仪 进行样品的物相分析. Cu K_a射线,石墨单色器,管电 压 40 kV,管电流 100 mA,扫描速率 8°/min,步长 0.01°, 扫描范围 10°~80°.

采用荷兰菲利普公司 Tecnai G2 F20 型场发射 TEM 观测样品得形貌.

TG 实验在德国 NETZSCH 公司 STA409C 型热 分析仪上进行, N₂作保护气, 流量 50 ml/min, 升温速 率 20°C/min.

采用美国 Micromeritics 公司 Autochem II 2920 型化学吸附仪进行 CO-TPD 与 H₂-TPR 实验.进行 CO-TPD 实验时,称取 0.05 g 样品置于 U 形管内,通 入 Ar 气,以 10 ℃/min 的速率升至 400 ℃ 恒温 1 h. 降 至 50 ℃ 后,通入 10%CO-90% He 吸附至饱和,然后升 温脱附至 500 ℃ 记录信号. H₂-TPR 实验过程基本同 上,只是降温至 50 ℃ 后,通入 10%H₂-90% Ar 进行程 序升温, TCD 检测耗氢量.

样品的结构性质在美国 Micromeritics ASAP 2020型自动吸附仪上测定,以液 N₂为吸附质,测试前样品在 100 °C 和 101.325 kPa 预处理 12 h,由 BET 方程计算比表面积,BJH 方程计算孔径分布.

元素分析委托山西省地矿局检测中心检测. Cu 含量采用短碘量法(GB/T 3884.1-2000)检测. Cl含量 采用碱熔融 AgNO3 滴定法检测:样品用 Na₂CO3 高 温熔融,用稀硫酸洗涤熔块,饱和铬酸钾为指示剂, 用 AgNO3 滴定至 AgCl 白色沉淀略带淡红色为终点.

1.3 催化剂的活性评价

催化剂的活性评价在 50 ml 高压搅拌反应釜(大 连通达反应釜厂)中进行,首先将 10 ml 甲醇 (AR,天 津市科密欧化学试剂厂)与适量催化剂加入到反应 釜中,密闭釜体后通入 CO (99.995%,北京氦普公司) 和 O₂ (99.995%,北京氦普公司),控制进料比 *n*(CO):*n*O₂ = 2,总压 3.0 MPa.调节搅拌速率为 750

685

r/min,升温至120℃,反应90min后停止加热.待降 至室温后取液体产物在美国Agilent公司GC6890N 型气相色谱仪上分析,HP-Innowax毛细管柱.

2 结果与讨论

2.1 XRD和TEM结果

本文合成所得 SiO₂-TiO₂ 载体具有结构稳定和 比表面积大等特点^[22],与 CuCl 混合后经过电炉或微 波加热制备催化剂的 XRD 谱见图 1. 由图 1(a) 可见, 在 450 和 500 °C 电炉加热 4 h 后,样品中仍存在 CuCl 衍射峰,但加热温度升至 550 °C 后该衍射峰消失,表 明 CuCl 晶粒变小,较好地分散在载体表面^[23].在 450 °C 电炉加热 8 h 以上时,CuCl 的特征衍射峰完全消 失.可见,电炉 550 °C 加热 4 h 或 450 °C 加热 8 h 获得 的样品中,CuCl 均较好地分散在载体表面.

由图 1(b) 可以看出, 微波 200°C 加热 15 min 后, CuCl 衍射峰强度已明显减弱,在 250°C 加热 15 min 后完全消失.在 200°C 加热 30 min, CuCl特征衍射峰 已消失.因此, 250°C 微波加热 15 min 或 200°C 加热 30 min 得到样品中 CuCl特征衍射峰消失, 和电炉加 热相比, 温度明显降低, 时间明显缩短.将电炉450°C 加热 8 h 得到的催化剂样品记为 CuCl/SiO₂-TiO₂(C), 200°C 微波加热 30 min 得到的催化剂样品记为 CuCl/SiO₂-TiO₂(M).

图 2 为 CuCl/SiO₂-TiO₂, CuCl/SiO₂-TiO₂(C) 和 CuCl/SiO₂-TiO₂(M) 样品的 TEM 照片.由图可以看 出, CuCl/SiO₂-TiO₂样品中 CuCl 颗粒大小不等,分布 也不均匀, 无序地堆积在载体表面,与 SiO₂-TiO₂载 体处于一种随机混合状态.经过电炉或微波加热处 理后,样品表面 CuCl 晶粒变小,颗粒尺寸在 5 nm 以 下,密致均匀分布在载体表面,微波处理制得的样品

图 1 CuCl/SiO₂-TiO₂混合样品经电炉与微波炉加热处理后 的 XRD 谱

表现的更为明显.由此可见,经电炉或微波加热后 CuCl 已经高度分散在 SiO₂-TiO₂载体表面.

2.2 样品的孔结构性质

表1为载体及催化剂样品的结构性质.由表可见,载体 SiO₂-TiO₂比表面积为313 m²/g,孔体积为

图 2 不同CuCl/SiO₂-TiO₂样品的 TEM 照片

Fig. 2. TEM images of different CuCl/SiO₂-TiO₂ samples. (a) CuCl/SiO₂-TiO₂; (b) CuCl/SiO₂-TiO₂(C), prepared in an electric oven; (c) CuCl/SiO₂-TiO₂(M), prepared in a microwave oven.

Fig. 1. XRD patterns of the CuCl/SiO₂-TiO₂ mixture calcined in an electric oven (a) and a microwave oven (b).

表 1 不同样品的织构性质 Table 1 The textural properties of different samples

Catalyst	$A_{\rm BET}/$ (m ² /g)	$V_{\rm p}/({\rm cm^{3}/g})$	<i>d</i> _p / (nm)	$A_{ m Micro}/$ (m ² /g)
SiO ₂ -TiO ₂	313	0.154	1.97	236
CuCl/SiO ₂ -TiO ₂	239	0.118	1.98	177
CuCl/SiO ₂ -TiO ₂ (C)	237	0.151	2.55	1
CuCl/SiO2-TiO2(M)	252	0.152	2.43	66

0.154 cm³/g. CuCl则是致密的晶体,其比表面积极 小,所以混合后样品的比表面积和孔体积均有所减 小.另外,SiO₂-TiO₂的微孔比表面积约占总比表面 积的75%,与CuCl混合经过电炉加热后微孔几乎消 失,微波加热后样品的微孔比表面积也大大减小,只 有66m²/g,而总比表面积只减小了20%左右,同时孔 体积几乎不变,平均孔径增大.可见,在微波或电炉 加 热处理过程中,样品孔结构发生了变化,微孔减 少甚至消失.这是由于在加热过程中,CuCl在载体 表面自动分散,发生迁移堵塞部分微孔,导致平均孔 径增大.采用BJH方程(取BJH脱附分支)计算得到 的样品孔径分布见图3.由图可见,通过加热处理的 确形成了一些较大的孔,微波制备时所需温度较低, 时间较短,大孔形成的较少,并保留了一些微孔,说 明微波加热对载体结构的破坏较小.

2.3 样品的TG/DTG结果

图4为不同样品的DTG曲线.由图可见,各样品 失重可分为3个区域:300°C以下(A段),300~1000 °C(B段)和1000°C以上(C段).样品在各温度段的 失重率(基于样品本身的失重)见表2.A段失重是由 吸附在孔道内部的水分和气体的脱除引起的.纯

图 4 不同样品的 DTG 曲线

Fig. 4. DTG curves of different samples.

表 2 不同样品在各温度区间的失重率

Table 2	Mass	loss of	different	samples	from	TG	anal	ysi	is
---------	------	---------	-----------	---------	------	----	------	-----	----

		C//D -			
Catalyst	A (<300 °C)	B (300–1000 °C)	C (>1000 °C)	C/(B+ C) (%)	
SiO ₂ -TiO ₂	5.02	0	0	_	
CuCl	0	100.0	0	0	
CuCl/SiO ₂ -TiO ₂	5.3	11.7	3.6	23.4	
CuCl/SiO ₂ -TiO ₂ (C)	8.4	10.2	3.3	24.5	
CuCl/SiO ₂ -TiO ₂ (M)	6.4	6.3	9.6	60.3	

CuCl的失重全部都出现在B段,而且其失重区间较 大,从480℃开始,至近1000℃才失重完全,这可能 是由于大颗粒的CuCl晶体较难升华所致.经过机械 混合或高度分散后的CuCl失重温度则明显降低.C 段比较特殊,在相同测试条件下纯CuCl在1000℃ 内完全升华,而载体在该段没有失重,这说明该段仍 然是CuCl的失重段.但在如此高的温度才挥发失 重,说明在该温度段失重的CuCl与载体之间具有较 强的相互作用,导致其在高温下载体结构被破坏后 才能完全脱除.由表2可见,CuCl/SiO₂-TiO₂(M)在该 段的失重率明显高于CuCl/SiO₂-TiO₂(C),这表明微 波辐射有利于CuCl与载体间发生强相互作用.机械 混合样品在该段也有失重,可能是样品加热过程中 CuCl与载体发生了相互作用所致.

2.4 H₂-TPR 结果

图 5 为不同样品的 H₂-TPR 谱. 由图可见, 纯 CuCl 的还原从 400 °C 开始, 到 530 °C 结束, 总耗氢量 为 4.34 mmol/g, 低于理论值 (5.05 mmol/g). 这是由于 纯 CuCl 晶体较大, 还原温度较高. 同时, 由于样品易

Fig. 5. H_2 -TPR profiles of different samples. (1) CuCl; (2) CuCl/SiO₂-TiO₂; (3) CuCl/SiO₂-TiO₂(C); (4) CuCl/SiO₂-TiO₂(M).

于升华,部分 CuCl 未被还原即发生升华,导致耗氢 量低于理论值.对于 CuCl/SiO₂-TiO₂样品,由于载体 的比表面积较大,混合后 CuCl 分散度增加、晶体尺 寸变小,因此还原温度明显降低.CuCl/SiO₂-TiO₂(C) 和 CuCl/SiO₂-TiO₂(M)样品分别在 200 和 350 ℃ 附近 出现两个还原峰,还原温度进一步降低.

结合 DTG 结果可知, 在催化剂制备过程中 CuCl 除了分散在载体表面, 还与载体发生了较强的相互 作用. CuCl/SiO₂-TiO₂(C) 和 CuCl/SiO₂-TiO₂(M) 样品 340 °C 处的还原峰与混合样品 CuCl/SiO₂-TiO₂的还 原峰相近, 可归属于高度分散在载体表面上 CuCl 的 还原. 而两个催化剂上低温还原峰则应归属于高分 散且与 SiO₂-TiO₂载体发生强相互作用 CuCl 的还原, 这与杨志强等^[24]的结果相似.

元素分析结果表明,CuCl/SiO₂-TiO₂(C)和 CuCl/SiO₂-TiO₂(M)样品中Cu的含量分别为9%和 12%,其Cu/Cl比分别为0.97和1.01.这说明Cu仍然 以CuCl形式存在.表3为不同样品的H₂-TPR结果. 由表可见,CuCl/SiO₂-TiO₂(M)上耗氢量(1.46 mmol/g)明显高于CuCl/SiO₂-TiO₂(C)样品(1.07 mmol/g),而且以低温还原的耗氢量为主,占总耗氢

表 3	不同样品的 H ₂ -TPR 结果
Table 3	H ₂ -TPR results of different samp

Catalyst CuCl

CuCl/SiO₂-TiO₂ CuCl/SiO₂-TiO₂(C) CuCl/SiO₂-TiO₂(M)

量的 72.8%. 因此, 微波加热有利于分散在载体表面的 CuCl 与载体发生强相互作用.

2.5 CO-TPD 结果

图 6 为不同样品的 CO-TPD 谱. 由图可以看出, SiO₂-TiO₂ 载体和 CuCl 上 CO 脱附峰出现在 100 °C 左右,峰形比较尖锐, CuCl/SiO₂-TiO₂ 上 CO 脱附峰位 置没有明显变化. CuCl/SiO₂-TiO₂(C) 和 CuCl/SiO₂-TiO₂(M) 样品均出现了两个 CO 脱附峰,在 100 °C 左 右的脱附峰归属于高分散的 CuCl 与载体上吸附 CO 的脱附. CuCl/SiO₂-TiO₂(C) 样品在 147 °C 与 CuCl/ SiO₂-TiO₂(M) 样品在 188 °C 处的脱附峰则与其 TG 曲线中高温失重峰以及 H₂-TPR 中低温还原峰相对 应,归属于与载体发生强相互作用的 CuCl 吸附 CO 的脱附. 这说明形成强相互作用的 CuCl 吸附 CO 的 能力有所增强. 由表 4 可见,采用微波炉加热的催化 剂中形成强相互作用的 CuCl 明显多于采用电炉加 热制备的催化剂.

由表4还可知,CuCl/SiO₂-TiO₂(C)和CuCl/SiO₂-TiO₂(M)上CO脱附量分别为0.15和0.23mmol/g,算 得两种催化剂上CuCl吸附CO的能力分别为1.65和 1.89mmol/g.由图6还可知,载体自身有一定吸附

表 4 不同样品的 CO-TPD 结果

	Table 4 CO desorption amount on unreferit samples			
sults of different samples	Catalyst	Amount of CO desorbed (mmol/g)		
H ₂ consumption (mmol/g)	CuCl	0.22		
4.34	SiO ₂ -TiO ₂	0.37		
0.64	CuCl/SiO ₂ -TiO ₂	0.53		
1.07	CuCl/SiO ₂ -TiO ₂ (C)	0.15		
1.46	CuCl/SiO ₂ -TiO ₂ (M)	0.23		

© 1994-2012 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

CO的能力,故无法准确计算出样品中两种不同类型 CuCl的量,但CuCl/SiO₂-TiO₂(M)样品吸附CO的量 更多,且结构中形成了更多的发生强相互作用的 CuCl,这说明与载体强相互作用的CuCl吸附CO的 能力增强,从而有利于甲醇氧化羰基化反应.

2.6 催化剂上甲醇氧化羰基化反应性能

在两种方法制备的催化剂上进行甲醇氧化羰基 化反应时,为了保证反应体系中 Cu 含量相同 600 mmol/L, CuCl/SiO₂-TiO₂(C)和 CuCl/SiO₂-TiO₂(M)催 化剂的用量分别为4.23和3.15g.三次重复实验的平 均结果见表5.可以看出,微波制备催化剂上甲醇转 化率和 DMC 选择性均高于电炉加热制备的催化剂, 特别是 DMC 选择性均高于电炉加热制备的催化剂, 特别是 DMC 选择性由 90.6%提高到 96.5%,副产物 二甲氧基甲烷 (DMM)选择性明显降低.CuCl/SiO₂-TiO₂(M)催化剂表面形成了大量与载体发生强相互 作用的 CuCl 晶粒,吸附 CO 的能力增强,有利于甲醇 氧化羰基化反应过程中的 CO 插入反应,从而提高了 催化剂活性.可见,微波辐射制备的催化剂有利于催 化活性的提高.

表 5 不同 CuCl/SiO₂-TiO₂催化剂对甲醇氧化羰基化反应的催化性能

 Table 5
 Catalytic performance of different CuCl/SiO₂-TiO₂ samples for oxidative carbonylation of methanol

Catalvat	Mass	X(MeOH)	Selectivity (%)		
Catalyst	(g)	(%)	DMC	DMM	MF
CuCl/SiO ₂ -TiO ₂ (M)	3.15	11.7	96.5	3.2	0.3
CuCl/SiO ₂ -TiO ₂ (C)	4.23	10.2	90.6	8.9	0.5

Reaction conditions: $[Cu] = 600 \text{ mmol/L}, p(CO) = 2.0 \text{ MPa}, p(O_2) = 1.0 \text{ MPa}, 1.5 \text{ h}, 120 ^{\circ}\text{C}$. DMC: dimethyl carbonate; DMM: dimethoxy methane; MF: methyl formate.

3 结论

采用微波加热可以在低于电炉加热温度下以及 更短的时间内将 CuCl 高度分散到载体表面制得 CuCl/SiO₂-TiO₂催化剂,并且促进了 CuCl 与载体发 生强相互作用.与传统加热制备相比,微波加热制备 的 CuCl/SiO₂-TiO₂催化剂 Cu 物种的还原温度明显 降低,吸附 CO 的能力增强,在甲醇液相氧化羰基化 反应中表现出更高的催化活性.微波辐射对于强微 波吸收物质的分散负载显示出独特的优势,基于这 种特性的高分散负载型催化剂的制备有待于进行深 入研究.

参考文献

- 1 Tundo P, Selva M. Acc Chem Res, 2002, 35: 706
- 2 Delledonne D, Rivetti F, Romano U. *Appl Catal A*, 2001, **221**: 241
- 3 Mo W L, Liu H T, Xiong H, Li M, Li G X. *Appl Catal A*, 2007, **333**: 172
- 4 Xie Y Ch, Bu N Y, Liu J, Yang G, Qiu J G, Yang N F, Tang Y Ch. US 4 917 711. 1990
- 5 King S T. J Catal, 1996, 161: 530
- 6 Li Zh, Xie K C, Slade R C T. Appl Catal A, 2001, 205: 85
- 7 Anderson S A, Root T W. J Mol Catal A, 2004, 220: 247
- 8 Drake I J, Fujdala K L, Bell A T, Tilley T D. *J Catal*, 2005, 230: 14
- 9 Zhang Y H, Briggs D N, de Smit E, Bell A T. J Catal, 2007, 251: 443
- 10 Zhang Y H, Bell A T. J Catal, 2008, 255: 153
- 11 Yi N, Cao Y, Su Y, Dai W L, He H Y, Fan K N. *J Catal*, 2005, **230**: 249
- 12 王春明,赵璧英,谢有畅. 催化学报 (Wang Ch M, Zhao B Y, Xie Y Ch. Chin J Catal), 2003, 24: 475
- 13 银董红, 秦亮生, 刘建福, 尹笃林. 物理化学学报(Yin D H, Qin L Sh, Liu J F, Yin D L. Acta Phys-Chim Sin), 2004, 20: 1150
- 14 刘百军, 查显俊, 盛世善, 杨维慎, 熊国兴. 催化学报 (Liu B J, Zha X J, Sheng Sh Sh, Yang W Sh, Xiong G X. *Chin J Catal*), 2004, **25**: 770
- 15 Chen W X, Lee J Y, Liu Zh L. Mater Lett, 2004, 58: 3166
- 16 沈星灿, 郭为民, 梁宏, 张来军, 胡瑞祥, 王卓渊. 化学 学报 (Shen X C, Guo W M, Liang H, Zhang L J, Hu R X, Wang Zh Y. Acta Chim Sin), 2008, 66: 49
- 17 张传香,何建平,周建华,赵桂网,陈秀,王涛. 化学学 报 (Zhang Ch X, He J P, Zhou J H, Zhao G W, Chen X, Wang T. Acta Chim Sin), 2008, 66: 603
- 18 Ren J, Liu Sh S, Li Zh, Lu X L, Xie K Ch. Appl Catal A, 2009, 366: 93
- 19 Deng S G, Lin Y S. Chem Eng Sci, 1997, 52: 1563
- 20 陈兴权, 薛冰, 赵春香, 赵天生. 石油化工 (Chen X Q, Xue B, Zhao Ch X, Zhao T Sh. *Petrochem Technol*), 2005, 34: 1041
- 21 许波连,范以宁,刘浏,林明,陈懿.中国科学(B辑)(Xu B L, Fan Y N, Liu L, Lin M, Chen Y. Sci China (Ser B)), 2002, 32: 235
- 22 Ren J, Li Zh, Liu Sh S, Xing Y L, Xie K Ch. *Catal Lett*, 2008, **124**: 185
- 23 刘学军,顾晓东,沈俭一. 催化学报(Liu X J, Gu X D, Shen J Y. Chin J Catal), 2003, 24: 674
- 24 杨志强, 毛东森, 朱慧琳, 卢冠忠. 催化学报 (Yang Zh Q, Mao D S, Zhu H L, Lu G Zh. Chin J Catal), 2009, 30: 997