自动化静态顶空 / 气相色谱 - 质谱对胶州 大白菜中风味物质的快速分析

吴 澎1,周 涛2,寇丽娟1,王 超2

(1.山东农业大学食品科学与工程学院, 山东 泰安 271018; 2. 山东农业大学园艺科学与工程学院, 山东 泰安 271018)

摘 要:采用静态顶空和气质联用的方来来分析对比"胶白"与泰安当地产普通大白菜的挥发性成分,通过GC-MS 分析和 NIST 质谱谱库计算机检索,对样品进行定性分析,并采用面积归一化法进行定量分析。结果表明:十 八烯酸(Z)- 甲酯和十六烷酸 - 甲酯是对胶白风味起决定作用的物质, 静态顶空 - 气相色谱 - 质谱分析是一种快速有效 分析蔬菜中风味物质成分的方法。

关键词:静态顶空-气相色谱-质谱分析;风味物质;胶州大白菜;泰安大白菜

Automatic Static Headspace GC-MS Analysis of Flavor Compounds in Two Jiaozhou Chinese Cabbage Varieties and Tai an Chinese Cabbage

WU Peng¹, ZHOU Tao², KOU Li-juan¹, WANG Chao²

(1. College of Food Science and Engineering, Shandong Agricultural University, Tai 'an 271018, China;

2. College of Horticulture Science and Engineering, Shandong Agricultural University, Tai 'an 271018, China)

Abstract: A method using automatic static headspace GC-MS was developed for the determination of flavor compounds in Chinese cabbages. The qualitative and quantitative analysis was performed by search program of NIST mass spectral library and area normalization method, respectively. The flavor compounds in two Jiaozhou Chinese cabbage varieties (Jiaozhou No. 3 and Hongshengbai) and Taian Chinese cabbage were compared. Results indicated that 9,12-octadecadienoic acid (Z,Z)-, methyl ester and 9-octadecenoic acid (Z)-, methyl ester were the main compounds attributing to the flavor of Jiaozhou Chinese cabbage, while they were not detected in Taian Chinese cabbage. This method is proved to be fast and reliable for analyzing the flavor compounds in vegetables.

Key words: automatic static headspace GC-MS; flavor compounds; Jiaozhou Chinese cabbage; Tai 'an Chinese cabbage 中图分类号: O657.63; R151.3 文章编号:1002-6630(2009)12-0215-04 文献标识码:A

大白菜原产于中国,是中国最具代表性和创造性的 特产蔬菜之一。因其味道鲜美、营养丰富、价格便宜、 四时有售,故有"菜中之王"的美誉。大白菜热量 低,纤维素的含量丰富,有利于肠道的蠕动和废物的排 出,有养颜排毒之功效,不仅一直是中国百姓餐桌上 的主要蔬菜,也是预防糖尿病和肥胖症的理想食品。全 国闻名的胶州大白菜,美其名曰"胶白",在国内外 享有很高声誉,至今已有一千多年的种植历史。胶州 大白菜具有品质柔嫩、汁白、味美,纤维细软,叶 帮薄、易炒熟,生食清爽可口、熟食味甘肥美的特点; 营养丰富,富含胡萝卜素、VB1、VB2、VC、粗纤维 以及蛋白质、脂肪和钙、磷、铁等,并且耐储存。

已形成具有鲜明地方特色的优良品系。

人们对风味物质的研究始于香料香精的应用。古代 的人们采用水蒸气蒸馏 的方法提取精油,这种方法一直 延用至今[1-2]。风味物质的研究促进了香料香精工业的发 展,丰富了食品添加剂的种类,近年来在风味物质的分 离分析方面不断涌现出一些新的技术和方法[3-7]。

我国关于蔬菜如番茄、黄瓜等的风味物质的研究有 较多的报道[8-10],但未见国内有关大白菜的风味物质的 报道。所以为了更好地利用我国的大白菜资源,评价 大白菜尤其是胶白的香气品质,填补我国白菜的风味组 成成分及其影响要素等基础数据,本实验采用静态顶空 和气质联用的方来来分析对比"胶白"与泰安当地产

收稿日期:2008-09-12

基金项目:作物生物学国家重点实验室开放课题(200707)

作者简介:吴澎(1972-),女,讲师,博士研究生,主要从事植物营养与品质生理育种研究。E-mail:wupengguai@163.com -2009 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

普通大白菜的挥发性成分,以期较为准确地反映"胶白"风味物质的组成,更好地稳定、发展我国大白菜的优良品系,为我国白菜的生产和出口奠定理论基础。

1 材料与方法

1.1 材料

胶白三号、红圣白新鲜大白菜 胶州当地农贸市场;泰安大白菜 泰安当地农贸市场。

1.2 仪器

GC-MS QP 2010 Plus 气相色谱-质谱联用仪 日本岛津公司; Rex-5 毛细管(30m x 0.25mm, 0.25 μm)MS柱;TurboMatrix 顶空进样器 美国珀金 - 埃尔默公司;TurboMatrix40Trp Hs 顶空进器 美国 PE 公司。

1.3 方法

1.3.1 样品前处理

准确称取 3g 白菜样品,放入 25ml 聚四氟乙烯硅橡胶垫密封的顶空进样瓶中,利用顶空进样器萃取白菜挥发性成分进样。萃取条件:55 保温 40min,氦气以40ml/min的速度吹扫5min。白菜的挥发性成分因吹扫被带入气相,进入捕集阱中吸附捕集,吹扫过程结束后,捕集阱的温度迅速升至 280 并保持5min,挥发性物质在 0.1min 内被氦气流带至 GC-MC 系统进行定性分析。在整个过程中,取样针和传输线均保持 80 。

1.3.2 气相色谱质谱条件

色谱柱为 RTX-1 MS 柱($30m \times 0.25mm$, $0.25 \mu m$),色谱柱温程序为:始温 40 ,保持 2min,以 10 /min 升至 200 ,并保持 5min,再以 10 /min 升至 250 ,保持 5min。不分流进样。柱流量为 1.2ml/min。采用 EI 离子源,70eV,离子源温度为 230 ;接触面温度为 250 ,采用 SCAN模式进行全扫描,扫描范围为 45~450amu。

2 结果与分析

2.1 样品静态顶空气相色谱 - 质谱总离子流图

通过 GC-MS 分析和 NIST 质谱谱库计算机检索,对样品进行定性分析,并采用面积归一化法进行定量分析。

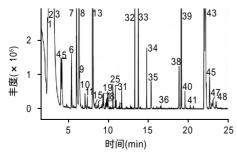


图 1 胶白三号白菜样品的静态顶空气相色谱 - 质谱总离子流图 Fig.1 Total ion chromatogram of volatile compounds in "Jiaobai No.3" by automatic static headspace GC-MS

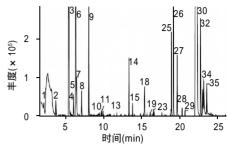


图 2 红圣白样品的静态顶空气相色谱 - 质谱总离子流图 Fig.2 Total ion chromatogram of volatile compounds in "Hongshengbai" by automatic static headspace GC-MS

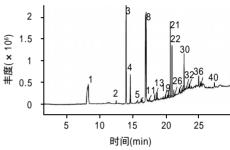


图 3 泰安当地白菜样品的静态顶空气相色谱 - 质谱总离子流图 Fig.3 Total ion chromatogram of volatile compounds in Taian Chinese cabbage by automatic static headspace-GC-MS

对照图 1~3 三份色谱图可看出,胶白样品中占百分含量较大的风味物质明显多于泰安当地白菜品种。

2.2 样品风味物质分析结果

表 1 胶白三号白菜品种样品中风味物质的分析结果 Table 1 Compounds and their relative contents in "Jiaobai No.3"

峰号	物质名称	保留时间(mi	n) 峰面积相	对百分含量(%)
1	二甲基,二硫化物	2.605	13039536	18.19
2	辛烷	3.067	6401604	8.25
3	(反式)4- 己烯醛	4.017	606120	0.78
4	2- 甲基 -5- 己烯腈	4.133	687880	0.89
5	N-甲酸基吗啉	5.359	502641	0.65
6	二甲基三硫化合物	5.994	1272122	1.64
7	4- 十八烷基异氰酸酯 -1- 丁烷	烯 6.299	10401569	13.41
8	- 月桂烯	6.39	326374	0.42
9	2- 乙烷基 - 己醇	7.071	154886	0.2
10	N-(3- 甲基 -2- 丁烯 -1- 醇) - 乙酰胺	7.2	22812	0.03
11	苯乙醛	7.34	92277	0.12
12	亚甲基天门冬酰胺	8.055	17542362	22.59
13	n- 戊基硫氰酸盐	8.265	47951	0.06
14	壬醛	8.344	22007	0.03
15	3- 丁基 - 环戊烯	8.675	15630	0.02
16	甲基二硫化物	8.725	47216	0.06
17	N- 三氟乙酰 -N,O,O',O''- 三甲基硅咪唑	9.136	21641	0.03
18	4- 甲基苯基异硫氰酸酯	9.311	106512	0.26

续表1

峰号	物质名称	R留时间(min)) 峰面积	相对百分含量(%)
19	壬醛	9.433	32231	0.04
20	萘	9.645	27373	0.04
21	1- 丁氧基 2- 乙氧基乙醇	9.733	57401	0.07
22	环己酮肟	9.795	48409	0.06
23	1- 十八烷基异氰酸酯 - 己烷	9.899	102963	0.13
24	5- 甲硫基 - 正戊腈	9.958	59206	0.08
25	氰基苯乙酮	10.552	140326	0.18
26	1- 十八烷基异氰酸酯 - 庚烷	10.865	115585	0.15
27	3- 甲基异硫氰酸酯	10.993	39922	0.05
28	1- 十八烷基异氰酸酯 - 庚烷	11.445	23925	0.03
29	4- 甲硫基 - 丁腈	11.674	111168	0.14
30	2- 甲基 -3(2H)- 异噻唑酮盐酸	盐 13.325	1100004	1.42
31	2 - 十八烷基异氰酸酯 - 苯	13.777	967795	1.25
32	1,5- 二(甲硫基)- 戊烷	14.821	355288	0.46
33	临苯二甲酸二乙酯	15.369	190808	0.25
34	环己基亚硫酸甲基酯	16.628	15766	0.02
35	9- 十八烯酸 - 甲酯	18.842	21208	0.03
36	9- 十六烯酸 - 甲酯	18.904	280338	0.36
37	十六烯酸 - 甲酯	19.174	3960710	5.11
38	抗坏血酸二棕榈酸酯	19.644	128436	0.17
39	9- 十八烯酸 - 甲酯	20.32	20743	0.03
40	9,12- 十六烯酸 - 甲酯	22.09	7888226	10.17
41	9- 十八烯酸 - 甲酯	22.217	8657740	11.16
42	11- 十八烯酸 - 甲酯	22.312	224993	0.29
43	十八烯酸 - 甲酯	22.757	334918	0.43
44	9- 十六烯酸	23.012	51319	0.07
45	十八烯酸	23.151	78320	0.1
46	二十酸	23.551	58567	0.08

表 2 红圣白白菜品种样品中风味物质的分析结果 Table 2 Compounds and their relative contents in

" Hongshengbai "

峰号	物质名称	保留时间	收売和	相对百分
		(min)	峰面积	含量(%)
1	2- 甲基 - 丁烷	2.09	64771	0.1
2	异丙基硫氰酸盐	3.663	174358	0.27
3	N-甲酸基吗啉	5.365	5893379	9.08
4	6-(1,1-二甲基)-二氢吡喃 -2,4-二酮	5.616	31422	0.05
5	二甲基三硫化合物	5.993	180856	0.28
6	4- 异硫氰酸苯酯	6.29	6708480	10.33
7	- 月桂烯	6.39	333101	0.51
8	2- 乙基己醇	7.072	201003	0.31
9	亚甲基天冬酰胺酸	8.008	951782	1.47
10	1- 亚甲基 -1H- 茚	9.644	25943	0.04
11	1-(2- 丁氧乙氧基)- 乙醇	9.734	40545	0.06
12	1- 异硫氰酸己烷	9.899	33369	0.05
13	1,1,1,3,5,7,9,11,11,11- 癸二胺二	11.71	12132	0.02
13	茂铁 -l-5-(三甲基硅烷基)六硅氧烷	11.71		
14	2- 甲基 -3(2H)- 异噻唑酮盐酸盐	13.322	282596	0.44
15	2- 十八烷基异氰酸酯 - 苯	13.775	65404	0.1
16	壬二酸单甲酯	15.194	8069	0.01
17	临苯二甲酸二乙酯	15.372	160962	0.44
18	甲基 -8-(2- 呋喃基)- 碘苯腈辛酸酯	15.675	10799	0.02
19	2,6-二三甲基色氨酸酯	16.099	32638	0.05
20	n- 异丁基辛酸酯	16.345	15516	0.02
21	P- 庚基氰苯	16.537	35384	0.05
22	环己基甲基亚硫酸十六酯	16.626	16442	0.03

续表2

峰号	物质名称	保留时间	收去印	相对百分
		(min)	峰面积	含量(%)
23	9- 十六碳烯酸甲酯	18.902	502662	0.77
24	十六烷酸甲酯	19.18	6801879	10.48
25	十六烷基抗坏血酸酯	19.654	438318	0.68
26	7- 十六碳烯酸甲酯	20.318	57855	0.14
27	14- 甲基 - 十六烷酸甲酯	20.705	40328	0.06
28	9,12-十八烷二烯酸甲酯	22.124	18473156	28.45
29	9- 十八烯酸(顺式)- 甲酯	22.262	21113459	32.52
30	十八烷酸甲酯	22.761	935423	1.44
31	油酸	23.17	477718	1.1
32	十八烷酸,2-(2- 羟基)乙酯	23.564	266853	0.41
33	2,6- 二甲基 -4- 硝基 -3- 苯基环己酮	27.78	18589	0.03
34	3- 苄氧基 -1,2- 联乙醯 -1,2- 丙二醇	28.012	28032	0.04
35	2- 羟基 -2- 甲基 - 丁烷酸甲酯	28.54	33277	0.05

表 3 泰安当地白菜样品对照中风味物质的分析结果

Table 3 Compounds and their relative contents in Taian Chinese cabbage

	cabbage			
峰号	物质名称	保留时间	峰面积	相对百分
W¥ 与		(min)	呼叫你	含量(%)
1	乙醇	8.29	6438463	12.58
2	2- 乙氧基乙基丙烯酸	12.521	152943	0.3
3	2,4- 二异氰 -1- 甲基苯	14.03	8819219	17.24
4	5- 甲酸基 -2,4- 二甲基 - 吡咯 -3- 腈	14.647	1939072	3.79
5	1- 十三(烷)酰	15.755	67152	0.13
6	N,N- 二甲基 -1- 十二烷	16.279	205297	0.4
7	癸二胺 - 环庚烯硅氧烷	16.405	67799	0.72
9	酞酸二乙酯	17.031	10097710	34.99
10	芴	17.183	4911	0.01
11	癸酸癸酯	17.532	183933	0.36
12	4- 十八基 - 对氧氮己环	18.323	252091	0.49
13	十六甲基环辛硅氧烷	18.561	330381	0.65
14	N,N- 二甲基,1- 四癸二胺	18.732	473042	0.92
15	4,11- 二甲基 - 正十四碳烷	18.842	123384	0.24
16	3-(2,2- 甲基丙氧) 2- 丁醇	19.614	156979	0.31
17	2,3- 二甲基 - 十七碳烷	19.853	72930	0.14
18	异丙基十四(烷)酸盐(或酯)	19.983	152344	0.3
19	1,2- 二羧基苯酸,丁基2-甲基丙酯	20.242	119980	0.23
20	十六烷 - 七硅氧烷	20.385	474996	0.93
21	4- 八烷 - 吗啉	20.669	4169447	8.15
22	N,N- 二甲基 -1- 十五(烷)酰	20.947	2641206	5.16
23	二丁基邻苯二甲酸盐(或酯)	21.216	245528	0.48
24	I-(+)- 抗坏血酸	21.408	87167	0.17
25	六烷 - 七硅氧烷	22.011	152510	0.3
26	异丙基棕榈酸盐	22.061	210153	0.41
27	1,1'- 环己基苯	22.141	188691	0.37
28	2- 甲氨基 -2- 氨基甲酸乙酯	22.415	107777	0.21
29	4-(己氧基)-1- 丁醇	22.501	86758	0.17
30	4- 十八(烷)醇酯 - 吗啉	22.779	982388	3.87
31	N,N- 二甲基 -1- 十五(烷)酰	22.96	221680	0.43
32	E-9- 十四烷酸	23.16	452801	0.89
33	六烷 - 环辛烯硅氧烷	23.524	234344	0.46
34	N- 己基 - 丁烷	23.596	245247	0.48
35	3-(2,2-二甲基丙氧)-2- 丁醇	24.537	142883	0.28
36	4- 十八(烷)醇酯 - 吗啉	24.982	666713	1.3
37	十六甲基七硅氧烷	25.202	323651	0.63
38	2- 甲基 -5- 硝基 -3- 六醇	25.317	231110	0.45
39	2,5- 二甲基 -4- 羟基 -3- 六醇	25.378	251822	0.49
40	六烷 - 七硅氧烷	27.326	290998	0.57

通过表 1~3 中的数据分析可以看出,在胶白三号样品测试中:二甲基,二硫化物占相对百分含量的 18.91%,辛烷占 8.25%,4-十八烷基异氰酸酯 -1-丁烯占 13.41%,亚甲基天门冬酰胺占 22.59%,9,12-十六烷酸 - 甲酯占 10.17%,9-十八烯酸 - 甲酯占 11.22%。

在红圣白样品测试中:N-甲酸基吗啉占9.08%, 4-异硫氰酸苯酯占10.33%,十六烷酸甲酯占10.48%, 9,12-十八烷二烯酸甲酯占28.45%,9-十八烯酸(Z)-甲酯占32.52%。

其中,十八烯酸(Z)-甲酯和十六烷酸-甲酯是对胶白风味起决定作用的物质。

在泰安当地白菜样品对照中:乙醇占相对百分含量的12.58%,2,4-二异氰-1-甲基苯占17.24%,同分异构体的酞酸二乙酯占34.99%,4-八烷-吗啉占8.15%。缺乏对胶白风味起决定作用的十八烯酸(Z)-甲酯和十六烷酸-甲酯,但是泰安当地白菜列为"泰山三美"(白菜、豆腐、水),其风味物质中的同分异构体的酞酸二乙酯对其独具特色起决定性作用。

3 结论

本实验采用通过 GC-MS 分析和 NIST 质谱谱库计算机检索,对样品进行定性分析,并采用面积归一化法进行定量分析,对风味物质成分进行了可信度较高的定性研究,整个过程高度自动化。实验结果表明静态顶

空 - 气相色谱 - 质谱分析是一种快速有效分析蔬菜中风味物质成分的方法。

参考文献:

- [1] 吴继红, 张美莉, 陈芳, 等. 固相微萃取 GC-MS 法测定苹果不同品 种中主要芳香成分的研究[J]. 分析测试学报, 2005, 24(4): 101-104.
- [2] 周锡堂, 邹纲明, 吴景雄. 不同方法提取姜精油的对比分析[J]. 食品 科技. 2005(9): 57-59.
- [3] 王依春,王锡昌.同时蒸馏萃取和固相微萃取与气相色谱-质谱法分析洋葱的挥发性风味成分以1.现代食品科技.2007.23(1):87-90.
- [4] MODNY N, DUPLAT D, CHRISTIDES J P, et al. Auger Aroma analysis of fresh and preserved onions and leek by dual solid-phase microextraction-liquid extraction and gas chroma-tography-mass spectrometry[J]. Journal of Chromatography A, 2002: 963(1/2): 89-93.
- [5] 蔡原, 赵有璋, 蒋玉梅, 等. 顶空固相微萃取 气 质联用检测合作 猪肉挥发性风味成分[J]. 西北师范大学学报: 自然科学版, 2006, 42 (4): 74-91.
- [6] POVOLO M, CONTARINI G. Comparison of solid-phase microextraction and purge-and-trap methods for the analysis of the volatile fraction of butter[J]. Journal of Chromatography A, 2003, 985: 117-125
- [7] 王昊阳, 郭寅龙, 张正行, 等. 自动化静态顶空 气相色谱 质谱对 天然香精中挥发性化学成分的快速分析[J]. 分析测试学报, 2004, 23 (1): 9-13.
- [8] 吴波, 张寒俊. 固相微萃取 气相色谱 / 质谱测定蔬菜中风味物质的研究[J]. 分析仪器. 2006(2): 25-31.
- [9] 刘春香, 何启伟, 付明清. 番茄、黄瓜的风味物质及研究[J]. 山东 农业大学学报: 自然科学版, 2003, 34(2):193-198.
- [10] 刘亚琼, 朱运平, 乔支红. 食品风味物质分离技术研究进展[J]. 食品研究与开发, 2006, 27(6): 181-183.