反相高效液相色谱法同时分离测定杜仲雄花及其产品中的 京尼平苷酸和绿原酸

董娟娥12, 马希汉1

(1. 西北农林科技大学 陕西省经济植物资源开发利用重点实验室, 陕西 杨凌 712100;

2. 中国科学院水利部水土保持研究所,陕西 杨凌 712100)

摘要:建立了利用反相高效液相色谱法(RP-HPLC)同时测定杜仲雄花及其产品中京尼平苷酸和绿原酸的方法。所用的色谱柱为 Shim-pack VP-ODS(150 mm × 4.6 mm $5~\mu$ m),流动相组成为甲醇-水-乙酸(体积比为24:75:1),检测波长为240 nm。在该色谱条件下,京尼平苷酸的含量在0.025~0.400 g/L、绿原酸的含量在0.075~1.200 g/L 范围内线性关系良好,相关系数分别为0.999 7和0.999 9;加标回收率分别为100.2% 和100.5%。该法适用于杜仲雄花及其产品中这2种成分的含量分析。

关键词:反相高效液相色谱法;京尼平苷酸;绿原酸;杜仲;雄花;雄花茶

中图分类号:0658 文献标识码:A 文章编号:1000-8713(2007)02-0217-04 栏目类别:研究论文

Determination of Geniposidic Acid and Chlorogenic Acid in Male Flowers and Related Products of *Eucommia ulmoides* by Reversed-Phase High Performance Liquid Chromatography

DONG Juane^{1,2}, MA Xihan¹

(1. Northwest A &F University , the Key Laboratory of Exploitation and Utilization of Plant Resources in Shaanxi Province , Yangling 712100 , China ; 2. Institute of Soil and Water Conservation of the Ministry of Water Resources , Chinese Academy of Sciences , Yangling 712100 , China)

Abstract: A simple and rapid high performance liquid chromatographic method has been developed for the determination of geniposidic acid and chlorogenic acid in the male flowers and related products of $Eucommia\ ulmoides$. Two components were separated by a Shim-pack VP-ODS column ($150\ mm \times 4.6\ mm$, 5 μm) with a mobile phase of methanol-water-acetic acid (24:75:1 , v/v) at a flow rate of 1 mL/min , column temperature of 30 °C and detection wavelength of 240 nm. Under the chromatographic conditions mentioned above , the method performance , such as the number of theoretical plate , resolution , trailing etc have all reached required level. The linear ranges were 0.025 – 0.400 g/L for geniposidic acid and 0.075 – 1.200 g/L for chlorogenic acid , with the correlation coefficients of 0.999 7 and 0.999 9 , respectively. The average recoveries were 100.2% and 100.5% , and the relative standard deviations (RSDs) were 1.47% and 1.49% respectively. The minimum detection limits were 0.02 μ g/L for geniposidic acid , and 0.06 μ g/L for chlorogenic acid. The method developed has demonstrated the characteristics of simple mobile phase composition , short retention , good resolution , high repeatability and precision. It is suitable for the determination of the two compounds in the male flowers of $E.\ ulmoides$ and related products.

Key words: reversed-phase high performance liquid chromatography (RP-HPLC); geniposidic acid; chlorogenic acid; $Eucommia\ ulmoides$; male flower; male flower tea

杜仲(Eucommia ulmoides Oliver)为我国特有的名贵中药材,分布在全国 20 多个省(市、自治

区) 栽种面积有 36 万公顷。《中华人民共和国药典》(2000 版)规定其药用部位为杜仲皮[1]。研

收稿日期 2006-08-21

第一作者 :董娟娥 ,女 ,博士研究生 ,副教授 ,E-mail :dje009@ 126. com.

通讯联系人:马希汉 ,男 教授 ,E-mail :ma_xi_han@ yahoo. com. cn.

色

究[23]发现 杜仲叶含有与杜仲皮相类似的成分,并 提出"以叶代皮"的观点 因而杜仲叶被列入了 2005 版《中华人民共和国药典》,并以绿原酸作为其指标 成分[4]。文献 2]的研究表明,杜仲雄花中也富含 与叶、皮相类似的绿原酸、桃叶珊瑚苷、黄酮类化合 物等活性物质,是亟待开发的一个新资源;此后,开 始了杜仲雄花的开发和利用。

杜仲是雌雄异株 其中雄株约占一半 雄花产量 很高,资源非常丰富。目前,花饮料成为时尚,以杜 仲雄花为原料研制和开发的产品已陆续投放市场, 随之而来的是质量监控问题。绿原酸(CGA)具有 抗菌、利胆和降压等多种功能[5];京尼平苷酸 (GPA)具有消炎利胆等功能,在临床上降压作用明 显,日本健康卫生部已将它作为一种保健品添加 剂[6]。目前,对杜仲皮和叶中 GPA 和 CGA 单一成 分的含量测定方法已有文献报道[7-9],同时测定杜 仲颗粒和杜仲皮中 GPA 和 CGA 的方法也有文献报 道[10,11] 按文献 10]和[11]方法完成整个测定工作 需时较长。为此,本文对利用高效液相色谱 (HPLC)同时分离测定杜仲雄花中 GPA 和 CGA 含 量的方法进行了研究,并对来自不同产地的杜仲雄 花茶中这两种成分的含量进行了分析,为杜仲雄花 及以杜仲雄花为原料的产品的质量控制和质量标准 的制定提供了简便、可靠的含量分析方法。

实验部分 1

1.1 仪器、试剂和材料

1.1.1 材料

杜仲雄花和杜仲叶于 2005 年采自西北农林科 技大学林学院杜仲优树汇集圃。杜仲雄花于盛花期 采集后立即杀青,阴干,封袋保存;杜仲叶于6月中 旬采集后立即杀青 阴干 封袋保存。杜仲雄花茶来 自陕西杨凌、陕西略阳、河南汝阳、河南灵宝等地。 杜仲叶绿茶为市售。

使用前将上述各样品粉碎过1号筛,在60℃真 空干燥箱中烘至恒重,备用。

1.1.2 仪器与试剂

SCL-10Avp 型 HPLC 系统(Shimadzu),包括 SPD-10Avp 紫外检测器、LC-10ATvp 输液泵和 7725i 手动进样器。UV-1700 型 Pharma Spec 紫外 分光光度计(Shimadzu);Module10型超声波提取 机(天津科贝尔公司);超纯水发生器(陕西超达公 司)。CGA标准品(德国 Karlsruhe公司);GPA标 准品(日本和光纯药业株式会社);色谱纯甲醇(美 国 Fisher 公司);水为双重蒸馏水;乙酸、乙醇为国 产分析纯。

1.2 实验方法

1.2.1 标准品溶液的配制

准确称取 GPA 标准品 10.0 mg、CGA 标准品 30.0 mg,分别用甲醇溶解并定容至 10 mL,得到 1.000 g/L的 GPA 和 3.000 g/L的 CGA 标准品贮 备液,保存于4℃冰箱中,待分析时可按需要稀释成 不同的浓度。

取上述 GPA 和 CGA 标准品贮备液各 4 mL ,置 于 10 mL 容量瓶中混合,用甲醇定容到刻度,即得 0.400 g/L 的 GPA 和 1.200 g/L 的 CGA 混合储备 液 ,于 4 ℃冰箱中冷藏保存备用。

1.2.2 色谱条件

色谱柱:Shim-pack VP-ODS(150 mm × 4.6 mm 5 μm);流动相:甲醇-水-乙酸(体积比为 24:75 :1) 流速:1 mL/min;进样量:5 μL;检测波长:240 nm :柱温 30 ℃。

1.2.3 样品处理和含量检测

分别称取经 60 ℃真空干燥的样品 0.500 g 加 入 8 倍量的水,在超声波提取器中提取 30 min,定 容至 50 mL^[12]。用 0.45 μm 微孔滤膜过滤后 ,得待 测液。

取待测液 5 µL 在选定的色谱条件下注入高效 液相色谱仪(n=3),积分求色谱峰面积,以标准曲 线计算样品中 GPA 和 CGA 的含量。

2 结果与讨论

2.1 色谱条件

2.1.1 检测波长的选择

分别取 GPA 和 CGA 标准品溶液 ,于紫外光区 190~500 nm 范围内进行扫描 ,CGA 在 220 nm 和 329 nm 处有两个吸收峰 ,GPA 的最大吸收波长在 240 nm 处。在实际测定时,根据样品中 GPA 和 CGA 的含量情况 在 240 nm 处 2 种成分的色谱峰 面积差异较小。因此,确定检测波长为240 nm。

2.1.2 流动相的优化

流动相的组成影响分析的灵敏度、峰的分离度 以及分析时间等。考察了不同含量的甲醇和乙酸对 分离度、保留时间和峰形的影响。 结果表明,以甲 醇、水为流动相,利用 C18柱可以使 GPA、CGA 和样 品中的杂质得到分离,但有拖尾现象。这是由于 GPA 和 CGA 中的羧基、酚羟基在中性溶剂系统中 产生电离,在固定相表面存在双保留机制[8]。因 此,在流动相中加入乙酸以消除拖尾。考察了不同 体积分数(0.2%,0.4%,0.6%,0.8%和1.0%)乙酸 的抑制效果,结果表明,体积分数为1.0%时的效果 较好;体积分数过小,对峰形的改善效果不明显。

流动相(甲醇-水-乙酸)中增加甲醇的含量可以缩短样品的保留时间,提高工作效率。但流动相中甲醇含量过高(各项组成的体积比为30:69:1)时,GPA的保留时间很短,色谱峰的分离度变差。当流

动相各项组成的体积比为 20:79:1 时,色谱峰的分离很好,但分离时间较长。因此,本试验选择了流动相各项组成的体积比为 24:75:1 ,测定工作可在 10 min 内完成(见图 1),节约试剂并提高了工作效率。

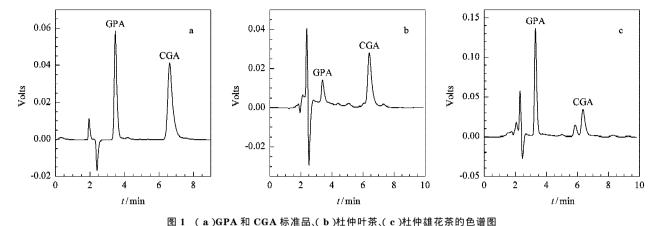


Fig. 1 Chromatograms of (a) GPA and CGA standards, (b) leaf tea of Eucommia ulmoides
and (c) male flower tea of Eucommia ulmoides

2.2 标准曲线

将标准品混合储备液逐级稀释成 5 个浓度梯度 (GPA :0.400 ,0.200 ,0.100 ,0.050 和 0.025 g/L; CGA :1.200 ρ .600 ρ .300 ρ .150 和 0.075 g/L),每个浓度梯度标准液进样 3 次 ,计算峰面积的平均值 ,并以峰面积和对应的浓度进行 1 次线性回归 ,计算标准曲线和相关系数(r)。结果表明 ,GPA 和 CGA的峰面积(Y)与所对应的质量浓度(X g/L)之间存在良好的线性关系。标准曲线方程如下 :GPA ,Y = 9.192 0 × 10 6 X - 1.728 1 × 10 5 (r = 0.999 7) ,线性范围为 0.025 ~ 0.400 g/L; CGA ,Y = 1.101 9 × 10 7 X - 3.614 3 × 10 5 (r = 0.999 9) ,线性范围为 0.075 ~ 1.200 g/L。

2.3 系统适用性

2.3.1 理论塔板数

色谱柱的理论塔板数按 GPA 计算为3 108,按 CGA 计算为3 340。中国药典(2005版)规定按绿原酸峰计算的理论塔板数应不低于2 000。

2.3.2 分离度

以杜仲雄花(图 1-c)中 GPA 和 CGA 为考察对象,计算各主成分与其他峰的分离度。结果分别为4.36(GPA)和1.52(CGA),均大于1.5。因此,在此分离条件下主成分能够和其他成分较好地分离。

2.3.3 拖尾因子

拖尾因子是检验分离效果和测量精度的指标, 其值应在 0.95~1.05 之间。在本实验条件下,GPA 色谱峰的拖尾因子为 1.02,CGA 色谱峰的拖尾因子为 1.04。

2.4 方法学考察

2.4.1 精密度试验

精密吸取混合标准品稀释液(含 0.2~g/L~GPA 和 0.6~g/L~CGA)5 μL ,连续进样 6 次 ,测定 GPA 和 CGA 的含量 ,计算各组分含量的相对标准偏差 (RSD) ,考察方法的精密度。结果为 :GPA 和 CGA 含量的 RSD 分别为 1.91% 和 0.69% 均小于 2.0%。

2.4.2 加标回收率试验

精密称取 6 份已知含量的杜仲雄花茶样品 0.500 g,分别加入混合储备液 1.000 mL(其中含 GPA 0.400 mg,CGA 1.200 mg),按"1.2.3"节方法提取,过滤,测定含量,计算加标回收率。结果表明,2 种成分的加标回收率分别为 100.2% 和 100.5%; RSD 分别为 1.47% 和 1.49%。

2.4.3 重复性试验

取杜仲雄花茶样品 6 份 ,制备待测液 ,测定 ,计算各组分测定结果的 RSD ,考察方法的重复性 ,结果见表 1。

表 1 HPLC 法测定 GPA 和 CGA 含量的重复性试验结果 Table 1 Results of the repeatability of GPA and CGA

Compound	w(Compound)/%							RSD/%
	1	2	3	4	5	6	mean	· KSD/ 70
GPA	1.645	1.613	1.640	1.644	1.608	1.641	1.632	1.04
CGA	0.925	0.942	0.914	0.960	0.938	0.951	0.938	1.79

进行重复性试验时,RSD 是检验方法重复性优劣的指标,在样品中被测成分含量较低时,重复性检验的 RSD 应小于 5%。在本实验条件下,重复性检验的 RSD 分别为 1.04% 和 1.79%,符合分析要求。

2.4.4 稳定性试验

取已知含量的杜仲雄花样品溶液,分别测定放 置 24 48 和 72 h 后的样品中 GPA 和 CGA 的含量 (n=3),考察样品的稳定性。结果表明,样品中的 GPA 和 CGA 在 72 h 内较稳定 :RSD 分别为 1.98% 和 1.17%。因此测定工作应在 72 h 内完成。

2.4.5 检出限

用甲醇逐级稀释标准品,以峰高为噪声的3倍 (S/N=3)测得 GPA 和 CGA 的检出限分别为 0.02 和 0.06 ug/L。

2.5 样品分析

采用上述建立的分析方法,测定了杜仲叶、杜仲 叶茶、杜仲雄花和杜仲雄花茶样品的2种成分含量, 结果见表 2。

表 2 样品中 GPA 和 CGA 的含量测定结果(n=3) Table 2 Contents of GPA and CGA in samples (n = 3)

Male flower tea	Male flower tea	Male flower tea			
mare nower tea	mare nower tea	mare nower tea	Male flower	Leaves	Leaf tea
from Vangling	from Duyong	from Linghao	male nower	Leaves	near tea

Compound	Male flower tea from Lueyang	Male flower tea from Yangling	Male flower tea from Ruyang	Male flower tea from Lingbao	Male flower	Leaves	Leaf tea
GPA	1.637	0.532	1.722	1.428	0.703	3.052	0.229
CGA	0.923	1.211	0.795	0.707	1.043	1.894	0.801

由表 2 可以看出,不同厂家生产的杜仲雄花茶 中 GPA 和 CGA 的含量均有差异。其主要原因可能 是因为不同厂家生产的杜仲雄花茶的原料产地和生 产工艺不同。杜仲雄花茶的质量与原料来源、原料 的采收期和产品的加工工艺有密切的关系。因此, 在实际生产中,只有制订相应的质量标准以规范原 料和加工过程,才能保证产品质量的稳定和均一。 有关杜仲雄花原料和杜仲雄花茶质量标准的制订已 迫在眉睫。

在所选定的色谱条件下,测定杜仲叶和杜仲叶 绿茶中的 GPA 和 CGA 时 重复性、稳定性等指标也 能达到测定要求。因此,该方法也适用于杜仲叶及 杜仲叶茶中该成分的含量分析。

参考文献:

- [1] Pharmacopoeia Commission of People & Republic of China. Pharmacopoeia of People 's Republic of China. Beijing: Chemical Industry Press (中华人民共和国药典委员会. 中华 人民共和国药典. 北京:化学工业出版社),2000:131
- [2] Zhang K J, Dong J E, Ma B L, Gao J M, Han X W. Scientia Silvae Sinicae(张康健,董娟娥,马柏林,高锦明,韩学文. 林业科学),2002,38(6):12
- [3] Zhu L Q, Zhang L M, Gong RS. Chinese Traditional and

Herbal Drugs (朱丽青, 张黎明, 贡瑞生. 中草药), 1986, 17 (12):15

- [4] Pharmacopoeia Commission of People & Republic of China. Pharmacopoeia of People's Republic of China. Beijing: Chemical Industry Press (中华人民共和国药典委员会. 中华 人民共和国药典. 北京:化学工业出版社),2005:114
- [5] Li J S , Yan Y N. China Journal of Chinese Materia Medica (李家实,阎玉凝.中药通报),1986,11(8):41
- [6] Deyama T, Nishibe S, Nakazawa Y. Acta Pharmacol Sin, 2001,12:1057
- [7] Zhao Y C. Chinese Journal of Chromatography (赵永成. 色 谱),2000,18(3):263
- [8] Cao H , Chen X Q , Xiao J B , Tang Z Q , Ouyang D S. Chinese Journal of Chromatography (曹慧,陈晓青,肖建波,唐 兆麒,欧阳冬生.色谱),2005,23(5):534
- [9] Ma B L, Dong J E, Liang S F, Zhang K J. Chinese Journal of Analytical Chemistry (马柏林,董娟娥,梁淑芳,张康健. 分析化学),2001,29(7):868
- [10] Peng M J , Zhang M , Liu J L , Zhou C S. Chinese Journal of Hospital Pharmacy(彭密军,张敏,刘建兰,周春山.中国医 院药学杂志),2005,25(4):300
- [11] Qi X Y , Chen W J , Zhang S H. Chinese Journal of Pharmaceutical Analysis (戚向阳,陈维军,张声华. 药物分析杂 志),2000,20(1):22
- [12] Dong J E , Ma B L , Liu L , Ma L , Zhang B Y. Journal of Northwest Forestry University (董娟娥,马柏林,刘丽,马 玲,张博勇. 西北林学院学报),2003,18(3):66