亚洲地区稻田N₂O排放影响因子统计模拟分析

廖千家骅12 颜晓元1*

(1. 中国科学院南京土壤研究所土壤与农业可持续发展国家重点实验室,南京 210008; 2. 中国科学院研究生院,北京 100049)

摘要:关于稻田N₂O排放大样本统计分析大多只涉及水分因子和肥料因子,本研究收集历年亚洲稻田N₂O排放资料和更多影响 因子(水分管理、肥料类型及用量、土壤属性、气候和水稻类型等)的相关信息,从中筛选出具有统计学意义的因子,构建排放 通量和上述因子的统计模型.具有统计学意义的因子包括不同水分管理措施、肥料用量、不同有机肥类型、不同 pH 和土壤全 氮含量交互因子、不同年平均温度和不同水稻类型(p < 0.01),该模型能解释 60.7% 的N₂O排放通量变异,有统计学意义.水分 管理措施重要性仅次于肥料用量,其中持续淹水:间歇灌溉:湿润灌溉的相对排放比值为0.17:0.56:1.固氮作物秸秆有效促进 N₂O排放,厩肥作用不明显,添加秸秆的处理N₂O相对排放通量为不添加任何有机肥处理的 64%.pH 和土壤全氮含量交互作用 和排放通量呈显著正相关;pH > 8 和年平均气温 10 ~ 20℃ 有利于N₂O排放.不同水稻类型的N₂O排放量差异显著,早稻相对排 放通量是中稻的 71%,晚稻是中稻的 48%,水稻类型能反映种植之前的土壤水分信息.综合考虑更多影响因子能更有利于解 释水稻田N₂O排放.

关键词:稻田;N,O;统计;模型;影响因子

中图分类号:X16 文献标识码:A 文章编号:0250-3301(2011)01-0038-08

Statistical Analysis of Factors Influencing N₂O Emission from Paddy Fields in

Asia

LIAO Qian-jia-hua^{1 2} ,YAN Xiao-yuan¹

(1. State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; 2. Graduate University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract: Most previous studies attributed variation in N_2O emission from paddy fields to water managements and fertilizer input. In this study, we compiled a database of N_2O emission from paddy fields in Asia, including water management, type and amount of nitrogen fertilizer, soil property, climate and rice types. After screening the influencing factors with statistical significance (p < 0.01) such as different water managements, N input, different organic N types, interaction of soil total nitrogen content and different pH levels, different annual temperature levels, and different rice types, a linear model was established to link N_2O emission to those factors, which could totally explain up to 60.7% of the observed variation in N_2O emission. The most important influencing factor was the amount of N fertilizer input, which had significantly positive correlation with N_2O fluxes. Relative emission fluxes of continuous flooding, intermittent irrigation and wet irrigation were 0. 17:0. 56:1. The soil total nitrogen content had significantly positive effect on N_2O fluxes while the optimum pH for N_2O emission was pH > 8. Straw of N-fixing crop had much higher fluxes than other organic fertilizers while manure had no significant effects on increasing N_2O emission. Application of other crop straws actually reduced N_2O emission by 36%, as compared with fields without organic N input. The relative fluxes for early rice and later rice were 71% and 48% of that for single rice, respectively. Inclusion of more influencing factors such as soil property, climate and rice type helped explaining more of the variations in the observed N_2O emission from paddy fields.

Key words:paddy fields; $\mathrm{N_2O}\,;$ statistics; model; impact factors

N₂O是重要的农业温室气体,IPCC 报告指出农 田土壤排放的N₂O约占总人为源N₂O的 24%^[1,2].早 期研究认为水稻田不排放N₂O,但从 20 世纪 90 年代 开始,越来越多的田间点位研究表明水稻田排放大 量的N₂O. 邢光熹等^[3]指出,中国水稻田N₂O年排放 量和水稻生长期排放量约为中国农田年总排放量的 22%和7%.点位研究表明水稻田N₂O排放受氮肥施 用量、水分管理方式、土壤属性等多因素综合影响, 其中 N 肥被公认为是N₂O的重要来源,对N₂O排放量 的估算也多以 N 肥用量为基础. 亚洲地区是高 N 肥施入区,每年消耗的 N 肥约占世界总量的 50%,而 全球 90%的稻田分布在亚洲地区,因此研究亚洲地区水稻田N,O排放具有现实意义.

大样本统计分析有助于发现普遍规律,找出影

收稿日期:2010-02-09;修订日期:2010-04-07

基金项目:国家自然科学基金委创新群体项目(40621001);中国科 学院知识创新工程重要方向项目(KZCX2-YW-Q1-07)

作者简介:廖千家骅(1984~),女,博士研究生,主要研究方向为气候变化与温室气体排放,E-mail:qjhliao@issas.ac.cn

^{*} 通讯联系人 Æ-mail:yanxy@issas.ac.cn

响因子.目前水稻田N₂O排放的大样本统计研究有: 文献[4~6]分别收集水稻田N₂O排放资料,构建不 同水分管理下 N 施入量的线性排放公式.这些研究 仅考虑了水分和肥料用量这 2 个影响因素,对于其 他影响因子如水稻类型、土壤属性等并无描述. Bouwman等^[7]模拟水稻田的施氮量、土壤属性、观 测时间、采样频率等相关因子和排放量之间的关系, 但没有考虑水分管理类型和水稻类型等.因此,本研 究基于大量的N₂O排放田间点位数据,通过统计模 拟分析寻找影响水稻田N₂O排放的更多影响因子, 并定性各个因子的重要性.

1 数据收集

本研究共收集了 41 篇文献^[8-48]中关于亚洲地 区水稻田N₂O排放的田间点位观测数据 221 组. 排 放量以排放通量均值 flux 表示,单位为µg/(m²•h). 由于以前检测方法上的缺陷,用高纯 N₂ 为载气时造 成 CO₂ 干扰引起的N₂O高估现象,因此,对于采用上 述方法的 5 篇文献中的N₂O排放通量进行了数值校 正,校正方法参见文献[49]. 影响因子分为肥 料因子、水分因子、土壤属性因子、作物因子和气候 因子.

其中 肥料因子包括化肥类型、施肥量、有机肥 类型和有机肥用量等.由于在大多数文献中不同有 机肥的含水量以及含氮量信息并不清楚,因此不考 虑有机肥的施用量 仅考虑有机肥类型 收集到的肥 料类型包括含氨基氮肥、尿素、混合肥等;有机肥分 为干厩肥(manure)、绿肥(green manure, GM)、固氮 作物秸秆(fixing straw, FS)、一般秸秆(straw)和无 有机肥添加(no).施化肥量(N input)按 $kg/(hm^2 \cdot season)$ 计. 水分因子表现为不同的水分管 理措施,分为间歇灌溉(intermittent irrigation, IR)、 连续淹水(flood)、湿润灌溉(wet).土壤属性因子考 虑有机碳含量(soil organic carbon content %, SOC %)、全氮含量(soil total nitrogen content %, STN %)和 pH ,粘粒含量等由于资料太少无法收集.作 物因子考虑不同的水稻类型,分为早稻(early rice)、 晚稻(later rice)、单季稻(single rice). 气候因子收集 年平均温度、年平均降雨量等,其中年平均温度按照 不同气候带划分为 <10℃、10 ~ 20℃、>20℃.

2 模型构建

根据上述的因子数据 构建下列回归模型.

flux = Intercept +
$$\sum_{i}$$
 肥料因子_i + \sum_{j} 水分因子_j
+ \sum_{k} 土壤属性因子_k + \sum_{l} 作物因子_l
+ \sum_{k} 气候因子_m (1)

式中,Intercept 表示常数项;*i*~*m* 代表各个影响因子中的具体因子.

利用统计软件 SPSS16.0 中的线性混合模型 (Linear Mixed Model)对上述因子进行拟合.flux、 STN、用 N 量等连续变量的频度呈对数正态分布,将 其进行对数转化 使数据呈正态分布 贴近模型对数 据分布的要求.考虑到存在施氮量为0,用 ln(1+N input)代替 ln(N input).初步拟合结果显示化肥类 型没有显著效果(p > 0.05),肥料因子仅考虑化肥 N用量和有机肥类型.ln(STN)和 ln(SOC)两者有 很好的正相关性,造成 $\ln(SOC)$ 冗余(p > 0.05); pH 当作连续变量时没有意义,但将其当作分层变量 时却有显著统计学意义;同时,pH和STN呈负相关 关系(收集的原始数据中,pH和STN相关系数为 -0.31),可认为不同的 pH 分层对 STN 有一定的聚 集作用 因此土壤因子考虑 pH 分层和 STN 的交互 作用.年平均降雨量无显著效果(p > 0.05),因为 水稻田水分主要受人为因素控制,降雨对N2O排放 的作用被水分管理掩盖.去除无显著效果的因子,公 式(1)转化为:

 $\ln(\text{flux}) = \text{Intercept} + A \cdot \ln(1 + \text{Ninput})$

+ OrganicN_i + Water_i + $B_k \cdot [pH_k * ln(STN)]$

+ Annual Temperature_i + Rice type_m (2) 式中,Intercept 表示常数项;* 表示交互作用;*i*~*m* 表示各因子分层类型; N input 和 Organic N 分别表 示化肥用量和有机肥类型; Water 表示水分管理措 施; Annual Temperature 表示年平均温度; Rice type 表示水稻类型.

公式(2)的具体结果见表1和表2.

3 结果

表1 中的 F 值表示各因子解释总体变异的贡献,即重要性,F 值越大表明对结果变异解释程度越高.最重要的影响因子为化肥用量,其次为水分类型,这印证了 IPCC 《1996 国家温室气体排放清单指南》中根据氮肥用量计算N₂O排放量、IPCC 《2006 国家温室气体排放清单指南》中根据氮肥用量和水分管理类型计算稻田N₂O排放量的合理性.其它重要影响因子包括 pH 与土壤全氮交互因子、年平均

表1 因子的 Type Ⅲ 检测结果1)

Table 1 Type Ⅲ test of effects

	Numerator df $^{2)}$	Denominator df 3)	F	р
Intercept	1	182	39.84	0.000
Organic N	4	182	3.49	0.009
Rice type	2	182	5.09	0.007
Water	3	182	11.56	0.000
Annual Temperature	2	182	10.22	0.000
ln(1 + N input)	1	182	24.21	0.000
pH* ln(STN)	5	182	8.36	0.000

1) Type Ⅲ用于默认无缺失数据的方差变异分析;2) Numerator df 表

示该因子层的自由度; 3) Denominator df 表示模型总自由度

温度(p < 0.001),有机肥类型重要性最弱(p < 0.01).

每个因子分层的估计值、标准差、自由度、统计 学重要性以及 95% 的置信区间见表 2. 化肥用量、全 氮含量和排放通量均呈显著正相关关系. 表 2 的估 计值大小代表每个因子不同分层对的N₂O排放的相 对大小,如:水分类型中持续淹水的相对排放通量 最小;年平均温度 10 ~ 20℃的相对排放通量最 大等.

	表 2	线性模型参数估计结果
Table 2	Estim	ated values of effects in linear model

	4.1. <i>t</i>				95%		
参 叙	估计值	标准误	自田度	р	下限	上限	
Intercept	3.886	0.476	182	0.000	2.947	4.826	
[organic N = fixing straw]	1.675	0.663	182	0.012	0.367	2.983	
[organic N = green manure]	-0.470	0.509	182	0.358	- 1. 474	0.535	
[organic N = manure]	0.536	0.265	182	0.045	0.013	1.060	
$[\text{organic N} = \text{no}^{1}]$	0.440	0.174	182	0.012	0.097	0.784	
[organic N = straw]	0 2)	0.000	—	—	—	—	
[rice type = early rice]	-0.328	0.207	182	0.115	- 0. 737	0.080	
[rice type = late rice]	-0.713	0. 229	182	0.002	-1.164	-0.261	
[rice type = single rice]	0	0.000	—	—	_	—	
[Water = flood]	-1.684	0.377	182	0.000	- 2. 429	- 0. 939	
[Water = IR]	-0.654	0.328	182	0.048	- 1. 301	- 0. 006	
[Water = unknown $^{3)}$]	-1.052	0.462	182	0.024	- 1.964	-0.139	
[Water = wet]	0	0.000	—	—	_	—	
[temperature < 10° C]	- 1. 391	0.325	182	0.000	- 2. 032	- 0. 749	
[temperature > $20^{\circ}C$]	-0.456	0.173	182	0.009	- 0. 797	-0.115	
[temperature = $10^{\circ}C \sim 20^{\circ}C$]	0	0.000	—	—	_	—	
ln(1 + N input)	0.158	0.032	182	0.000	0.095	0.227	
$[pH < 6]* \ln(STN)$	0.397	0.173	182	0.023	0.056	0.739	
[pH 6 ~ 7]* ln(STN)	0.320	0.154	182	0.039	0.016	0.625	
[pH 7 ~ 8]* ln(STN)	0.571	0.127	182	0.000	0.321	0.821	
$[pH > 8]* \ln(STN)$	0.119	0.111	182	0. 289	-0.101	0.339	
[pH = Unknown]* ln(STN)	0.267	0.265	182	0.315	- 0. 256	0.791	

1) no 表示无有机肥;2) 表示冗余值;3) unknown 表示文献中未明确的类型

模型模拟值和原始观测值的对比情况见图 1, 其中大多数点位于 y = x 线的两侧 ,总体拟合度较好. 观测值 <1 的点偏离 y = x 程度较大,但由于其数值 小 指数转化为 flux 之后差值并不算太大;观测值处 于 4~6 区间的点存在低估现象,指数转化为 flux 之 后更明显. flux 观测值的平均值(以 N 计)为 37.5 $\mu g/(m^2 \cdot h)$,预测值的平均值为 29.6 $\mu g/(m^2 \cdot h)$,低 了 21%.预测值和模拟值线性回归拟合能解释约 60.7% 的变异 模型具有显著统计学意义.

4 讨论

4.1 N 肥用量和水分管理对N₂O排放的影响 肥料用量是最重要的影响因子,图2显示的是

肥料用量的相对排放通量,施肥和未施肥的差异很 大,当 N 肥用量(以 N 计,下同)是 100 和 300 kg/hm^{2} 时,其相对排放通量为无施肥状态的 2.1 和 2.5 倍.当施肥量为 0~50 kg/hm²时,相对排放通量 增长很快,对于低于 50 kg/hm²的排放通量估值并 不准确.但由于数据来源中肥料用量基本高于 50 kg/hm^{2} ,而且现实施肥中稻田的施肥量一般高于 50 kg/hm^{2} ,因此对于常规施肥有很好的借鉴意义.

水分管理措施为仅次于肥料用量的重要影响因 子.持续淹水:间歇灌溉:湿润灌溉相对排放通量的 比值为0.17:0.56:1 [图 3(a)],湿润灌溉有利于 N₂O排放,而持续淹水最有利于N₂O减排.

水分是土壤氧气含量的重要限制因子,进而控

制硝化和反硝化进程. Davidson 等^[50]认为土壤充水 孔隙度(water filled pore space, WFPS)在 30% ~ 70%之间,硝化作用产生的N₂O占主导,在 60% 左右 硝化和反硝化同时作用.郑循华等^[51]研究发现 WFPS 在 85%和 98% 左右,N₂O排放量最大,低于这 个湿度,则排放量和湿度呈正相关. Smith^[52]报道土 壤处于干-湿交替时存在较高的反硝化作用率,当氧 气处于一定浓度时,才能产生高的N₂O/N₂比率.因 此,持续淹水的水分处于饱和状态,氧气含量很少, 反硝化进行得很彻底,产物为 N₂,中间产物N₂O很 少.湿润灌溉使得水分一直处于半饱和状态,可以同 时发生不彻底的硝化和反硝化作用,最有利于N₂O 排放;存在数次土壤干湿交替作用的间歇灌溉排放 位于中间.unknown 为文献中未明确的水分管理类 型,可以假定为持续淹水、间歇灌溉或者湿润灌溉,

annual temperatures and organic fertilizer types

N 肥是引起N₂O排放的直接因子,由 N 肥引起的排放因子(fertilizer-induced emission factor, FIE) 是估算N₂O排放便捷方法之一.水分管理措施也很 重要,计算不同水分管理类型下的 FIE 更能代表真 实情况.利用原始数据中含施 N 量的观测组,计算 模型模拟结果中每个观测组的 FIE 值,再分不同水

分管理措施的 FIE 取均值 ,结果见表 3. 具体计算方法见公式(3)~(6).
flux(N) =
$$e^{3.886} \cdot e^{0.44} \cdot STN^{A_i} \cdot (1 + Ninput)^{0.158}$$

•
$$e^{Water_i} \cdot e^{T_i} \cdot e^{Ricetype_i}$$
 (3)
对应的 flux (0) = $e^{3.886} \cdot e^{0.44} \cdot STN^{A_i} \cdot e^{Water_i}$
• $e^{T_i} \cdot e^{Ricetype_i}$ (4)

emission = flux • days • 24/100 000 (5)
FIE =
$$\frac{100 \cdot [\text{emission}(N) - \text{emission}(0)]}{N}$$

式中 N 表示 N 肥输入量(kg/hm^2); *i* 表示不同因子 的分层; A_i 为不同 pH 分层和 ln(STN)的交互作用 系数; days 为观测时长或生长季; 3.886 为常数项系 数; 0.44 为有机肥类型中无有机肥项的系数; 0.158 为肥 料 用 量 系 数; emission 表示 生长季 排 放 量 (kg/hm^2).

FIE 均值为 0.33%, 略高于 IPCC2006 指南^[3]中 推荐值 0.3%. 其中,持续淹水的 FIE 值最小,其次 为间歇灌溉,湿润灌溉最大,3种水分类型的FIE比

表 5	个同水分尖型下	FIE 和育意平均排放通重模拟结果	

(6)

Table 3	FIE values and	mean of background	fluxes for different	water managements
---------	----------------	--------------------	----------------------	-------------------

水分类型	***		95%置信区间		背景平均排放通量 ¹⁾	95%置信区间	
	奴加妇奴	FIL/%	下限	上限	$/\mu g \cdot (m^2 \cdot h)^{-1}$	下限	上限
持续淹水	37	0.07	0.054	0.087	2.8	2. 2	3.3
间歇灌溉	119	0.38	0.32	0.45	17.3	15.9	18.7
湿润灌溉	8	0.85	0.59	1.11	39.0	25.5	52.5
不确定	9	0.30	2)	0.76	6.4	2.7	10.1
均值	173	0.33	0.28	0.39	14.6	13.0	16.3

1) 公式(4) 中的 flux(0); 2) 一为负值

值为 0.08:0.45:1,这和图 2(a) 中的相对排放通量 趋势一致. 邹建文等^[6]将中国地区水稻田分成持续 淹水、淹水-烤田-淹水、淹水-烤田-淹水-湿润灌溉等 3 种模式, FIE 分别为 0.02%、0.42% 和 0.73%; Akiyama 等^[4]得到持续淹水稻田 FIE0.22%,有排水 过程稻田 FIE 0.37%,均值为 0.31%; Yan 等^[53]指 出水稻 FIE 为 0.25%.上述结果和本研究结果整体 趋势一致,两者不同之处在于:上述研究仅考虑水肥 因素,并没有考虑其他因子的综合影响,表 3 中所得 的 FIE 是综合作用(包含 pH、STN、水稻类型、气温、 肥料类型)的模拟结果,更具现实意义.

固氮作物秸秆贡献最大,相对排放通量是未添加有机肥的3.12倍,是添加秸秆的5.38倍;添加厩肥略高于未施有机肥,添加秸秆和绿肥比未施有机肥相对排放通量要小,能减少N₂O排放[图3(b)].

有关厩肥添加对N₂O排放的研究很不一致,在 本研究收集的文献中,有4篇文献^[8,9,21,22]报道添加 厩肥能减少N₂O排放,3篇文献^[20,27,34]证明添加厩肥 增加N₂O排放,因此对N₂O排放表现为相对排放通量 略高于未添加有机肥项,两者无显著差异.添加厩肥 能有效改变土壤微生物、物理化学属性等.厩肥能增 加硝化菌和反硝化菌的活性,促进硝化和反硝化作 用;同时也能增加其他微生物的活性,加快土壤氧气 的消耗,加速了土壤厌氧环境的形成,间接增强了土 壤生物反硝化作用,促进N₂O排放^[54];含N量高的 厩肥或者添加较多厩肥时,对总施 N 量的贡献增加,也能促进N₂O排放^[16 23].而对于未经堆腐的厩肥,在矿化分解过程和硝化菌、反硝化菌竞争 N 源, 表现为抑制N₂O排放^[16 23].不同的厩肥类型、施肥 量、施用方式和施用时间都有可能造成较大的N₂O 排放差异.

秸秆对于N₂O排放的作用一直是研究的热点. 有田间实验表明添加前一年晚稻秸秆促进第二年早 稻N₂O排放^[27];但更多研究认为一般作物秸秆的 C/N很高,在分解过程中其他微生物竞争 N 源,降低 N₂O排放^[29,38,47],且C/N和N₂O排放呈显著负相 关^[55]. 而且,一般作物秸秆含N量很低,在添加量 (以干重计)为3000 kg/hm²时,秸秆含N量为 0.5% ,得秸秆增加的氮量 15 kg/hm² ,仅占常规施肥 量 200 kg/hm²的 7.5%,对总施 N 量影响较小.图 3 (b) 中秸秆的相对排放通量为无添加有机肥的 64% 和未添加有机肥相比具有显著差异(p < 0.001) 因此认为秸秆在大区域范围内具有一定减 排效果,减排量为36%.绿肥对于N₂O排放的作用类 似于一般作物秸秆,且其相对排放通量更小,但绿肥 数据量较少 在大区域范围内是否有减排效果应需 收集更多数据进一步研究. C/N 含量很低的固 N 作 物秸秆,表现为促进N,O排放.

4.2 其他因子对N₂O排放的影响

土壤因子对N₂O排放的贡献不容忽略,表1中

pH* ln(STN)的F值和肥料因子相近,进一步说明 原来的统计研究仅考虑水分管理和肥料信息是不够 的.pH* ln(STN)的系数均为正数,ln(STN)和 ln (flux)呈显著正相关(p < 0.001).图4显示不同 pH 分层的相对排放通量,假定 STN% 为 0.1. 曲线呈凹 型折线 ,pH > 8 最有利于N,O排放 ,pH 处于 7~8 时 最小,前者的相对排放通量为后者的2.8倍.不同 pH 分层和 STN 交互作用的相对排放通量见图 5. 对 本研究所收集的原始数据进行相关性分析,pH和 STN 呈显著负相关(回归方程为 STN = -0.039 × $pH + 0.386 R^2 = 0.31 p < 0.001 n = 206$) 当 pH 值 高时 STN 往往含量较低 不同的 pH 分层对 STN 有 大致的划分.因此结合实际情况,笔者考虑不同 pH 分层下、最有可能出现的 STN 值(符合上述回归公 式)的相对排放通量.pH 根据划分的类型分别取 4 个分段的均值:5、6.5、7.5 和9,对应的 STN% 回归 值为 0.197、0.135、0.095 和 0.034, 见图 5 中的点 值.STN 和 pH 的负相关性能在一定程度上能缓解 pH 分层造成的差异,但不能改变整体趋势,pH > 8 时对应的相对排放量仍然最大,相对排放通量为 0.65, pH 处于 7~8 最小, 为 0.26. 前者排放通量是 后者的 2.5 倍,低于图 3 中的 2.8 倍,证明取 pH 和 STN 的交互作用比两者单独作用更加有效.

图 4 pH 分层的N₂O相对排放通量 Fig. 4 Relative N₂O fluxes among pH classes

pH 值 对 土 壤 N_2O 排 放 机 制 较 为 复 杂, Sahrawat^[56]、朱兆良等^[57]认为酸性到微碱性的 pH范围内,硝化作用和 pH 呈显著正相关.而同时也有 实验证明,反硝化作用也和 pH 呈显著正相关.黄耀 等^[58]证明在 pH 5.6~8.6范围内,土壤 N_2O 排放与 土壤 pH 呈显著正相关.本研究结果显示 pH 位于中 性范围时呈现低谷,和已知现象不符.笔者认为上述的研究结果均来源于精确的室内实验,往往为单因 子实验,排除了其他因素的干扰,而在综合研究中, 由于不同观测点、观测人员等随机误差、以及一些尚 未考虑到的因素,都可能导致N₂O结果受其他一些 未知因素的协同作用.

不同年平均温度对 N_2O 排放贡献差异很大(表 2),且对整个模型的贡献值也较高(表1).最有利于 N_2O 排放的年平均气温为 10~20°C,相对排放量约 为<10°C的4倍,>20°C的1.6倍[图3(c)].年平 均温度位于10~20°C的点大部分位于亚热带季风 区,此时水稻种植期的平均温度往往为20~30°C. 同理,年平均温度<10°C和>20°C时水稻种植期的 平均温度很有可能是10~20°C和>30°C.而硝化和 反硝化细菌适宜的温度为20~30°C,过高或者过低 都会抑制硝化菌的活性^[59].因此,水稻种植期的平 均温度位于20~30°C区间(此时年平均温度区间很 有可能位于10~20°C)有利于微生物活性,促进 N_2O 排放.

早稻和晚稻的相对排放通量分别是单季稻的 72%和49%(表4),且晚稻和单季稻的区别达到显 著差异水平(表2).这种差异可能是水稻种植之前 的水分状态不同造成.单季稻和早稻种植之前往往 为旱地作物或者空闲地,处于排水状态,土壤氧化还 原电位较高,土壤含水率也较低,有利于N₂O排放. 晚稻种植之前的水分状况为淹水状态,氧化还原电 位较低,不利于N₂O排放.在水稻种植之后,原本淹 水状态的土壤氧化还原电位会一直较低,而原本氧 化还原电位高的土壤会慢慢降低,相比较而言有利 于N₂O排放.而且,单季稻种植之前处于旱地或者休 闲状态的时间比早稻要长,相对排放通量也较大.

表4 不同水稻类型N₂O相对排放通量

Table 4 Relative N2O fluxes of different rice types

稻类	相对排放通量	95%置信区间
单季稻	1 1)	—
晚稻	0.49	(0.31 p.77)
早稻	0.72	(0.48,1.08)

1) 假定单季稻相对排放通量为1

5 结论

(1)所建立的统计模型能解释 60.7% 的总体变 异,具有显著统计学意义.大样本统计模型结果显 示:肥料用量是最重要的影响因子,和排放通量呈显 著正相关;水分管理措施重要性仅次于肥料用量,其 中湿润灌溉最有利于 N_2O 排放;STN 和排放通量呈 显著正相关关系,pH 呈非线性关系,pH > 8 最有利 于 N_2O 排放;添加一般秸秆能减少 36% 的 N_2O 排放; 最有利于 N_2O 排放的年平均温度为 10~20°C;不同 水稻类型能代表种植之前的水分信息,早稻的相对 排放是单季稻的 0.71,晚稻是单季稻的 0.48.

(2)除了 N 用量和水分管理等因子,统计模型显示土壤属性因子、气候因子和作物类型对排放通量均具统计学意义,综合考虑更多影响因子更有利于解释水稻田N,0排放.

参考文献:

- [1] IPCC. Agriculture [A]. In: Climate Change 2007: Mitigation, Contribution of Working Group Ⅲ to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [C]. 2007.
- [2] 蔡祖聪,徐华,马静.稻田生态系统 CH₄和N₂O排放[M].合肥:中国科学大学出版社,2009.296-299.
- [3] 邢光熹,颜晓元.中国农田N₂O排放的分析估算与减缓对策
 [J].农村生态环境,2000,16(4):1-6.
- [4] Akiyama H , Yagi K , Yan X. Direct N₂O emissions from rice paddy fields: Summary of available data [J]. Global Biogeochemical Cycles, 2005, 19, GB1005, doi: 10.1029/ 2004GB002378.
- [5] Zou J , Huang Y , Qin Y , et al. Changes in fertilizer-induced direct N₂O emissions from paddy fields during rice-growing season in China between 1950s and 1990s [J]. Global Change Biology , 2009 , 15: 229-242.
- [6] 邹建文,刘树伟,秦艳梅,等.不同水分管理方式下水稻生长 季N₂O排放量估算:模型验证和输入参数检验[J].环境科 学,2009,30(4):937-948.

- [7] Bouwman A F, Boumans L J M. Modeling global N₂O and NO emissions from fertilized fields [J]. Global Biogeochemical Cycles 2002, 16(4), 1080, doi:10.1029/2001GB001812.
- [8] 杨军,胡飞.广州地区早稻田施肥对N₂O排放影响的初步研究[J].华南农业大学学报,1996,17(4):52-57.
- [9] 杨军,伍时照.广州地区晚季稻田 CH₄, N₂O排放研究初报 [J].华南农业大学学报,1997,19(3):62-64.
- [10] Cai Z C , Xing G X , Shen G Y , et al. Measurements of CH_4 and N_2O emissions from rice paddies in Fengqiu , China [J]. Soil Science and Plant Nutrition , 1999 45:1–13.
- [11] Cai Z C , Xing G X , Yan X Y , et al. Methane and nitrous oxide emissions from rice paddy fields as affected by nitrogen fertilisers and water management [J]. Plant and Soil , 1997 , 196:7-14.
- [12] 徐华,鹤田治雄. 丘陵区稻田N₂O排放的特点[J]. 土壤与环 境,1999 **8**(4):266-270.
- [13] 曹金留,徐华.苏南丘陵区稻田氧化亚氮的排放特点[J].生态学杂志,1999,18(3):6-9.
- [14] Xiong Z Q, Xing G X, Tsuruta H, et al. Measurement of nitrous oxide emissions from two rice-based cropping systems in China [J]. Nutrient Cycling in Agroecosystems, 2002 64:125-133.
- [15] 蒋静艳,黄耀,宗良纲.水分管理与秸秆施用对稻田 CH₄和 N₂O排放的影响[J].中国环境科学,2003 23(5):552-556.
- [16] 邹建文,黄耀,宗良纲,等. 稻田 CO₂、CH₄和N₂O排放及其影响因素[J].环境科学学报 2003,23(6):758-764.
- [17] 徐华,蔡祖聪. 土壤性质和非水稻生长期土壤水分对 CH₄ 产 生、氧化和排放的影响 [J]. 中国科学院研究生院学报, 2004,21(3):427-432.
- [18] 梁巍,张颖,岳进,等.长效氮肥施用对黑土水旱田 CH₄和 N₂O排放的影响[J].生态学杂志 2004 23(3):44-48.
- [19] 卢维盛,张建国,廖宗文.广州地区晚稻田 CH₄和N₂O的排放通量及其影响因素[J].应用生态学报,1997,8(3):275-278.
- [20] 陈冠雄,王正平.稻田CH₄和N₂O的排放及养萍和施肥的影响[J].应用生态学报,1995 6(4):378-382.
- [21] Zheng X H , Wang M X , Wang Y S , et al . Mitigation options for methane , nitrous oxide and nitric oxide emissions from agricultural ecosystems [J]. Advances in Atmospheric Sciences , 2000 ,17:83-92.
- [22] Yu K W, Chen G X, Patrick W H. Reduction of global warming potential contribution from a rice field by irrigation, organic matter, and fertilizer management [J]. Global Biogeochemical Cycles, 2004, 18, GB3018, doi:10.1029/2004GB002251.
- [23] Zou J W , Huang Y , Lu Y Y , et al. Direct emission factor for N₂O from rice-winter wheat rotation systems in southeast China
 [J]. Atmospheric Environment , 2005 39:4755-4765.
- [24] Jiang C S , W Y S , Zheng X H , et al . Methane and Nitrous Oxide Emissions from Three Paddy Rice Based Cultivation Systems in Southwest China [J]. Advances in Atmospheric Sciences , 2006 , 23 (3) : 415-424.
- [25] Christine K, Klaus D, Zheng X H, et al. Fluxes of methane and nitrous oxide in water-saving rice production in north China [J]. Nutrient Cycling in Agroecosystems, 2007 77:293-304.

- [26] 肖小平,伍芬琳,黄风球.不同稻草还田方式对稻田温室气体 排放影响研究[J].农业现代化研究 2007 28(5):629-632.
- [27] 秦晓波 李玉娥.不同施肥处理对稻田氧化亚氮排放的影响
 [J].中国农业气象 2006, 27 (4): 273-276.
- [28] 陈书涛,黄耀.轮作制度对农田氧化亚氮排放的影响及驱动 因子[J].中国农业科学,2005,38(10):2053-2060.
- [29] 江长胜, 王跃思, 郑循华. 川中丘陵区冬灌田甲烷和氧化亚氮 排放研究[J]. 应用生态学报, 2005, 16(3):539-544.
- [30] Jin Y, Yi S, Wei L, et al. Methane and nitrous oxide emissions from rice field and related microorganism in black soil, northeastern China [J]. Nutrient Cycling in Agroecosystems, 2005, 73:293-301.
- [31] Kumar U, Jain M C, Pathak H, et al. Nitrous oxide emission from different fertilizers and its mitigation by nitrification inhibitors in irrigated rice [J]. Biology and Fertility of Soils, 2000 32: 474-478.
- [32] Majumdar D , Kumar S , Pathak H , et al. Reducing nitrous oxide emission from an irrigated rice field of North India with nitrification inhibitors [J]. Agriculture Ecosystems & Environment , 2000 , 81:163-169.
- [33] Ghosh S , Majumdar D , Jain M C. Methane and nitrous oxide emissions from an irrigated rice of North India [J]. Chemosphere 2003 51:181-195.
- [34] Pathak H , Bhatia A , Prasad S , et al. Emission of nitrous oxide from rice-wheat systems of Indo-Gangetic plains of India [J]. Environmental Monitoring and Assessment 2002 77: 163-178.
- [35] Suratno W , Murdiyarso D , Suratmo F G , et al. Nitrous oxide flux from irrigated rice fields in West Java [J]. Environmental Pollution ,1998 ,102:159-166.
- [36] Bronson K F , Neue H U , Singh U , et al. Automated chamber measurements of methane and nitrous oxide flux in a flooded rice soil. 1. Residue , nitrogen , and water management [J]. Soil Science Society of America Journal ,1997 61:981-987.
- [37] Bronson K F, Singh U, Neue H U, et al. Automated chamber measurements of methane and nitrous oxide flux in a flooded rice soil. 2. Fallow period emissions [J]. Soil Science Society of America Journal ,1997 61:988-993.
- [38] Abao E B, Bronson K F, Wassmann R, et al. Simultaneous records of methane and nitrous oxide emissions in rice-based cropping systems under rainfed conditions [J]. Nutrient Cycling in Agroecosystems 2000 58:131-139.
- [39] Malla G , Bhatia A , Pathak H , et al. Mitigating nitrous oxide and methane emissions from soil in rice-wheat system of the Indo-Gangetic plain with nitrification and urease inhibitors [J]. Chemosphere , 2005 58:141-147.
- [40] Bhatiaa A, Pathakb H, Jaina N, et al. Global warming potential of manure amended soils under rice-wheat system in the Indo-Gangetic plains [J]. Atmospheric Environment, 2005, 39: 6976-6984.
- [41] 江长胜,王跃思,郑循华,等.耕作制度对川中丘陵区冬灌田 CH₄和N₂O排放的影响[J].环境科学,2006,27(2):207-

213.

- [42] Toshiaki I, Sanjit K D, Ram G K. Nitrous oxide emission measurement with acetylene inhibition method in paddy fields under flood conditions [J]. Paddy Water Environment, 2007, 5: 83-91.
- [43] 于亚军,朱波,王小国. 成都平原水稻→油菜轮作系统氧化亚 氮排放[J]. 应用生态学报,2008,19(6):1277-1282.
- [44] 马静,徐华,蔡祖聪. 焚烧麦秆对稻田 CH₄和N₂O排放的影响
 [J].中国环境科学,2008,28(2):107-110.
- [45] Wang Y , Zhu B , Wang Y. N₂O Emission from paddy field under different rice planting modes [J]. Wuhan University Journal of Natural Sciences 2006 ,11 (4):989-996.
- [46] Towprayoon S, Smakgahn K, Poonkaew S. Mitigation of methane and nitrous oxide emissions from drained irrigated rice fields [J]. Chemosphere, 2005, 59: 1547-1556.
- [47] 马静.秸秆还田和氮肥施用对稻田 CH₄和N₂O排放的影响
 [D].南京:中国科学院南京土壤研究所 2008.
- [48] 黄树辉.裂缝条件下稻田土壤中N₂O的释放和氮溶质运移的 机理研究[D].杭州:浙江大学 2005.
- [49] Zheng X Y, Mei B L, Wang Y H, et al. Quantification of N₂O fluxes from soil-plant systems may be biased by the applied gas chromatograph methodology [J]. Plant and Soil 2008 311:211-234.
- [50] Davidson E A, Swank W T. Environmental parameters regulating gaseous nitrogen losses from two forested ecosystems via nitrification and denitrification [J]. Applied and Environmental Microbiology ,1986 , 52: 1287-1292.
- [51] 郑循华,王明星,王跃思,等.稻麦轮作生态系统中土壤湿度 对N₂0产生与排放的影响[J].应用生态学报,1996,7(3): 273-279.
- [52] Smith K A. Greenhouse gas fluxes between land surface and the atmosphere [J]. Progress of Physocial Geography, 1990 3:349-372.
- [53] Yan X Y, Akiyama H, Ohara T. Estimation of nitrous oxide, nitric oxide and ammonia emissions from croplands in East, Southeast and South Asia [J]. Global Change Biology. 2003, 9: 1080-1096.
- [54] 张玉铭,胡春胜,董文旭.农田土壤N₂O生成与排放影响因素及N₂O总量估算的研究[J].中国生态农业学报,2004,12 (3):119-123.
- [55] Huang Y , Zou J W , Zheng X H , et al. Nitrous oxide emissions as influenced by amendment of plant residues with different C: N ratios [J]. Soil Biology & Biochemistry , 2004 , 36: 973–981.
- [56] Sahrawat K L. Nitrification in some tropic soils [J]. Plant and Soil ,1982 ,65:281-286.
- [57] 朱兆良,文启孝.中国土壤氮素[M].南京:江苏科学技术出版社,1992.97-160.
- [58] 黄耀,焦燕,宗良纲,等. 土壤理化特性对麦田N₂0排放影响的研究[J].环境科学学报 2002 5(22):598-602.
- [59] 俞大钹 李季伦.微生物学[M].北京:科学出版社,1985.62-63.